Discovery of an orally bioavailable and selective PKMYT1 inhibitor RP-6306

Janek Szychowski, *, ${ }^{\ddagger}$ Robert Papp, ${ }^{\neq}$Evelyne Dietrich, ${ }^{\neq}$Bingcan Liu, ${ }^{\neq}$Frédéric Vallée, ${ }^{\neq}$ Marie-Ève Leclaire, ${ }^{\ddagger}$ Jimmy Fourtounis, ${ }^{\neq}$Giovanni Martino, ${ }^{\neq}$Alexander L. Perryman, ${ }^{\neq}$Victor Pau, ${ }^{\nabla}$ Shou Yun Yin, ${ }^{\neq}$Pavel Mader, ${ }^{\nabla}$ Anne Roulston, ${ }^{\neq}$Jean-Francois Truchon, ${ }^{\neq}$C. Gary Marshall, ${ }^{\dagger}$ Mohamed Diallo, ${ }^{\neq}$Nicole M. Duffy, ${ }^{\neq}$Rino Stocco, ${ }^{\neq}$Claude Godbout, ${ }^{\neq}$Alexanne Bonneau-Fortin, ${ }^{*}$ Rosie Kryczka, ${ }^{*}$ Vivek Bhaskaran, ${ }^{*}$ Daniel Mao, ${ }^{\nabla}$ Stephen Orlicky, ${ }^{\nabla}$ Patrick Beaulieu, ${ }^{\S}$ Pascal Turcotte, ${ }^{\oslash}$ Igor Kurinov, ${ }^{\circledR}$ Frank Sicheri, ${ }^{\nabla, ף}$ Yael Mamane, ${ }^{\ddagger}$ Michel Gallant, ${ }^{\neq}$ and W. Cameron Black ${ }^{*} \neq$

${ }^{\ddagger}$ Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada.
${ }^{\nabla}$ Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5,

Canada. ${ }^{\dagger}$ Repare Therapeutics, 1 Broadway, 15th Floor, Cambridge, MA 02142, USA.
${ }^{\S}$ Omegachem Inc., 480 Rue Perreault, Saint-Romuald, QC, G6W 7V6, Canada. ${ }^{\diamond}$ AdMare

BioInnovations, 7171 Frederick-Banting, Montréal, QC, H4S 1Z9, Canada. ${ }^{\text {x }}$ Department of

Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, Il 60439, USA.
${ }^{\text {a }}$ Departments of Biochemistry and Molecular Genetics, University of Toronto, Ontario M5S

1A8, Canada.

* Corresponding authors E-mail: jszychowski@reparerx.com and cblack@reparerx.com.

KEYWORDS: PKMYT1, CCNE1 amplification, RP-6306, Atropisomer

Abstract

PKMYT1 is an important regulator of CDK1 phosphorylation and is a compelling therapeutic target for the treatment of certain types of DNA damage response cancers due to its established synthetic lethal relationship with CCNE1 amplification. To date, no selective inhibitors have been reported for this kinase that would allow for investigation of the pharmacological role of PKMYT1 in the treatment of cancer. To address this need we conducted a focused screening effort that identified compound $\mathbf{1}$ as a weak PKMYT1 inhibitor. Introduction of a dimethylphenol dramatically increased potency on PKMYT1. These dimethylphenol analogs were found to exist as Type III atropisomers that could be separated and profiled as single enantiomers. Structurebased drug design aided by co-crystal structures of several analogs enabled optimization of cellbased potency and kinase selectivity. Parallel optimization of ADME properties led to the identification of potent and selective inhibitors of PKMYT1 with favorable pharmacokinetics. RP6306 inhibits the phosphorylation of CDK1 Thr14 in vivo in tumor tissue and inhibits CCNE1amplified tumor cell growth in several preclinical xenograft models. The first-in-class clinical candidate RP-6306 is currently being evaluated in Phase 1 clinical trials (NCT04855656) for treatment of various solid tumors.

Table of Contents graphic

INTRODUCTION AND BIOLOGICAL RATIONALE

Cyclins are primary regulators of cellular growth and interact with cyclin-dependent kinases (CDKs) to initiate events required for cell cycle progression. The CCNE1 locus encodes the protein cyclin E1, which complexes with cyclin-dependent kinase 2 (CDK2) and drives cells from G1 phase to S phase. ${ }^{1}$ In cancer, amplification of the CCNE1 gene and/or deregulation of cyclin E1 frequently occurs at an early stage of tumorigenesis and forces cancer cells into S phase prematurely. Excessive replication, origin firing, and inadequate pools of nucleotides cause replication fork stalling, leading to replication stress and DNA damage. ${ }^{2}$ In the absence of functional p53, this causes genomic instability as cells move into mitosis with damaged DNA. PKMYT1, a member of the WEE family of serine/threonine-kinases, phosphorylates threonine 14 (Thr14) of cyclin-dependent Kinase 1 (CDK1), which inhibits its ability (when complexed with cyclin B) to trigger mitosis. ${ }^{3}$ In contrast, WEE1 phosphorylates tyrosine 15 (Tyr15) of CDK1 and is implicated in the regulation of both CDK1 and CDK2 activity. ${ }^{4}$ PKMYT1 function does not appear to be critical in the unperturbed cell cycle whereas WEE1 function is essential for cell cycle progression of cells. ${ }^{5}$ However, the absence of functional PKMYT1 in a genetically-vulnerable tumor, such as with CCNE1-amplification, causes cells to lose major checkpoint regulation leading to hyperactive CDK1, unscheduled mitosis and catastrophic DNA damage, ultimately resulting in cell death. ${ }^{6}$ No selective inhibitors have been previously reported for PKMYT1 that would allow for the investigation of the pharmacological activity. In this manuscript we report the discovery of the first potent, selective, and orally bioavailable PKMYT1 inhibitor RP-6306.

COMPOUND STRUCTURE-ACTIVITY-RELATIONSHIPS AND OPTIMIZATION

To identify a chemical starting point for a selective PKMYT1 inhibitor, we chose to conduct a focused screen of 560 known kinase inhibitors ${ }^{7,8,9}$ using a fluorescence polarization based competitive displacement assay with Tracer 178 binding probe (Thermofisher PV5593). Among a list of non-selective SRC/ABL inhibitors (dasatinib, ${ }^{11}$ bosutinib ${ }^{12}$ and PD-173955 ${ }^{13}$) that scored as potent hits, we were particularly attracted by compound $\mathbf{1}$ which has previously been disclosed as a non-specific ephrin inhibitor. ${ }^{14,15}$ This appeared to be an excellent lead structure, particularly in light of the 50 -fold selectivity observed over the highly homologous enzyme WEE1 (Table 1). We then began modifications of this structure to understand which elements were important to PKMYT1 inhibition, beginning with the structure-activity relationship (SAR) of the phenol ring. It was quickly determined that the 3-phenol of compound $\mathbf{1}$ was essential for PKMYT1 inhibition, as both the 6-tolyl derivative 2^{14} and the 4 -phenol analog 3 were found to be inactive in our biochemical ADP release enzymatic assay (Table 1). Moving the methyl on the phenol ring from the 6-position in compound $\mathbf{1}$ to the 2-position in analog $\mathbf{4}$ provided improved potency while the unsubstituted phenol $\mathbf{5}^{14}$ was considerably less potent, suggesting a torsion angle requirement between the phenol ring and the tricyclic system. Addition of a second methyl substituent to compound $\mathbf{1}$ to give the 2,6-dimethyl phenol $\mathbf{6}$ further improved the potency suggesting that enforcing a large dihedral angle with the tricyclic ring system was beneficial. Replacement of the phenol of compound $\mathbf{6}$ with substituents such as methoxy in compound $\mathbf{7}$ and chloro in compound $\mathbf{8}$ deleteriously affected potency, highlighting the requirement for the hydrogen bond donor aspect of the phenol. Replacing the phenol by an aniline also yielded an inactive analog 9. These findings inspired a search for a phenol isostere. Indazole ${ }^{16} \mathbf{1 0}$ retained some potency, while other hydrogen bond donor analogs such as the
indole 11, benzotriazole 12, benzimidazole 13, and difluoromethyl 14 were all inactive. The introduction of a methyl at the para position relative to the hydrogen bond donor of the indazole to give analog $\mathbf{1 5}$ provided only a small improvement in potency and confirmed our preference for the phenol. Substitution of each methyl of analog 6 by chloro yielded the three analogs $\mathbf{1 6}$, 17, and 18 with similar potency in the enzymatic assay compared to compound 6 .

Table 1. Compound 1 phenol SAR

		R^{1}	R^{2}	R^{3}	R^{4}	PKMYT1 Enzymatic ${ }^{1}$ $\mathrm{IC}_{50}(\mu \mathrm{M})$	WEE1 Enzymatic $\mathrm{IC}_{50}(\mu \mathrm{M})$
	1	H	OH	H	Me	0.068	3.7
	2	H	H	H	Me	>20	-
	3	H	H	OH	Me	8.4	-
	4	Me	OH	H	H	0.010	2.2
	5	H	OH	H	H	0.37	19.6
	6	Me	OH	H	Me	0.008	0.58
	7	Me	OMe	H	Me	5.3	-
	8	Me	Cl	H	Me	>20	-
	9	H	NH_{2}	H	Me	>20	-
	10			H	H	0.182	5.2
	11			H	H	>20	-
	12			H	H	>20	-
	13	$\mathrm{N}^{\prime \prime}$		H	H	>20	-
	14	H	CHF_{2}	H	Me	>20	-
	15	S^{N}		H	Me	0.053	3.2
	16	Cl	OH	H	Me	0.005	0.94
	17	Me	OH	H	Cl	0.010	0.23
	18	Cl	OH	H	Cl	0.008	0.22

${ }^{1}$ The enzymatic PKMYT1 assay is a luminescent ADP detection assay where the activity of PKMYT1 is measured by quantifying the amount of ADP produced during an enzymatic reaction in the presence of ATP. ${ }^{10}$

With the phenol SAR well-defined, we turned our attention to the carboxamide and aminopyrrole groups. These groups are known to form important hydrogen bonds to the hinge region of Ephrin $\mathrm{A} 3^{14}$ and our attempts at modification suggested that these interactions were similarly important to PKMYT1 (vide infra). Alkyl substitution of the carboxamide NH_{2} of compound $\mathbf{1}$ yielded analogs $\mathbf{1 9 - 2 1}$ with a severe loss in potency (Table 2). In contrast, replacement of the pyrrole NH_{2} with hydrogen (compound 22) was reasonably well tolerated. Replacement of the pyrrole NH_{2} with a chlorine (compound 23) resulted in a dramatic loss in potency. Extending our exploratory SAR to the tricyclic ring, each nitrogen of the pyrazine of compound 1 was individually replaced by CH to yield analogs 24 and 25 , the latter being around five-fold more potent than the analogous pyrazine analog 1 in the enzymatic assay (Table 2).

Table 2. Compound $\mathbf{1}$ carboxamide, pyrrolo- NH_{2}, and pyrazine nitrogens SAR

| | | R^{1} | R^{2} | R^{3} | | $\mathrm{~A}^{1}$ | $\mathrm{~A}^{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | PKMYT1 |
| :--- |
| enzymatic |
| IC |

To better evaluate our most potent compounds, a cell-based activity assay was developed to monitor phosphorylation of CDK1 (Thr14), a direct substrate of PKMYT1. This assay confirmed the potency boost associated with the 2,6-dimethyl phenol motif of analog 6.compare to both mono methyl analogs 1 and 4. Interestingly, the chloro analogs 17 and 18 without a methyl at R^{4} that showed comparable potency in the enzymatic assay (Table $\mathbf{1}$) were significantly less potent than analog 16 in the cell-based assay despite good cell permeability (analog $17 \mathrm{Caco} 2 \mathrm{P}_{\text {app }}$ A$\mathrm{B}=14.1 \times 10^{-6} \mathrm{~cm} / \mathrm{s}$, efflux ratio $(\mathrm{ER})=1.2$; analog $18 \mathrm{Caco} 2 \mathrm{P}_{\text {app }} \mathrm{A}-\mathrm{B}=18.8 \times 10^{-6} \mathrm{~cm} / \mathrm{s}$, $E R=0.4$). 2-Chloro phenol analog 16 showed favorable cell potency compared to 2,6-dimethyl phenol analog 6 but such chloro substitution resulted in notable increase in metabolism in a human hepatocyte assay. Increasing the acidity of a phenol by adding electron withdrawing groups can result in an increase in the glucuronidation rate. ${ }^{17}$ Despite the attractive enzymatic potency of des-amino analog 22 and reduced TPSA, the cellular activity was markedly reduced relative to the parent compound $\mathbf{6}$, discouraging us from further pursuit of this chemotype. Consistent with its increased potency in the enzymatic assay, analog $\mathbf{2 5}$ was also more potent than the parent compound $\mathbf{1}$ in the cell-based assay.

Table 3. Cell-based potency and selectivity of initial analogs.
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Compound } & \begin{array}{l}\text { PKMYT1 } \\ \text { cell assay }\end{array}{ }^{2} \\ \mathrm{IC}_{50}(\mu \mathrm{M})\end{array} \mathrm{l} \begin{array}{l}\text { PKMYT1 } \\ \text { nanoBRET } \\ \mathrm{IC}_{50}(\mu \mathrm{M})\end{array} \begin{array}{l}\text { EPHB3 } \\ \text { nanoBRET } \\ \mathrm{IC}_{50}(\mu \mathrm{M})\end{array} \mathrm{l} \begin{array}{l}\text { EPHB3 } \\ \text { selectivity } \\ \text { ratio }\end{array}\right]$
${ }^{2}$ The PKMYT1 cell-based activity assay was developed to monitor pCDK1 (Thr14), a direct substrate of PKMYT1, based on the Amplified Luminescent Proximity Homogeneous Assay (Alpha) technology. ${ }^{18}$ This assay measures the phosphorylation status of the CDK1 Thr14 residue in FUOV1 cells, a high grade ovarian serous adenocarcinoma CCNE1-amplified cell line, which we established having a high level of endogenous pCDK1 (Thr14) that we can exploit for screening purposes.

To interrogate the selectivity of key compounds over a representative member of the ephrin family, we developed Promega NanoBRET ${ }^{\text {TM }}$ cell-based assays ${ }^{19}$ for both PKMYT1 and EPHB3 in HEK293T cells. As expected, the initial non-specific ephrin inhibitor $\mathbf{1}$ showed higher affinity for EPHB3 compared to PKMYT1 (Table 3). We were delighted to observe that this initial selectivity profile was reversed for the 2,6-dimethyl phenol analog 6. We were also pleased to find that removing the nitrogen on the carboxamide side of the tricyclic scaffold had a favorable impact on the PKMYT1 selectivity over EPHB3 (analog 25). The rationales behind the PKMYT1 potency boost observed for the 2,6-dimethyl phenol motif and the removal of the carboxamide-side pyrazine's nitrogen, which drives the enhanced PKMYT1 selectivity ratios over EPHB4, are discussed in the co-crystal structures section.

To explore the SAR of the phenyl ring in the tricyclic scaffold, all four possible bromophenyl regioisomers of analog 6 were prepared (compounds 26-29) to enable further diversification of each position by transition metal-mediated transformations. Although all four bromo analogs (26-29) displayed low nanomolar potencies in the enzymatic assay, compound 29 was found to have superior potency in the cell-based activity assay (Table 4). The three most promising bromo regioisomers (26, 28, and 29) were each derivatized to provide representative nitrile, pyrazole and cyclopentene analogs 30-38. All these analogs were very potent in the enzymatic assay, but the differences observed in the cell-based assay suggested that the lower limit of the enzymatic assay had been reached (Table 4).

Table 4. Potency of substituted phenyl ring analogs.

		R^{1}	R^{2}	R^{3}	R^{4}	PKMYT1 Enzymatic $\mathrm{IC}_{50}(\mu \mathrm{M})$	PKMYT1 cell assayIC 50 $(\mu \mathrm{M})$
	26	H	H	H	Br	<0.003	0.19
	27	H	H	Br	H	0.005	1.37
	28 29	H	Br	H	H	<0.003	0.36
	29 30	Br	H	H	H	<0.003	0.021
	30	H	H	H	CN	0.004	0.036
	31	H	H	H	$\operatorname{Hin}_{\mathrm{N}-\mathrm{N}}$	<0.003	0.12
	32	H	H	H	ξ	<0.003	0.55
	33	H	CN	H	H	0.005	0.20
	34	H		H	H	0.004	0.17
	35	H	N	H	H	0.005	0.30
	36	CN	H	H	H	0.005	0.034
	37	lin_{N-N}	H	H	H	0.006	0.32
	38	\cdots	H	H	H	0.008	1.05

Interestingly, upon supercritical fluid chromatographic (SFC) purification of compound 29 with a chiral stationary phase, two compounds were isolated in equal amounts. It was determined that the single bromo regioisomer 29 existed as two stable atropisomers (Class III), ${ }^{20}$ the eutomer 39 and the distomer 40 (Figure 1 and Table 6). The stereochemistry of the eutomer $\mathbf{3 9}$ was confirmed by X-ray crystallography (Figure 4). The thermal stability of compound 39 was investigated by heating aliquots of a DMSO solution at various temperatures for 1 hour, followed by chiral chromatography analysis to detect the potential presence of compound 40 (Table 5). Interconversion of $\mathbf{3 9}$ to $\mathbf{4 0}$ was not detected when the solution was heated at up to $150{ }^{\circ} \mathrm{C}$ indicating a highly stable atropisomer. In contrast, when the mono methyl compound $\mathbf{1}$ was separated into eutomer 41 and distomer $\mathbf{4 2}$, the interconversion of $\mathbf{4 1}$ to $\mathbf{4 2}$ took place between 50 ${ }^{\circ} \mathrm{C}$ and $70{ }^{\circ} \mathrm{C}$, and a racemic mixture was observed after 1 hour at $120^{\circ} \mathrm{C}$. A similar thermal stability profile was observed for the des-amino analog 22 where the eutomer 43 and distomer 44 were found to fully racemize after 1 hour at $150^{\circ} \mathrm{C}$. The rotational stability of the dimethyl phenol linked to this aminopyrrole ring system allowed for the isolation and further characterization of each atropisomer as distinct compounds. Each atropisomer were isolated from SFC and the subsequent characterization was conducted on the pure enantiomers that showed inhibition of PKMYT1.

Figure 1. Separation of representative atropisomers.

Table 5. Thermal stability of atropisomers.

Temperature 1	$\% e e^{2}$		
${ }^{\circ} \mathrm{C}$	$\mathbf{3 9}$	$\mathbf{4 1}^{3}$	$\mathbf{4 3}$
22	100	96	100
50	100	96	100
70	100	74	100
90	100	44	100
120	100	0	52
150	100	0	4

${ }^{1}$ Temperature at which a $1 \mathrm{mg} / \mathrm{mL}$ DMSO solution was heated for $1 \mathrm{~h} .{ }^{2}$ Determined by chiral SFC or HPLC analysis (absorption at 254-270 nm). ${ }^{3} 41$ used in this experiment was isolated from chiral SFC purification with a $\%$ ee of 96%.

Despite the encouraging potency of these substituted tricyclic derivatives, they suffered from unfavorable ADME (absorption, distribution, metabolism, and excretion) and physicochemical (for example: solubility and lipophilicity) properties. Truncating the fused aryl ring from tricyclic compounds such as 39 provided bicyclic pyrrolopyrazine analog 45 with generally more desirable physicochemical and ADME profile albeit with a significant loss in potency (Table 6 and Table 7). Analog 45 demonstrated an improvement in the in vitro clearance in human hepatocytes, in vivo unbound clearance and bioavailability in rat, Caco2 permeability, reversible CYP3A4, 2D6 and 2C9 (cytochrome P450) inhibition and time-dependent CYP3A4 inhibition.

The potency loss resulting from the ring truncation of compound $\mathbf{3 9}$ to yield the unsubstituted bicyclic pyrrolopyrazine analog $\mathbf{4 5}$ was almost completely recovered by introducing two methyls to the truncated scaffold to afford analog 46 with promising cell-based potency (Table 6). Monomethyl substituents at either at $\mathrm{R}^{2}(47)$ or R^{1} (48) were also well tolerated, although the increased cell-based potency at R^{1} prompted us to prioritize exploration of this vector. This work yielded a number of potent analogs such as 49-53 (Table 6). We were pleased to see that the beneficial impact of ring truncation extended beyond ADME properties. Indeed, the PKMYT1 over EPHB3 selectivity window for the pyrrolopyrazine analog 45 was greatly improved over the tricyclic analogs 6 and 39 (Table 3 and Table 6). Although this selectivity advantage was lost when the pyrrolopyrazine was substituted with a polar group such as ${ }^{\mathrm{t}} \mathrm{BuOH}(\mathbf{5 0})$, the addition of small, non-polar substituents preserved much of this selectivity as seen for the bismethyl analog 46 and the cyclopropyl analog 49 (Table 6). Such small, non-polar substituents maintained favorable potency. Our focus was thus directed towards the enantiopure bicyclic analogs with small, non-polar substituents, capitalizing on these substantial ADME and selectivity advantages.

Analogs 46 and 49-53 were profiled to evaluate their potential for drug-drug interactions, metabolic stability, and oral bioavailability (Table 7). As seen with the pyrrolopyrazine analog 45 described above, time-dependent CYP3A4 inhibition was not detected, and minimal reversible CYP inhibition was observed for the majority of these bicyclic analogs with the exception of the cyclopropyl analog 49. Pharmacokinetic studies in the rat showed that analogs with lower unbound clearance ($<1000 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$) had moderately oral bioavailability with $\% \mathrm{~F}$ ranging from $18 \%-25 \%$ (compound 46-51, Table 7). When R^{1} was substituted with heteroaryls such as compound $\mathbf{5 2}$ and 53, a negative impact was observed on the rat unbound clearance. In general, the bicyclic analogs were highly permeable in Caco2 cells, but an impact on permeability was noticed when polar groups were introduced as with compounds 50 and 51 (Table 7).

Table 6. Potency and selectivity of bicyclic pyrrolopyrazine analogs

		R^{1}	R^{2}	PKMYT1 cell assay $\mathrm{IC}_{50}(\mu \mathrm{M})$	PKMYT1 nanoBRET $\mathrm{IC}_{50}(\mu \mathrm{M})$	EPHB3 selectivity ratio
	39	n.a.	n.a.	0.020	0.009	3.3
	45	H	H	0.626	0.012	168
	46	Me	Me	0.073	0.005	31
	47	H	Me	0.488	-	-
	48	Me	H	0.108	-	-
	49	${ }^{\text {c }} \mathrm{Pr}$	H	0.042	0.001	15
	50	${ }^{\text {t }} \mathrm{BuOH}$	H	0.026	0.023	2.2
	51		H	0.025	-	-
	52		H	0.050	-	-
	53	\underbrace{S}_{N}	H	0.034	-	-

Table 7. ADME profile of selected bicyclic analogs.

	$\begin{aligned} & \hline \text { Rat } \\ & \% \mathrm{PPB}^{1} \end{aligned}$	$\begin{aligned} & \text { Rat } \\ & \% \mathrm{~F} \end{aligned}$	Rat IV CLunb $(\mathrm{mL} / \mathrm{min} / \mathrm{k}$ g) ${ }^{2}$	$\begin{array}{\|l} \hline \text { CYP inhibition } \\ (3 \mathrm{~A} 4,2 \mathrm{D} 6, \\ 2 \mathrm{C} 9) \\ \mathrm{IC}_{50}(\mu \mathrm{M}) \\ \hline \end{array}$	Caco2 $\mathrm{P}_{\text {app }}$ A to B $\times 10^{-6}$ cm / s (ER)	Human hepatocyte $\mathrm{CL}_{\text {int }}$ $\left(\mu \mathrm{L} / \mathrm{min} / 10^{6}\right.$ cells)	CYP3A4 TDI (IC ${ }_{50}$ shift)
39	99.7	12	7430	9, 19, 3	7.5 (1.1)	33	5.4
45	81.0	56	81	$>30,>30,>30$	19 (1.1)	<3	1
46	89.2	20	505	$>30,>30,>30$	19.8 (1.1)	<3	1
49	95.1	25	939	13, 8.2, 4.6	11.8 (0.6)	9.7	>2.3
50	48.2	21	41	$>30,>30,>30$	1.7 (4.1)	4.5	1
51	62.8	18	151	$>30,>30,>30$	5.8 (4.7)	<3	1
52	92.8	4.5	1250	$>30,>30,8$	10.8 (2.0)	24	1
53	95.7	4.4	1721	23,>30, 9	10.1 (3.1)	36	1

${ }^{1}$ Rat plasma protein binding at $1 \mu \mathrm{M} .{ }^{2} \mathrm{CL}_{\mathrm{unb}}=($ Total $\mathrm{CL} /$ fraction unbound $)$

Taking advantage of the earlier observation that removing a nitrogen from the tricyclic ring system improved potency (see analogs 24 and 25 in Table 2), we next removed the nitrogen on the carboxamide side of the bicyclic pyrrolopyrazine scaffold. This afforded the 7-azaindole analogs 54-57 and RP-6306 which showed improved cell-based potency and increased selectivity over EPHB3. Several of these 7-azaindole analogs showed $<25 \mathrm{nM}$ potency in the cell-based PKMYT1 assay and >100-fold selectivity in the nanoBRET assays. The azaindoles also had favorable PK properties as shown by the reduced unbound clearance and improved oral bioavailability in the rat (Table 8). Consistent with the knowledge acquired with the pyrrolopyrazine analogs 46 and 49, a favorable selectivity profile over EPHB3 was obtained for the 7 -azaindole analogs substituted with small, non-polar groups as exemplified by the cPr analog 56, and especially the methyl (54), the chloro (55), and the bismethyl (RP-6306) analogs (Table 8).

Most importantly, the preferred 7-azaindole analogs 55 and RP-6306 displayed advantageous ADME profiles, i.e. good stability in human hepatocytes, high permeability and minimal efflux in Caco-2 cells, a favorable pharmacokinetic profile in rodents, and no detectable reversible or timedependent CYP inhibition (Table 9). As a result, these compounds were further characterized to show low human hepatocyte induction, favorable non-rodent PK (dog and monkey), and no hERG inhibition (Table 9). Despite overall similar profiles, RP-6306 was selected for development based on the overall superior PK characteristics in the four preclinical species studied. Additionally, RP6306 showed a reduced propensity for CYP3A4 induction in a single donor hepatocyte study. The atropisomeric stability of RP-6306 was evaluated and no interconversion to the distomer was detected when a DMSO solution of RP-6306 was heated at up to $150^{\circ} \mathrm{C}$.

Table 8. Potency, rat clearance and selectivity of 7-azaindole analogs.

		R^{1}	R^{2}	PKMYT1 cell assay $\mathrm{IC}_{50}(\mu \mathrm{M})$	$\begin{aligned} & \text { Rat } \\ & \% \mathrm{~F} \end{aligned}$	Rat $\% \mathrm{PPB}^{1}$	Rat IV CL ${ }_{\text {unb }}$ (mL/mi $\mathrm{n} / \mathrm{kg})^{2}$	$\begin{aligned} & \text { PKMYT1 } \\ & \text { nanoBRET } \\ & \text { IC }_{50}(\mu \mathrm{M}) \end{aligned}$	EPHB3 Selectivity ratio
	54	Me	H	0.024	62	73.8	76.0	0.001	372
	55	Cl	H	0.017	37	88.1	215	0.001	186
	56	${ }^{\text {c }} \mathrm{Pr}$	H	0.005	28	80.3	170	0.003	30
	57	Cl	Me	0.007	24	93.1	731	-	-
	$\begin{aligned} & \hline \text { RP- } \\ & 6306 \\ & \hline \end{aligned}$	Me	Me	0.014	48	87.7	198	0.002	131

${ }^{1}$ Rat plasma protein binding at $1 \mu \mathrm{M} .{ }^{2} \mathrm{CL}_{\mathrm{unb}}=($ Total $\mathrm{CL} /$ fraction unbound $)$

Table 9. Advanced ADME profile of promising azaindole analogs.

	$\mathbf{5 5}$	RP-6306
Human hepatocytes Clint $(\mu \mathrm{L} / \mathrm{min} / \mathrm{million} \mathrm{cells)}$	4.5	3.2
CD-1 mouse PK (\%F, CL)	$21 \%, 59.2$	$37 \%, 30.4$
CD rat PK (\%F, CL)	$37 \%, 25.6$	$48 \%, 24.4$
Beagle dog PK (\%F, CL)	$33 \%, 21.3$	$75 \%, 13.1$
Cyno monkey PK (\%F, CL)	$32 \%, 19.4$	$29 \%, 23.8$
\% PPB (R/H)*	$88.1 \%, 89.6 \%$	$87.7 \%, 84.2 \%$
P $_{\text {app A to B x10 }}$-6 cm/s (ER) Caco2	$18.3(2.4)$	$15.2(2.1)$
CYP 3A4, 2D6, 2C9 inhibition $\mathrm{IC}_{50}(\mu \mathrm{M})$	$>30,>30,26$	$>30,>30,>30$
CYP3A4 TDI (IC 50 shift)	1	1
3A4 hepatocyte induction at 3 $\mu \mathrm{M}^{* *}$	26.7%	12.5%
hERG patch clamp IC 50	nd	$>100 \mu \mathrm{M}$

Rat and human plasma protein binding at $1 \mu \mathrm{M}^{}, * * \%$ of positive control $10 \mu \mathrm{M}$ rifampicin in single donor of human hepatocytes

RP-6306 KINASE SELECTIVITY PROFILE

RP-6306 was tested in a Kinativ ${ }^{\text {TM }}$ Colo-205 cell lysate kinase binding assay ${ }^{21}$ at $1.2 \mu \mathrm{M}(85 \mathrm{x}$ its cellular IC_{50}) to identify binding to off-target kinases. At this high concentration, RP-6306 bound to only 6 of the 274 kinases detected, mostly within the ephrin family (Figure 3). Because PKMYT1 could not be detected in the Kinativ ${ }^{\text {TM }}$ Colo- 20 cell lysate analysis, it was not possible to determine the selectivity ratio for RP-6306 against these six kinases using this technique. Therefore, our panel of NanoBRET ${ }^{\text {TM }}$ cell-based assays was expanded to include five ephrins (A1, A2, B2, B3, and B4), FRK, the promiscuous c-SRC, and the related WEE1. RP-6306 showed a high degree of selectivity ($29 x$ to 4000x) over these kinases in these cellular binding assays (Table 10).

Figure 3. Kinativ $^{\text {TM }}$ Colo-20 cell lysate kinase binding profile of RP-6306 at $1.2 \mu \mathrm{M}$.

Table 10. RP-6306 NanoBRET PKMYT1 selectivity against Kinativ ${ }^{\text {TM }}$-flagged kinases.

	PKMYT1 $\mathrm{IC}_{50}(\mathrm{uM})$	EPHA1	EPHA2	EPHB2	EPHB3	EPHB4	FRK	SRC	WEE1
RP- $\mathbf{6 3 0 6}$	0.002	29 x	69 x	189 x	131 x	138 x	570 x	$>4150 \mathrm{x}$	2050 x

CO-CRYSTAL STRUCTURES OF INHIBITORS BOUND TO PKMYT1

Co-crystal structures of four PKMYT1 inhibitors bound to the kinase domain of PKMYT1 were solved at 2.15 to $2.58 \AA$ resolution by molecular replacement (see Table S1 in methods section for X-ray data collection and refinement statistics). In the crystal structure of $\mathbf{3 9}$ bound to PKMYT1 (Figure 4), five hydrogen bonds were apparent that explained the importance of the pharmacophore. The primary amino group forms hydrogen bonds with both the hydroxyl of the gatekeeper residue Thr 187 and the backbone carbonyl of Glu188 in the hinge region. The amino group of the carboxamide forms a hydrogen bond with the backbone carbonyl of Gly191 in the hinge, while the carbonyl of the carboxamide forms a hydrogen bond with the backbone amino of Cys190 in the hinge. The hydroxyl of the phenol forms a water-mediated hydrogen bond with the carboxylate of Glu157, the backbone amino of Phe252, and the imidazole of His161. The phenyl ring of the phenol displays favorable hydrophobic packing with the methyl of Thr 187. The tricyclic aromatic rings have favorable hydrophobic packing with the side chain of Val124. In addition, the bromine displays a weak but favorable electrostatic interaction with the amino group in the side chain of Gln196. Similar interactions were observed in the co-crystal structures of $\mathbf{2 8}$ and 41 bound to PKMYT1. Images of these structures and detailed 2D plots of the interactions are available in the Supporting Information. Inspection of the surface-surface complementarity of the 6-monomethyl phenol of analog 41 reveals some unoccupied hydrophobic space between the phenol and the protein (Figure 4C), within which water molecules cannot fit. With the 2,6dimethyl phenol motif of analog 39, the surface-surface complementarity is optimal (Figure 4D). The carboxamide-side pyrazine's nitrogen is sandwiched between the side-chains of hydrophobic residues Val124 and Leu116 on one side and Phe240 on the other, suggesting a preference for a carbon at this position (Figure 4E).
A)

B)

C)

D)

Figure 4. The binding mode of 39 to PKMYT1.
A) Ribbons representation of $\mathbf{3 9}$ bound to PKMYT1. $\mathbf{3 9}$ is shown as sticks with golden carbon atoms, and part of the solvent-accessible surface of the binding pocket is shown in light gray. Oxygen is rendered in red, nitrogen in blue, carbon in yellow, bromine in brown, and polar hydrogens in white. Favorable interactions are highlighted with dashed lines with stronger hydrogen bonds additionally highlighted with cylinders (as calculated by the Molecular Operating Environment, MOE, from the Chemical Computing Group, Inc.) ${ }^{22}$. A bridging water molecule is shown in ball-and-stick representation.
B) 2D plot of the interactions that compound $\mathbf{3 9}$ forms with PKMYT1, as calculated by MOE.
C) Surface-surface complementarity of the 6-monomethyl phenol of analog 41 bound to PKMYT1. The solvent-accessible surface of the protein is shown as a solid surface, with polar regions in purple and hydrophobic patches in green. The solvent-accessible surface of the ligand is displayed as a mesh.
D) Surface-surface complementarity of the 2,6-dimethyl phenol motif of analog 39 bound to PKMYT1. The solvent-accessible surfaces of the protein and ligand are represented, using the same convention as in panel \mathbf{C}.
E) The carboxamide-side pyrazine's nitrogen is sandwiched between the side-chains of hydrophobic residues. The solvent-accessible surfaces of the protein and ligand are represented, using the same convention as in panel \mathbf{C}.

The crystal structure of RP-6306 bound to PKMYT1 is shown in Figure 5. Overall, the key interactions between this inhibitor and the kinase domain of PKMYT1 are very similar to $\mathbf{3 9}$. However, the amino of the carboxamide of RP-6306 forms an additional water-mediated hydrogen bond with the backbone carbonyl of Gly191, and the pyridine nitrogen forms a water-mediated hydrogen bond with the amino in the sidechain of Lys139. In addition, the oxygen of the phenol of RP-6306 forms a hydrogen bond with the backbone amino of Asp251 (which is obscured by the surface). As observed in the co-crystal structure of 39, the primary amino group of RP-6306 forms a hydrogen bond with the hydroxyl of the gatekeeper residue Thr 187. This interaction with Thr187 is likely responsible for the selectivity against the highly homologous kinase WEE1 as this residue is the single residue difference (Thr vs Asn376) in the active site compared to PKMYT1.

Figure 5. The binding mode of RP-6306 to PKMYT1.
A) RP-6306 is shown as sticks with pink carbon atoms, and part of the solvent-accessible surface of the binding pocket is rendered in light gray. Oxygen is rendered in red, nitrogen in blue, carbon in pink, bromine in brown, and polar hydrogens in white. Favorable interactions are highlighted with dashed lines with stronger hydrogen bounds additionally highlighted with cylinders (as calculated by MOE). Water molecules are shown as balls-and-sticks.
B) 2D plot of the interactions that compound RP-6306 forms with PKMYT1, as calculated by MOE.

INHIBITION OF PKMYT1 INHIBITS GROWTH OF CCNE1-AMPLIFIED XENOGRAFT

 TUMORSThe synthetic lethal relationship between CCNE1 amplification and the absence of PKMYT1 activity was confirmed both genetically and chemically (with RP-6306) through comparison of the growth sensitivity of isogenic fallopian tube cells (FT282 cells) engineered to overexpress CCNE1 relative to wild type cells. ${ }^{6}$ Furthermore, multiple cancer cell lines and xenograft models with amplified CCNE1 or cyclin E over-expression showed greater growth inhibition compared to normal counterparts. ${ }^{6}$ Using a very sensitive and robust CCNE 1 -amplified ovarian xenograft model (OVCAR3) we sought to understand the relationship between target inhibition, RP-6306 exposure and efficacy. Oral dosing of RP-6306 formulated in chow at 15, 50 and 300 ppm (equivalent to approximately 3,10 and $60 \mathrm{mg} / \mathrm{kg} /$ day) resulted in a statistically significant and dose-dependent reduction in OVCAR3 tumor growth (Figure 6A). Although there was slight body weight loss at the highest dose of 300 ppm initially, RP-6306, formulated in chow did not cause a decrease in food consumption and was well tolerated over a 21-day treatment period (Figure 6B and C). At day 2, 5 and 22, the steady state free plasma levels of RP-6306 were measured in chow-fed animals in the early morning and late afternoon to capture an average exposure per day. The compound exposure was stable over the course of 22 days but was less than dose proportional at doses above 150 ppm (Figure 6D). In a parallel study, when RP-6306 was administered PO twice daily (BID), a dose-dependent increase in anti-tumor efficacy in the OVCAR3 model was observed up to the maximum tolerated dose of $20 \mathrm{mg} / \mathrm{kg} .{ }^{6}$ The efficacy and compound pharmacokinetic (PK) parameters are summarized in Table 12.

Figure 6. RP-6306 free plasma exposure and in vivo efficacy in the OVCAR3 CCNE1 amplified xenograft model.
A) Tumor xenograft volume and B) change in body weight in OVCAR3-bearing mice treated with RP-6306 formulated in chow for 21 days. Results are expressed as mean tumor volume \pm SEM, $\mathrm{N}=8$ mice / group. Statistical significance relative to vehicle control was established by One-Way ANOVA followed by Fisher's LSD test (GraphPad Prism v8). C) The two-day mean chow consumption in mice receiving blank chow or chow mixed with RP-6306 at the indicated concentrations D) Measured free plasma levels of RP-6306 in chow formulation at the indicated doses measured at 6:30am and $4: 30 \mathrm{pm}$ on Days 2,5 and 22 . The 15 ppm dose was simulated . E) The proportion of OVCAR3 tumor $\mathrm{pCDK} \mathrm{Thrl}^{2}$ signal relative to vehicle treated mice for each dose at 2,6 and 10 hrs post PO dosing; mean $\pm \mathrm{SEM}$ ($\mathrm{N}=4 /$ group/time point). The tumor pCDK 1 (Thr14) EC_{50} was determined by a non-linear dose-response model (GraphPad Prism v9.30). F) Pharmacokinetics of RP-6306 administered PO BID at the indicated doses. G-I) The relationship between measured tumor growth inhibition (TGI) and free plasma RP-6306 exposure (AUC) G), $\mathrm{C}_{\text {max }} \mathbf{H}$) or time over $\mathrm{pCDK} 1\left(\operatorname{Thr14)} \mathrm{EC}_{90} \mathbf{I}\right.$) at each chow (A, D) and BID dose (F and Gallo et al. ${ }^{6}$) evaluated in efficacy studies.

Table 12. Summary of RP-6306 PK parameters and efficacy in the OVCAR3 xenograft model.

Dose PO	Mean Free $\mathbf{A U C}_{\mathbf{0 . \infty}}\left(\mathbf{n M}^{*} \mathbf{h}\right)$	Mean Free $\mathbf{C}_{\text {max }}(\mathbf{n M})$	Time over $\mathbf{E C}_{\mathbf{9 0}}(\mathbf{h})$	Mean TGI (\%)
15 ppm chow*	101	4.2	0	49
50 ppm chow	388	15.5	24	70
300 ppm chow	3013	126	24	86
$1 \mathrm{mg} / \mathrm{kg} \mathrm{BID}$	216	65.4	6.84	45
$2.5 \mathrm{mg} / \mathrm{kg}$ BID	414	153	14.0	56
$7.5 \mathrm{mg} / \mathrm{kg}$ BID	1410	337	18.7	75
$20 \mathrm{mg} / \mathrm{kg}$ BID	3320	560	19.7	84

*simulated pharmacokinetics, AUC= area under the concentration vs time curve

To further investigate the pharmacokinetic/pharmacodynamic (PK/PD) relationship of RP-6306 with PKMYT1 target engagement, phosphorylation of the PKMYT1 substrate CDK1(Thr14) in OVCAR3 tumors was evaluated at 2, 6 and 10 h post PO BID dosing by ELISA from tumor homogenates. The effective free plasma concentration (EC_{50}) to inhibit pCDK1(Thr14) by 50 \% was calculated as 0.20 nM and EC_{90} as 11 nM . The results demonstrate potent in vivo PKMYT1 target inhibition and a direct relationship between RP-6306 free plasma levels and tumor pCDK1(Thr14) inhibition (Figure 6E). The pharmacokinetics of RP-6306 administered PO BID are shown in Figure 6F and illustrate the rapid clearance of RP-6306 in mouse plasma, yet substantial target coverage at dose as low as $2.5 \mathrm{mg} / \mathrm{kg}$. The PK/efficacy relationship demonstrates a strong correlation between efficacy and free RP-6306 plasma exposure (area under the concentration vs time curve (AUC) and maximal concentration ($\mathrm{C}_{\max }$) (Table 12). Interestingly, better efficacy is observed with lower, more sustained levels of RP-6306 provided in the chow formulation compared to the high peak to trough ratio of BID formulation (Figure 6G, H). For example, to achieve a 60% TGI, a sustained RP-6306 exposure of $224 \mathrm{nM}^{*} \mathrm{~h}$ is required compared to greater than twice that exposure with BID dosing. A sustained $\mathrm{C}_{\text {max }}$ of 9.2 nM (just under 90% pCDK1(Thr14) target inhibition), for 24 h generates a 60% TGI (Figure $\mathbf{6 H}$) compared to a $\mathrm{C}_{\text {max }}$ of 170 nM generating the same efficacy on a BID schedule. Our analysis suggests that in either dosing scenario, RP-6306 levels maintained above EC_{90} for at least 13 h are required to generate efficacy (Figure 6I). These results illustrate the value of utilizing chow formulations in addition to PO dosing by gavage as tools to evaluate pre-clinical PK/efficacy relationships. Together, our data suggests that in vivo, prolonged PKMYT1 target inhibition is required for efficacy which may provide guidance to maximize efficacy in the ongoing RP-6306 clinical trials (NCT04855656).

SYNTHETIC CHEMISTRY

All the analogs in Table 1 were prepared as depicted in Scheme 1 using an approach adapted from the reported synthesis of compounds 1, 2, and 5. ${ }^{14}$ One chloro of 2,3-dichloroquinoxaline (58) was substituted with malononitrile to afford $\mathbf{5 9},{ }^{14}$ and the remaining chloro was subsequently displaced with an arylamine to afford the aminopyrroles 62-73. Alternatively, the aminopyrroles 74 and 75 were obtained by inverting the sequence, where one chloro of 58 was initially displaced with an arylamine, and the remaining chloro was subsequently substituted with malononitrile. Hydrolysis of the nitrile to the carboxamide upon treatment with sulfuric acid, followed by a final deprotection of the aryl group when required, yielded analogs 1-18.

Scheme 1. Preparation of analogs for phenol ring SARs

	R ${ }^{1}$	\mathbf{R}^{2}	\mathbf{R}^{3}	\mathbf{R}^{4}
62, 76	H	H	OMe	Me
63, 77	Me	OMe	H	H
64	Me	OMe	H	Me
65	Me	Cl	H	Me
66, 78	H	NO_{2}	H	Me
67			H	H
68			H	H
69			H	H
70			H	H
71	H	CHF_{2}	H	Me
72			H	Me
73, 79	Cl	OMe	H	Me
60, 74, 80	Me	OMe	H	Cl
61, 75	Cl	OPmb	H	Cl

Reagents and conditions. a. malononitrile, NaH , DME ; b. ArNH_{2}, NMP; c. $\mathrm{ArNH}_{2}, \mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$, THF; d. malononitrile, $\mathrm{NaH}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, dioxane; e. $\mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{f} . \mathrm{BBr}_{3}$ for methoxy deprotection or $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ for NO_{2} reduction.

Amides 19-21 described in Table 2 were prepared as depicted in Scheme 2. One chloro of $\mathbf{5 8}$ was substituted with 5-(methoxymethoxy)-2-methyl-aniline (81) ${ }^{23,24}$ under palladium-catalyzed C-N coupling conditions ${ }^{25}$ to afford compound 82. Substitution of the remaining chloro with selected 2-cyano-acetamides followed by O-MOM deprotection yielded analogs 19-21.

Scheme 2. Preparation of substituted carboxamide analogs.

Reagents and conditions. a. $81 \mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}, \mathrm{Pd}_{2}(\mathrm{dba})_{3}$, XantPhos, toluene; b. $\mathrm{R}^{3} \mathrm{NH}(\mathrm{CO}) \mathrm{CH}_{2} \mathrm{CN}$, $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}, \mathrm{THF}$ or $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF; c. HCl , dioxane.

Des-amino pyrrole analogs $\mathbf{2 2}$ and $\mathbf{2 3}$ described in Table 2 were obtained upon treatment of the amino nitrile intermediate 64 with ${ }^{\mathrm{t}} \mathrm{BuONO}$, and the resulting diazonium was either protonolyzed ${ }^{26}$ to yield intermediate $\mathbf{8 3}$ or treated with CuCl^{27} to obtain chlorinated compound $\mathbf{8 4}$, respectively, as depicted in Scheme 3. Hydrolysis of the nitrile of intermediate $\mathbf{8 3}$ to the carboxamide upon treatment with sulfuric acid, followed by methoxy deprotection upon treatment with BBr_{3}, yielded analogs 22. The methoxy deprotection of the less stable chloro intermediate $\mathbf{8 4}$ was achieved by a treatment with boron trichloride and tetrabutyl ammonium iodide. ${ }^{28}$ The nitrile hydrolysis to the carboxamide was then completed using the Ghaffar-Parkins catalyst ${ }^{29}$ to afford analog 23.

Scheme 3. Preparation of analogs with pyrrole NH_{2} replacements.

Reagents and conditions. a. ${ }^{\text {t }} \mathrm{BuONO}$, THF; b. ${ }^{\mathrm{t}} \mathrm{BuONO}, \mathrm{CuCl}, \mathrm{ACN} ; \mathrm{c} . \mathrm{H}_{2} \mathrm{SO}_{4}$; d. $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$;
e. $\mathrm{BCl}_{3}, \mathrm{TBAI}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; f. Ghaffar-Parkins catalyst, $\mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}$.

The preparation of analogs 24 and $\mathbf{2 5}$ described in Table 2 is depicted in Scheme 4. Both syntheses were initiated with 3-bromo-2-chloroquinoline (85). The initial C-N coupling reaction with $\mathbf{8 1}$ is not specific and yielded intermediates $\mathbf{8 6}$ and $\mathbf{8 7}$, that afforded aminopyrroles $\mathbf{8 8}$ and 89, respectively, upon substitution of the remaining halogen with malononitrile. In the case of the 2-chloropyridine 86, the substitution with malononitrile was achieved under $\mathrm{S}_{\mathrm{N}} \mathrm{AR}$ conditions. ${ }^{30}$ For the 3-bromopyridine 87 the substitution with malononitrile was done under palladiumcatalyzed conditions. ${ }^{31}$ Analogs 24 and $\mathbf{2 5}$ were obtained after O-MOM deprotection with HCl , followed by nitrile hydrolysis to the carboxamide with $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Scheme 4. Preparation of N-regioisomers 24 and 25.

Reagents and conditions. a. 81, $\mathrm{NaO}^{t} \mathrm{Bu}, \mathrm{Pd}_{2}(\mathrm{dba})_{3}$, Xantphos, toluene; b. malononitrile, $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$, DME; c. malononitrile, $\mathrm{NaH}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$; d. HCl , dioxane; e. $\mathrm{H}_{2} \mathrm{SO}_{4}$.

The syntheses of the four bromo regioisomers 26-29 were initiated with the bromobenzene-1,2diamine 90 or 95 that provided the corresponding bromo 2,3-dichloroquinoxaline 91 or 96 , respectively, in two steps upon treatment with diethyl oxalate and then thionyl chloride according to a known procedure ${ }^{32}$ (Scheme 5 and 6). One chloro of the 2,3-dichloroquinoxaline 91 or 96 was substituted with malononitrile, and the remaining chloro was displaced with 3-methoxy-2,6-dimethyl-aniline (92) ${ }^{33}$ under $\mathrm{S}_{\mathrm{N}} \mathrm{AR}$ conditions to yield a mixture of the aminopyrroles $\mathbf{9 3}$ and $\mathbf{9 4}$ (Scheme 5) or 97 and 98 (Scheme 6). Hydrolysis of the nitrile and methoxy deprotection yielded pure analogs 26 and 29 or 27 and 28 after chromatographic separations. The position of the bromines were confirmed by X-ray structures of analogs 28 and 29 (structure discussed in Figure 3 and Supporting Information). The brominated analogs 26, 28, and 29 were derivatized by transition metal-mediated transformations ${ }^{34,35}$ to provide analogs 30-38 (Scheme 5 and 6).

Scheme 5. Preparation and derivatization of the bromo regioisomers 26 and 29

Reagents and conditions. a. diethyl oxalate; b. SOCl_{2}, DMF cat; c. malononitrile, $\mathrm{NaH}, \mathrm{DME}$; d. 92, NMP; e. $\mathrm{H}_{2} \mathrm{SO}_{4}$; f. $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; g. $\mathrm{RB}(\mathrm{OR})_{2}, \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, DMF or CuCN , DMF.

Scheme 6. Preparation and derivatization of the bromo regioisomers 27 and 28.

95

96

27
$33 R^{2}=C N$

Reagents and conditions. a. diethyl oxalate, reflux; b. SOCl_{2}, DMF cat.; c. Malononitrile, NaH , DME; d. 92, NMP; e. $\mathrm{H}_{2} \mathrm{SO}_{4}$; f. $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; g. $\mathrm{RB}(\mathrm{OR})_{2}, \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, DMF or $\mathrm{CuCN}, \mathrm{DMF}$.

The synthesis of the bicyclic pyrrolopyrazine analogs $\mathbf{4 5 - 4 7}$ was initiated by substituting one chloro of a symmetrical 2,3-dichloro-pyrazine, such as $\mathbf{9 9}$ or $\mathbf{1 0 0}$, with malononitrile under $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ conditions to yield $\mathbf{1 0 1}$ and 102. The remaining chloro was then substituted with $\mathbf{9 2}$ to afford the aminopyrroles $\mathbf{1 0 3}$ or $\mathbf{1 0 4}$ (Scheme 7). Intermediate 103 was brominated with NBS to afford compound 105. The nitriles of $\mathbf{1 0 3}, \mathbf{1 0 4}$, and 105 were hydrolyzed to the carboxamides upon treatment with sulfuric acid and cleavage of the methoxy protecting group with boron tribromide provided the compounds $\mathbf{1 0 6}$ and 107 , as well as the bromo intermediate $\mathbf{1 0 8}$ which was methylated to provide compound 109. Racemates $\mathbf{1 0 6}, \mathbf{1 0 7}$ and $\mathbf{1 0 9}$ were purified by chiral SFC to yield the analogs 45-47.

Scheme 7. Preparation of bicyclic pyrrolopyrazine analogs 45-47.

Reagents and conditions. a. Malononitrile, NaH, THF; b. 92, NMP or $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$, $\mathrm{Pd}_{\text {- }} \mathrm{PEPPSI}^{\mathrm{TM}}-$
SIPr, NMP; c. NBS, DMF; d. $\mathrm{H}_{2} \mathrm{SO}_{4}$; e. $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; f. $\mathrm{MeMgBr}, \mathrm{ZnCl}_{2}, \mathrm{THF}$, then $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, THF.

The synthesis of the R1-substituted pyrrolopyrazine analogs 48-53 was initiated by converting the amino group of the 5-bromo-6-chloropyrazin-2-amine (110) to a hydroxyl (111) that was further benzylated to generate $\mathbf{1 1 2}$ (Scheme 8). The bromo was then substituted by $\mathbf{9 2}$ under C-N coupling conditions to afford 113. The chloro was displaced by malononitrile to afford the aminopyrrole 114. The nitrile was hydrolyzed to the carboxamide upon treatment with sulfuric acid with concomitant cleavage of the benzyl group to provide 115. The resulting hydroxyl was converted to the triflate 116. The methoxy protecting group was cleaved to generate the versatile intermediate 117. This intermediate was derivatized to provide compounds $\mathbf{1 1 8 - 1 2 4}$ as racemates which were purified by chiral SFC to yield the analogs 48-53.

Scheme 8. Preparation of bicyclic pyrrolopyrazine analogs 49-53.

Reagents and conditions. a. $\mathrm{NaNO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}$; b. $\mathrm{BnBr}, \mathrm{Ag}_{2} \mathrm{CO}_{3}$, toluene; c. 92, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, Xantphos, toluene; d. Malononitrile, $\mathrm{NaH}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{DME}$; e. $\mathrm{H}_{2} \mathrm{SO}_{4}$; f. $\mathrm{PhNTf}_{2}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$; g. $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; h. OTf derivatization; i. $\mathrm{MeMgCl}, \mathrm{THF}$.

The syntheses of 7 -azaindole analogs $\mathbf{5 4}$, and $\mathbf{5 6 - 5 7}$ were initiated by substituting the most electrophilic bromo of 2,3-dibromo-5-nitropyridine (125) or the chloro of 3-bromo-2-chloro-6-methyl-5-nitropyridine (126) by 92 under $S_{N} A r$ conditions to afford $\mathbf{1 2 7}$ or $\mathbf{1 2 8}$ (Scheme 9). The remaining bromo was substituted by malononitrile under metal-mediated conditions to afford the aminoazaindole $\mathbf{1 2 9}$ or $\mathbf{1 3 0}$. The resulting amino group was protected with a Boc group to yield compound $\mathbf{1 3 1}$ or $\mathbf{1 3 2}$. The nitro was reduced to the $\mathrm{NH}_{2} \mathbf{1 3 3}$ or $\mathbf{1 3 4}$, and the resulting NH_{2} was converted to the halogenated derivatives $\mathbf{1 3 5}$ or $\mathbf{1 3 6}$ under Sandmeyer conditions. ${ }^{36}$ The NHBocprotecting group was cleaved thermally or by treatment with hydrochloric acid, and the nitrile was hydrolyzed to the carboxamide to provide intermediates 137 and 138. Cleavage of the methoxy protecting group with boron tribromide provided the compounds $\mathbf{1 3 9}$ and 142. Compound $\mathbf{1 4 2}$ was purified by chiral SFC to provide analogs 57 . The bromo of compound $\mathbf{1 3 9}$ was substituted by a methyl or a cyclopropyl to give compounds $\mathbf{1 4 0}$ or $\mathbf{1 4 1}$ respectively which were purified by chiral SFC to yield the analogs 54 and 56.

Scheme 9. Preparation of 7-azaindole analogs 54 and 56-57.

Reagents and conditions. a. 92, 2,6-lutidine, NMP; b. Malononitrile, $\mathrm{NaH}, \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DME; c. $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, 4$-DMAP, THF, then ethylenediamine; d. $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{DCM}, \mathrm{MeOH}$; e. ${ }^{\mathrm{t}} \mathrm{BuONO}, \mathrm{CuX}_{2}, \mathrm{ACN}, \mathrm{DMF}$; f. $\mathrm{HCl}, \mathrm{EtOH}$ or $160^{\circ} \mathrm{C}$, NMP; g. $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O} ; \mathrm{h} . \mathrm{BBr}_{3}$, DCM; i. $\mathrm{Me}_{2} \mathrm{Zn}, \operatorname{Pd}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)_{2}$, THF; j. ${ }^{\mathrm{c}} \mathrm{PrZnBr}, \operatorname{Pd}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)_{2}$, THF.

Although the preferred 7-azaindole analogs $\mathbf{5 5}$ and RP-6306 were initially obtained from the route depicted in Scheme 9, alternative syntheses were developed to better accommodate the gram-scale requirements for advanced profiling of these analogs. The specific synthesis for analog 55 is depicted in Scheme 10. Substitution of the fluoro of 3-bromo-5-chloro-2-fluoropyridine (143) by 92 afforded 144. The bromo was then substituted by malononitrile to afford the azaindole 145. The nitrile can be hydrolyzed to the carboxamide under basic or acidic conditions to yield 146. Analog 55 was obtained after methoxy deprotection using boron tribromide and chiral SFC purification.

The specific route for RP-6306 is depicted in Scheme 11. Conversion of the amino group of 3-bromo-5,6-dimethylpyridin-2-amine (148) into a hydroxyl 149, followed by a treatment with phosphorus oxybromide, yielded the dibromo 150. Substitution of the most active bromo by 92 under C-N coupling conditions afforded 151. The remaining bromo was substituted by malononitrile to afford the azaindole 152. The nitrile was hydrolyzed to the carboxamide upon treatment with sulfuric and methanesulfonic acids and the methoxy deprotection was accomplished by adding DL-methionine in a one-pot sequence to provide the racemate $\mathbf{1 5 3}$ that yielded RP-6306 after chiral SFC purification.

Scheme 10. Preparation of analog 55.

Reagents and conditions. a. 92, LiHMDS, THF; b. Malononitrile, $\mathrm{NaH}, \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DME; c. $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$, EtOH or $\mathrm{H}_{2} \mathrm{SO}_{4}$. d. BBr_{3}, DCM.

Scheme 11. Alternative preparation of RP-6306.

Reagents and conditions. a. $\mathrm{NaNO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$; b. POBr_{3}, DMF , toluene; c. 92, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$,
Xantphos, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$; d. Malononitrile, $\mathrm{NaO}{ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DME; e. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeSO}_{3} \mathrm{H}$, $\mathrm{H}_{2} \mathrm{O}$, then DL-methionine.

CONCLUSION

PKMYT1 is an important regulator of CDK1 phosphorylation and is a compelling target for treatment of certain types of DNA damage response cancers due to its established synthetic lethal relationship with CCNE1 amplification. Starting from the non-specific ephrin inhibitor 1 and supported by multiple co-crystal structures, the optimization of key properties including PKMYT1 cell-based potency, kinase selectivity and ADME properties yielded the orally bioavailable and selective PKMYT1 inhibitor RP-6306. This compound showed a favorable pharmacokinetic profile in preclinical species and was efficacious in a mouse xenograft model. The first-in-class clinical candidate RP-6306 is currently being evaluated in Phase 1 clinical trials (NCT04855656) to investigate the pharmacological role of PKMYT1 in the treatment of genetically-selected solid tumors.

Supporting Information

Images of 28 and 41 bound to PKMYT1 and detailed 2D plots of the interactions.
${ }^{1}$ HNMR, 13CNMR and HRMS spectra od RP-6306.

Acknowledgements:

Catalina Suarez for assistance with hepatocyte assay. Adrian Fretland for thoughtful review of this manuscript. We are grateful for the support, training, and custom tools provided by the Chemical Computing Group, Inc., Montreal, Quebec, Canada. This work was supported in part by a CIHR Foundation grant to F.S. and was based upon research conducted at the Northeastern Collaborative Access Team beamlines, which are funded by the National Institute of General Medical Sciences from the National Institutes of Health (P30 GM124165). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Declaration of Interests

F.S. is a founder and consultant of Repare Therapeutics.

PROCEDURES AND PROTOCOLS

Molecular modeling

The crystal structures of the inhibitor:PKMYT1 complexes were analyzed with MOE (Molecular Operating Environment, Chemical Computing Group, Inc., Montreal, QC, Canada), beginning with the 2017 version and continuing through MOE 2020. MOE's "QuickPrep" tool was used with the default settings to calculate the pKa shifts of titratable residues, add the hydrogen atoms, and flip His, Asn, or Gln residues to optimize the hydrogen bonding network. A restrained energy minimization was also performed on the ligand and the residues near it, as part of the default QuickPrep process. All molecular images were made using MOE. ${ }^{22}$

Mouse and Rat Pharmacokinetic Studies.

Female CD1 mice (20-30g) or male Sprague-Dawley rats ($200-300 \mathrm{~g}$) were administered with the test compound at a dose of $1 \mathrm{mg} / \mathrm{kg}$ intravenously using a solution formulation. Oral bioavailability was determined at doses 2.5 or $5 \mathrm{mg} / \mathrm{kg}$ using the same formulation. In the mouse, RP-6306 and compound 55 were dosed as a suspension in 0.5% methyl cellulose. The blood samples for the IV experiment were collected at pre-dose, $5,15,30 \mathrm{~min}, 1,2,4,8$ and 24 h time points. The blood samples for the PO experiment were collected at pre-dose, $15,30 \mathrm{~min}, 1,2,4,6,8$ and 24 h time points. EDTA-plasma was obtained for the rat pharmacokinetic determinations while micro-sampled whole blood was collected for the mouse pharmacokinetic determinations using a previously described method. ${ }^{1}$ Mouse efficacy pharmacokinetic parameters were determined following doses of 2.5, 7.5 and $20 \mathrm{mg} / \mathrm{kg}$ PO from SCIDbeige mice with micro-sampling at $30 \mathrm{~min}, 2,8,8.5,10$ and 24 h time points. All samples were quantified using a reversed-phase liquid chromatography gradient coupled to electrospray mass spectrometry operated in positive mode. PK parameters were calculated using non-compartmental analysis.

Dog and Monkey Pharmacokinetic Study.

Male Beagle dogs ($\sim 10 \mathrm{~kg}$) or Cynomolgus monkeys ($\sim 3 \mathrm{~kg}$) were administered with the test compound at a dose of $0.5 \mathrm{mg} / \mathrm{kg}$ intravenously using a solution formulation. Oral bioavailability was determined at a dose of $1 \mathrm{mg} / \mathrm{kg}$ using the same formulation. The blood samples for the IV experiment were collected at pre-dose, 5, 15, $30 \mathrm{~min}, 1,2,4,8$ and 24 h time points. The blood samples for the PO experiment were collected at pre-dose, $15,30 \mathrm{~min}, 1,2,4,6,8$ and 24 h time points. EDTA-plasma was obtained for the pharmacokinetic determinations. All samples were quantified using a reversed-phase liquid
chromatography gradient coupled to electrospray mass spectrometry operated in positive mode. PK parameters were calculated using non-compartmental analysis.

PKMYT1 enzymatic assay (ADP GLO)

To determine the IC_{50} of PKMYT1 inhibitor compounds, the ADP-GLO assay (Promega Corp.) was used. First, human recombinant PKMYT1 enzyme (Thermo Fisher \# A33387) was diluted in the Enzyme Assay Buffer (70 mM Hepes, $3 \mathrm{mM} \mathrm{MgCl2} 3 \mathrm{mM} \mathrm{MnCl} 2,,50 \mathrm{ug} / \mathrm{mL}$ PEG20000, $3 \mathrm{uM} \mathrm{Na-Orthovanadate} \mathrm{(added}$ fresh), 1.2 mM Dithiothreitol (added fresh) in a 5uL volume and plated in white 384-well plates. Then, 5uL of inhibitor or DMSO control was diluted in Enzyme Assay Buffer and added to the plate. The enzyme/compound mix was then incubated at room temperature for 15 minutes. Finally, the enzymatic reaction was started by the addition of 5uL of ATP (diluted in Enzyme Assay Buffer) so that the final ATP concentration is 10 uM and the final PKMYT1 enzyme concentration was 18.5 nM . The enzymatic reaction was then incubated in a 30C incubator for 1 hour. At the end of the incubation period, 15 uL of ADP-GLO Reagent was added and the plate was incubated at room temperature for 40 minutes. Finally, 30uL of the Kinase Detection Reagent was added and the plate was incubated at room temperature for 30 minutes after which the luminescence was measured using the Envision Plate reader (Perkin-Elmer). The $I C_{50}$ was then determined for each compound screened in the assay. Reported $I C_{50}$ in this manuscript are the geometrical mean of at least $\mathrm{n}=3$ replicates.

PKMYT1/Kinases NanoBret Assay

To determine the affinity of compounds in the NanoBRET target engagement assay, HEK293 T cells were transfected with NanoLuc fusion vector DNA (PKMYT1 NanoLuc Fusion Vector or other kinases of interest all purchased from Promega Corp.) and Transfection carrier DNA using the Fugene HD Transfection reagent (Promega Corp.) in Opti-MEM No Phenol Red buffer. After an overnight incubation in a 37C/5\% CO2 incubator, the transfected HEK293 T cells were trypsinized, counted and resuspended in Opti-MEM No Phenol Red buffer at a concentration of 200000 cells $/ \mathrm{mL}$. White 96 -well plates were then plated with 85uL of cells (17000 cells/well) to which 5 uL of the 20 X tracer solution diluted in tracer dilution buffer (Promega Corp.) was added. Finally, 10uL of the 10X compounds diluted in Opti-MEM No Phenol Red buffer was added and the plates were then incubated in a 37C/5\% CO2 incubator for 2 hours. After this incubation, a 50uL 3X solution of the Substrate/Inhibitor mix was added to the cells. The plate was then transferred to the Perkin Elmer EnVision Multimode plate reader where the

Acceptor emission (610 nm) and the Donor emission (450 nm) are measured. Reported IC_{50} in this manuscript are the geometrical mean of at least $n=3$ replicates.

PKMYT1 cell-based activity assay (CDK1 pThr14 AlphaLISA)

To determine compound IC_{50}, FUOV1 cells were plated into a 96-well TC-treated culture plate at 50000 cells/well in a final volume of 100uL of media. The plates were then allowed to equilibrate in a biological safety cabinet for 30 minutes before being placed in a humidified incubator at 37C and 5\% CO2 overnight. The next day, 2 uL of PKMYT1 inhibitors or DMSO were diluted in 400 uL of warmed culture media in a 96-well block using a Biomek FX liquid handler. Compounds were mixed in media and then $25 u L$ was dispensed into each well of the $96-$ well cell plate. Plates were centrifuged at 300 g for 10 seconds and then placed in the incubator for 2 hours. After the 2 -hour incubation with compound, media was removed via aspiration using a multichannel pipette. 30uL of 1X AlphaLISA lysis buffer (Perkin Elmer) supplemented with protease and phosphatase inhibitors as well as 1 mM PMSF, was added to each well. Plates were rotated at 500 g for 20 minutes to facilitate lysis. Plates were then sealed with aluminum foil and frozen at -80C for at least 1 hour. Lysates were thawed at $37{ }^{\circ} \mathrm{C}$ for 10 minutes, then 10uL of each lysate was transferred in duplicate to a white 384 -well assay plate. Antibody mixture was prepared in 1X AlphaLISA assay buffer (Perkin Elmer) containing antibodies (5 nM final concentration for rabbit pThr14-CDK1 from Abcam \#ab58509 and mouse total CDK1 from ThermoFisher Scientific \#331800). 5uL of antibody mixture was added to each well of the assay plate. Assay plate was sealed and stored at 4C overnight. The next day, AlphaLISA bead mixture (Perkin Elmer) was prepared in 1X AlphaLISA assay buffer. Anti-rabbit IgG Acceptor (Perkin Elmer \#AL104C) and anti-mouse IgG Donor beads (Perkin Elmer \#AS104D) were prepared to a concentration of $80 \mathrm{ug} / \mathrm{ml}$ in assay buffer. 5uL of bead mixture was added to each well of the assay plate ($20 \mathrm{ug} / \mathrm{ml}$ final concentration for each bead). The plate was protected from light and incubated for 2 hours at room temperature. After a 2 - hour incubation with beads, the plate was read using the Perkin Elmer EnVision Multimode plate reader with excitation at 680 nm and emission at 615 nm . Reported IC_{50} in this manuscript are the geometrical mean of at least $\mathrm{n}=3$ replicates.

Kinase binding selectivity

Kinase binding selectivity was performed at ActivX Biosciences using the Kinativ kinase profiling platform. Unstimulated Colo205 cells were lysed in a lysis buffer of HEPES pH 7.8, $150 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM} \mathrm{MnCl} 2$, and 0.1 \% Triton X-1000 and lysate was gel-filtered to remove endogenous nucleotides including ATP. The
standard cell lysate preparations were labeled at a concentration of $5-10 \mathrm{mg} / \mathrm{mL}$ and were incubated with 1.2 uM of RP-6306 to establish binding to native kinases. An ADP-chemical probe with an acyl group off the β-phosphate was used to compete RP-6306 from the kinases. Once cell lysates were labelled with irreversible competitor probes, the probe bound proteins were purified using streptavidin beads and quantitation of enriched kinases was achieved through liquid chromatography-tandem mass spectrometry using ActivX's proprietary data analysis pipeline ${ }^{21}$. Each assay was performed in duplicate. The percentage changes in mass spectrometry signals reported were statistically significant (Student Ttest score <0.04).

Chow formulation

A suspension of RP-6306 $(600 \mathrm{mg})$ in acetone $(80 \mathrm{~mL})$ was sonicated for 30 sec , then heated to $60^{\circ} \mathrm{C}$ for 5 min . The beige solution was slowly added to 1999 g of untreated feed (Purina Mills Rodent Meal 5002C) while mixing at speed 2 with the Kitchen Aid Stand Mixer 6QT 575Watt using the paddle attachment and the cover. The flask containing the solution was rinsed with 10 mL of acetone to ensure a complete transfer. The feed was mixed at speed 2 for 1.5 h . The treated feed was transferred into a clean, labeled bottle and vacuum was applied for 18 hrs . The 300ppm formulated chow was transferred into a sterile bag.

128 g of RP-6306-300 ppm treated feed and 642 g of untreated feed were transferred in a clean mixing bowl. After mixing at speed 3 for 1.5 h , the mixing was halted, the mixture was stirred manually with a spatula with special attention to the surface of the bowl (i.e. bottom and sides), then the mixture was mixed for another 1.5 h at speed 3 . The 50 ppm treated feed was transferred into a clean, sterile bag.

25 g of RP-6306-300 ppm treated feed and 475g of untreated feed were transferred in a clean mixing bowl. After mixing at speed 3 for 1.5 h , the mixing was halted, the mixture was stirred manually with a spatula with special attention to the surface of the bowl (i.e. bottom and sides), then the mixture was mixed for another 1.5 h at speed 3 . It was inspected for any large clumps, none were found. The 15 ppm treated feed was transferred into a clean, sterile bag.

The content and uniformity were verified prior to use using replicate 1 g samples of the formulated feed. Samples were extracted by mixing and sonication with 10 volumes of 1:1:1 methanol:acetonitrile:water. The extracts were centrifuged and the supernatant was diluted further with 1:1:1
methanol:acetonitrile:water prior to HPLC-UV analysis using a reversed-phase chromatography method. A 5-point calibration curve bracketing the concentration range of samples was used for quantitation.

Cell line-derived xenografts

OVCAR3 cells were implanted at 5×106 cells per mouse into the right flanks of female SCID-beige mice (5-7 weeks old; Charles River), in 1:1 matrigel: media (Matrigel Corning, cat\# CB35248). When tumors reached the target size of $100-150 \mathrm{~mm}^{3},(\mathrm{n}=8)$ mice were randomized to treatment groups and treatment with RP-6306 was initiated. In vivo studies involving cell-derived xenografts were performed at Repare Therapeutics, in a CCAC (Canadian Council on Animal Care)-accredited vivarium with an Institutional Animal Care Committee-approved protocol. RP-6306 was formulated in chow at 15-300 ppm or in 0.5% methylcellulose and orally administered twice daily (BID, $0-8 \mathrm{~h}$) for a maximum of 21 days. Chow treated mice were acclimatized to blank chow prior to drug-formulated chow for 3-5 days. Tumor volume was measured using a digital caliper and calculated using the formula $0.52 \times \mathrm{L} \times \mathrm{W}^{2}$. TGI was defined as the formula: \% TGI= ((TVvehicle/last - TVvehicle/day0) - (TVtreated/last TVtreated/day0)) / (TVvehicle/last - TVvehicle/day0) x100 calculated based on the means of the treatment groups at day 0 and last day of measurement. Change in body weight (BW) was calculated using the formula: \% BW change $=($ BWlast-BWday0/ BWdayO) x100. BW change was calculated based on individual body weight changes relative to day 0 . Statistical significance relative to vehicle control or other test groups was established by one-way ANOVA followed by Fisher's LSD test for multiple groups and unpaired t-test for two group comparisons (GraphPad Prism v9.0).

Blood and tumor tissue collection

To determine PKMYT1 target inhibition in vivo, whole blood was collected by cardiac puncture from OVCAR3 tumor bearing mice ($n=4$ per dose level and time point) under isoflurane anesthesia and transferred to tubes containing 0.1 M citric acid ($3: 1$ citric acid:blood) and stored at $-20^{\circ} \mathrm{C}$ for LC-MS/MS analysis. . Tumors were removed from mouse flanks $(n=4)$ and cleared of surrounding mouse stroma. RP-6306 Quantitation by LC-MS-MS The extraction of whole blood samples was performed by protein precipitation using four volumes of acetonitrile. The sample extracts were analyzed using a Transcend LX2 / Ultimate 3000 liquid chromatography system coupled to a Thermo Altis triple quadrupole electrospray mass spectrometer (Thermo Fisher Scientific) operated in positive mode. Separations were
performed using a $2 \times 50 \mathrm{~mm}, 2.8 \mu \mathrm{~m}$ Pursuit XRS C8 HPLC column (Agilent). A reversed-phase linear gradient of water $+0.1 \%$ formic acid and 1:1 acetonitrile: MeOH was used to elute RP-6306 and the internal standard. Samples were quantified against a 10-point linear standard curve and 3 levels of quality control samples. Whole blood concentrations of RP-6306 were converted to free unbound plasma concentrations using an in vitro derived blood / plasma ratio = 1.2 and fraction unbound (fu) plasma $=0.185$ from the CD-1 mouse strain. To simulate the free RP-6306 plasma levels at 15 ppm , the mean Cmax/dose values were calculated from the 50, 150 and 300 ppm doses and then through linear regression (Excel), extrapolated to the 15 ppm dose. AUC was calculated using WinNonLin. ELISA assay Tumor samples were homogenized in MSD Tris lysis buffer (Meso Scale Discovery, \#R60TX-2) supplemented with 1X Halt Protease (Thermo Fisher Scientific, \#78429) and phosphatase inhibitors (Thermo Fisher Scientific, \#78426) using a Beadruptor tissue homogenizer (OMNI International) and clarified by centrifugation. ELISA was performed using an anti-CDK1 capture antibody Thermo Fisher Scientific \#33-1800) and an anti- CDK1-pT14 detector antibody (Abcam \#ab58509) with a secondary antirabbit HRP conjugate (Jackson Immunoresearch \#111-035-144). The absorbance was measured in 96well plate format on an EnVision2105 at 450 nm . Samples were quantified relative to a standard protein extract and an MSD lysis buffer used as a blank to control for inter-day variability.

Protein expression and purification

A plasmid expressing PKMYT1 (residues 76 to 362) fused to a TEV cleavable N-terminal 6XHis tag was a gift from Nicola Burgess-Brown at the Structural Genomics Consortia at Oxford (Addgene plasmid \#39061; http//nt2.net/addgene:39061; RRID:addgene_39061). PKMYT1 protein was expressed in the BL21 DE3 RIL strain of E.coli. In brief, ten ml of overnight culture grown at 37 degree Celsius in Lysogeny Broth containing $50 \mathrm{mg} / \mathrm{ml}$ kanamycin was added to 1 L of Terrific Broth containing $50 \mathrm{mg} / \mathrm{ml}$ kanamycin. The diluted culture was grown at 37 degrees Celsius with shaking at 180 rpm until an optical density of 0.8 . Then the temperature was lowered to 16 degrees Celsius and IPTG was added to the culture to a final concentration of 0.5 mM once the incubator temperature reached 20 degrees Celsius. The culture was incubated overnight, and the bacterial pellet was harvested by centrifugation at 6000 g for 15 minutes. Harvested bacterial pellet was lysed in buffer containing 50 mM HEPES pH 7.5, 500 mM $\mathrm{NaCl}, 5 \mathrm{mM}$ imidazole, 5% glycerol, 0.5 mM TCEP, and 2 mM PMSF. Lysate was clarified by centrifugation, passed over a 5 mL HiTrap Ni-chelation column (GE LifeScience Inc.) and bound protein was eluted using a gradient from 5 mM to 500 mM imidazole. Fractions containing PKMYT1, as detected by SDS-PAGE, were pooled, concentrated, and loaded onto a Superdex S200 sizing column equilibrated
in buffer containing 25 mM HEPES pH 7.5, 500 mM NaCl , and 0.5 mM TCEP for final polishing and buffer exchange.

Crystallography

Apo crystals of 6 xHis-TEV-PKMYT1 ${ }^{76-362}$ were grown in hanging drop 24 -well plates by mixing $2 \mu \mathrm{~L}$ of a solution containing $6.25 \mathrm{mg} / \mathrm{ml}$ protein with $1 \mu \mathrm{~L}$ of well solution ($5.6-6.6 \%$ PEG3350, $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$, 0.1 M Tris-HCl; pH 8.25 and $10 \% \mathrm{EG}$) at $4^{\circ} \mathrm{C}$ for 1 day. The crystallization plate was then transferred to $20^{\circ} \mathrm{C}$ and crystals appeared in approximately 7 days. Inhibitor soaks were performed by transfer of apo crystals into a cryo-stabilization solution containing 12% PEG3350, $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}, 0.1 \mathrm{M}$ Tris- HCl pH 8.25, 25% ethylene glycol and 0.25 mM inhibitor, for 2 hours. Crystals were then harvested and plunge frozen in liquid nitrogen.

Diffraction data was collected from single frozen crystals at 0.97918 Å wavelength on beamline NE-CAT beamline 24ID-C (APS, Chicago, II) and processed with XDS. ${ }^{38}$ Molecular replacement was performed using Phaser with the structure of the PKMYT1 kinase domain (PDB: 3P1A) used as a search model. ${ }^{39}$ Refinement was performed using PHENIX with TLS parameters and torsion-angle NCS activated. ${ }^{40}$ Model building was performed using Coot. ${ }^{41}$ Software used in this project was curated by SBGrid. ${ }^{42}$ X-ray data collection and refinement statistics are summarized in Table S1.

Table S1. Data collection and refinement statistics.

Data Set Mol. name	$\begin{aligned} & \text { Myt1_Eph11d } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Myt1_RP1904 } \\ & 28 \end{aligned}$	$\begin{aligned} & \text { Myt1_RP1905 } \\ & 39 \end{aligned}$	$\begin{aligned} & \text { Myt1_RP6306 } \\ & \text { RP-6306 } \end{aligned}$
Resolution range	$\begin{aligned} & 58.16-2.49 \\ & (2.58-2.49) \end{aligned}$	$\begin{gathered} 58.29-2.20 \\ (2.28-2.20) \end{gathered}$	$\begin{aligned} & 56.46-2.35 \\ & (2.43-2.35) \end{aligned}$	$\begin{aligned} & 47.82-2.15 \\ & (2.23-2.15) \end{aligned}$
Space group	P 1211	P 1211	P 1211	P 1211
Unit cell	$\begin{aligned} & 50.75 \\ & 112.05 \\ & 72.51 \\ & 90.00 \\ & 110.21 \\ & 90.00 \end{aligned}$	$\begin{aligned} & 51.64 \\ & 112.73 \\ & 72.66 \\ & 90.00 \\ & 110.42 \\ & 90.00 \end{aligned}$	$\begin{aligned} & 51.46 \\ & 112.92 \\ & 72.66 \\ & 90.00 \\ & 110.34 \\ & 90.00 \end{aligned}$	$\begin{aligned} & 51.24 \\ & 112.01 \\ & 72.98 \\ & 90.00 \\ & 109.87 \\ & 90.00 \end{aligned}$
Total reflections	92337 (8437)	137718 (14215)	81929 (8051)	$\begin{aligned} & 144237 \\ & (15030) \end{aligned}$
Unique reflections	26465 (2607)	39225 (3942)	30896 (3099)	40749 (4061)
Multiplicity	3.5 (3.2)	3.5 (3.6)	2.7 (2.6)	3.5 (3.7)
Completeness (\%)	98.90 (98.01)	98.54 (95.04)	94.79 (93.86)	96.68 (96.05)
Mean I/sigma(l)	10.8 (1.0)	7.4 (0.4)	6.9 (0.5)	22.5 (0.9)

R-meas	$0.158(1.017)$	$0.084(2.358)$	$0.080(1.981)$	$0.043(1.587)$
R-pim	$0.083(0.554)$	$0.044(1.22)$	$0.047(1.174)$	$0.022(0.813)$
CC1/2	$0.974(0.635)$	$0.996(0.395)$	$0.996(0.389)$	$0.999(0.448)$
R-work	$0.211(0.470)$	$0.241(0.592)$	$0.240(0.556)$	$0.197(0.396)$
R-free	$0.244(0.468)$	$0.267(0.624)$	$0.271(0.545)$	$0.202(0.379)$
Number of non- hydrogen atoms	4169	4225	4110	4414
macromolecules	4089	4130	3993	4196
ligands	80	86	84	124
solvent	30	9	33	94
RMS(bonds)	0.003	0.002	0.005	0.007
RMS(angles)	0.67	0.44	0.74	0.90
Ramachandran favored (\%)	97.74	97.78	97.17	98.72
Ramachandran allowed (\%)	1.89	2.22	2.83	1.28
Ramachandran outliers (\%)	0.38	0.00	0.00	0.00
Clash-score	9.49	3.30	4.95	4.36
Average B-factor	83.62	99.75	106.03	89.54
macromolecules	84.09	99.96	106.25	89.84
ligands	57.64	91.16	97.15	87.49
solvent	63.51	81.27	101.99	78.69

Statistics for the highest-resolution shell are shown in parentheses.

Synthesis

Solvents and reagents were obtained from commercial suppliers and were used without further purification. UPLCMS analyses for reaction monitoring were performed on a Waters Acquity-H UPLC Class system using an Acquity UPLC HSS C18 2.1x30mm column eluting with a gradient (1.86 min) of acetonitrile (15% to 98%) in water (both containing 0.1% formic acid) using electrospray ionization (ESI). Prep-HPLC separations were performed on a Teledyne Isco Combi Flash EZ Prep system using either Phenomenex Gemini甲 $5 \mu \mathrm{~m}$ NX-C18 110Å $150 \times 21.2 \mathrm{~mm}$ column at a flow of $40 \mathrm{~mL} / \mathrm{min}$ over 12 min (<100mg or multiple injections of $<100 \mathrm{mg}$) unless otherwise specified or HP C18 RediSep Rf gold column ($>100 \mathrm{mg}$) eluting with a gradient of acetonitrile in water (both containing 0.1% formic acid) unless otherwise specified. Purifications by silica gel chromatography were performed on a Teledyne Isco Combi Flash Rf system using RediSep Rf silica gel columns. Purity of final compounds was assessed by injection of a small aliquot on a Waters Acquity-H UPLC ${ }^{\circ}$ Class system using an Acquity ${ }^{\circ}$ UPLC BEH C18 $2.1 \times 50 \mathrm{~mm}$ column eluting with a gradient (7 min) of acetonitrile (2% to 98%) in water (both containing 0.1% formic acid). Magnetic resonance (NMR) spectra were obtained on a Varian 400 MHz NMR spectrometer with an Oxford NMR AS400 magnet and are referenced in ppm relative to the residual solvent peak in the indicated solvent. For ${ }^{1} \mathrm{H}$ NMR spectra, multiplicities, coupling constants in hertz, and numbers of protons are indicated parenthetically. HRMS Samples were chromatographed using a Waters Acquity H-class UPLC system by employing a 4-minute aqueous gradient from 15 to 90% acetonitrile with 0.1% formic acid. High resolution mass spectra were collected using a Waters Xevo G2 Q-tof mass spectrometer operated in positive mode. A lockspray solution containing leucine enkephalin was used to maintain mass accuracy during analysis. Calibration was performed according to the manufacturer's guidelines and the mass accuracy was determined within 5 ppm of the theoretical exact mass. The enantiomeric excess values were calculated based on the UV absorption (at 254 nm) areas for the two enantiomers. Structural assignments of the separated atropisomers were confirmed by biological activity where the eutomer was assigned to have the (S) configuration, which was confirmed by X-ray crystallography of some analogs including $\mathbf{3 9}$ and RP-6306.

2-(3-chloroquinoxalin-2-yl)propanedinitrile (59). Adapting a known procedure, ${ }^{43}$ malononitrile (6.83 g , 104 mmol) was carefully added by portions to a vigorously stirring suspension of sodium hydride (60% dispersion in mineral oil, $4.07 \mathrm{~g}, 106 \mathrm{mmol})$ in DME (200 mL). After the addition, the stirring was continued for 20 min at RT and then $\mathbf{5 8}(10.16 \mathrm{~g}, 51.1 \mathrm{mmol})$ was added. The mixture was stirred at RT for 10 min and then heated to reflux for 1 h . The volatiles were evaporated under reduced pressure and cold aqueous 1 M hydrochloric acid was added to the resulting deep brown residue to give a yellow precipitate that was filtered, washed with cold water and a minimum of cold ethanol to afford 59 (6.70
g, 57% yield) as a yellow solid. ESI MS m/z $227.0[\mathrm{M}-\mathrm{H}]^{-} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 7.74-7.67$ (m, 2H), $7.63-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 1 \mathrm{H})$.

2-amino-1-(4-methoxy-2-methyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (62). A microwave vial charged with 59 ($250 \mathrm{mg}, 1.1 \mathrm{mmol}$) and 4-methoxy-2-methyl-aniline ($471 \mathrm{mg}, 3.4 \mathrm{mmol}$) in NMP $(2.5 \mathrm{~mL})$ was capped and heated to $130^{\circ} \mathrm{C}$ for 1 h . The mixture was cooled to RT , and a saturated aqueous NaHCO_{3} solution was added dropwise to give a precipitate. The solid was collected by filtration, washed with water then dried under vacuum to provide provided 62 (281 mg , quantitative yield) as a tan solid. ESI MS m/z $330.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.24$ (br s, 2H), 7.93 (ddd, J=8.3, $1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (ddd, J = 8.2, 1.5, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.47 (ddd, J = 8.4, $6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{ddd}, \mathrm{J}=8.7,3.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 1.97$ (s, 3H).

2-amino-1-(4-methoxy-2-methyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (76). A solution of 62 ($281 \mathrm{mg}, 0.853 \mathrm{mmol}$) in sulfuric acid (2 mL) was stirred at RT for 3 h . The mixture was then slowly poured into cold water with vigorous stirring and then made slightly alkaline with the addition of concentrated aqueous $\mathrm{NH}_{4} \mathrm{OH}$. The solid formed was collected by filtration, washed with water twice, then dried under vacuum to provide 76 ($200 \mathrm{mg}, 67 \%$ yield) as a purple solid. ESI MS m/z $348.2[\mathrm{M}+\mathrm{H}]^{+}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.00$ (br s, 2H), $7.96-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.57$ (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), 7.46 (ddd, J = 8.4, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (br s, 1H), 7.10 (dd, J $=2.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.00 (ddd, J = 8.7, 2.9, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.86(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(4-hydroxy-2-methyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (3). To a solution of 76 ($100 \mathrm{mg}, 0.288 \mathrm{mmol}$) in DCM (3 mL) was added BBr_{3} (1 M in DCM, $0.87 \mathrm{~mL}, 0.87 \mathrm{mmol}$). After stirring for 2 h at RT, the volatiles were evaporated under reduced pressure. The residue was dissolved in a solution of $10 \% \mathrm{MeOH}$ in $\mathrm{DCM}(5 \mathrm{~mL})$ and the volatiles were evaporated under reduced pressure. The residue was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and the volatiles were evaporated under reduced pressure. The residue was taken in $\mathrm{MeOH}(5 \mathrm{~mL})$, made basic with $\mathrm{Et}_{3} \mathrm{~N}$ and the volatiles were evaporated under reduced pressure. The residue was purified by prep HPLC ($35-65 \% \mathrm{MeCN}$ in water, 0.1% formic acid modifier). The appropriate fractions were combined and lyophilized providing 3 ($21 \mathrm{mg}, 22 \%$ yield) as a lavender solid. ESI MS m/z $334.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 7.93$ (dd, J = 8.3, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (dd, J = 8.3, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (ddd, J = 8.3, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (ddd, J = 8.3, 6.9, 1.5 Hz , 1 H), 7.33 (br s, 1H), 7.23 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.87 (d, J = $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.80(\mathrm{dd}, \mathrm{J}=8.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (s, 3 H).

2-amino-1-(3-methoxy-2-methyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (63). Following the procedure used to prepare 62, using 59 ($250 \mathrm{mg}, 1.1 \mathrm{mmol}$) and 3-methoxy-2-methyl-aniline (459 mg , $3.35 \mathrm{mmol})$, and running the reaction at $130^{\circ} \mathrm{C}$ for 1 h . The solid recovered by filtration was purified by silica gel chromatography eluting with a gradient of 20 to 60% EtOAc in heptane to yield 63 ($86 \mathrm{mg}, 23 \%$ yield) as a brown solid. ESI MS m/z 330.1 [$\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.26$ (br s, 2H), 7.94 (ddd, J = 8.3, 1.5, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (ddd, J = 8.3, 1.5, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.58 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.48 (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), 7.41 (ddd, J = 8.5, 7.9, $0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (dd, J = 8.4, 1.0 Hz, 1H), 7.03 (dd, J $=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(3-methoxy-2-methyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (77). Following the procedure used to prepare $\mathbf{7 6}$, a solution of $63(1.02 \mathrm{~g}, 3.11 \mathrm{mmol})$ was stirred in sulfuric acid (10 mL) for 1 h to provide 77 ($990 \mathrm{mg}, 92 \%$ yield) as an orange solid. ESI MS m/z $348.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,

DMSO-d6) $\delta 7.94$ (dd, J = 8.3, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.80-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.57$ (ddd, J = 8.4, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.49-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.24(\mathrm{dd}, \mathrm{J}=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, \mathrm{J}=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 1.85$ ($\mathrm{s}, 3 \mathrm{H}$).

2-amino-1-(3-hydroxy-2-methyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (4). Following the procedure used to prepare 3, $\mathrm{BBr}_{3}(1 \mathrm{M}$ in $\mathrm{DCM}, 11 \mathrm{~mL}, 11 \mathrm{mmol})$ was added to a solution of 77 (990 mg, 2.85 mmol) in DCM (11 mL) and the mixture was stirred for 90 min at RT. The residue was purified by silica gel chromatography eluting with gradient of 0 to $10 \% \mathrm{MeOH}$ in DCM to provide 4 ($335 \mathrm{mg}, 34 \%$ yield). ESI MS m/z $334.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.87$ (s, 1H), 7.90 (dd, J = 8.3, 1.5 Hz , $2 \mathrm{H}), 7.78-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.53$ (ddd, J=8.3, 6.9, 1.5 Hz, 1H), 7.42 (ddd, J = 8.3, $7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}$, $1 \mathrm{H}), 7.21(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, \mathrm{J}=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, \mathrm{J}=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (64). Following the procedure used to prepare 62, using $59(4.43 \mathrm{~g}, 19.4 \mathrm{mmol})$ and 3 -methoxy-2,6-dimethyl-aniline $(92)^{33}(9.03 \mathrm{~g}, 3.08 \mathrm{mmol})$, running the reaction at $150^{\circ} \mathrm{C}$ in NMP (40 mL) for 75 min . In this instance a precipitate could not be obtained after the addition of saturated aqueous NaHCO_{3} solution. Therefore, the aqueous mixture was extracted with EtOAc twice, the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure to yield a residue that was purified by silica gel chromatography eluting with a gradient of 0 to 100% EtOAc in heptane to provide 64 (3.23 g, 48\% yield) as a dark orange solid. ESI MS m/z $344.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) δ 8.30 (br s, 2H), 7.95 (dd, J = 8.3, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.76 (dd, J = 8.4, 1.4 Hz, 1H), 7.59 (ddd, J = 8.4, 6.9, 1.5 Hz , $1 \mathrm{H}), 7.48$ (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), $7.29(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.86$ (s, 3H), $1.78(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (6). Following the procedure used to prepare $3, \mathrm{BBr}_{3}(1 \mathrm{M}$ in $\mathrm{DCM}, 0.88 \mathrm{~mL}, 0.88 \mathrm{mmol})$ was added to a solution of 7 ($106 \mathrm{mg}, 0.293 \mathrm{mmol}$) in DCM (0.9 mL) and the mixture was stirred for 2 h at RT. The residue was purified by prep HPLC ($35-65 \%$ MeCN in water, 0.1% formic acid modifier). The appropriate fractions were combined and lyophilized providing 6 ($55 \mathrm{mg}, 54 \%$ yield) as a bright orange solid. ESI MS m/z 348.2 $[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.01$ (br s, 2H), 7.95 (ddd, J = 8.3, 1.5, 0.5 Hz , $1 \mathrm{H}), 7.81-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.57$ (ddd, J = 8.4, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (ddd, J = 8.3, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (br s, $1 \mathrm{H}), 7.12(\mathrm{dt}, \mathrm{J}=8.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (7). A solution of $64(130 \mathrm{mg}, 0.379 \mathrm{mmol})$ in sulfuric acid $(0,5 \mathrm{~mL})$ was stirred at RT for 70 min . The mixture was then slowly poured into cold water with vigorous stirring and then made slightly alkaline with the addition of concentrated aqueous $\mathrm{NH}_{4} \mathrm{OH}$. The solid formed was collected by filtration, washed with water twice, dried under reduced pressure, and purified by silica gel chromatography eluting with a gradient of 0 to 100% EtOAc in hexanes to provide 7 ($94 \mathrm{mg}, 70 \%$ yield) as an ochre solid. ESI MS m/z $362.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.66$ (br s, 2H), 8.57 (ddd, J = 8.3, 1.5, $0.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.44-8.32(\mathrm{~m}, 2 \mathrm{H}), 8.20$ (ddd, J = 8.4, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.08 (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), $8.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.78(d, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(3-chloro-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (65). Following the procedure used to prepare 62, using $59(250 \mathrm{mg}, 1.1 \mathrm{mmol})$ and 3-chloro-2,6-dimethyl-aniline (515 mg , 3.31 mmol), running the reaction at $130^{\circ} \mathrm{C}$ for 3 h provided 65 ($70 \mathrm{mg}, 18 \%$ yield) as an orange solid. ESI MS m/z $348.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$) $\delta 8.42(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.96(\mathrm{dd}, \mathrm{J}=8.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$
(dd, J = 8.3, 1.5 Hz, 1H), 7.65-7.57 (m, 2H), 7.50 (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), $7.41-7.34(\mathrm{~m}, 1 \mathrm{H}), 1.99$ (s, 3H), $1.92(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(3-chloro-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (8). Following the procedure used to prepare 7, a solution of $65(100 \mathrm{mg}, 0.288 \mathrm{mmol})$ in sulfuric acid (2 mL) was stirred at RT for 30 min . The recovered solid from the filtration was purified by prep HPLC ($20-80 \%$ MeCN in water, 0.1% formic acid modifier). Appropriate fractions were combined and lyophilized to provide 8 (3.9 mg , 4% yield). ESI MS m/z 366.2 [M + H] ${ }^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$) $\delta 8.13$ (s, 2H), 7.92 (dd, J = 8.3, 1.4 $\mathrm{Hz}, 1 \mathrm{H}), 7.80-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{ddd}, \mathrm{J}=8.3,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}$, 1H), 1.95 ($\mathrm{s}, 3 \mathrm{H}$), 1.89 ($\mathrm{s}, 3 \mathrm{H})$.

2-amino-1-(2-methyl-5-nitro-phenyl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (66). Following the procedure used to prepare 63, using $59(250 \mathrm{mg}, 1.1 \mathrm{mmol})$ and 2-methyl-5-nitro-aniline ($520 \mathrm{mg}, 3.42$ mmol), running the reaction at $130^{\circ} \mathrm{C}$ for 2 h , and eluting with a gradient of 20 to 60% EtOAc in heptane provided 66 ($242 \mathrm{mg}, 63 \%$ yield) as a brown solid. ESI MS m/z $345.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSOd6) $\delta 8.52(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{br} \mathrm{s}+\mathrm{dd}, \mathrm{J}=8.5,2.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.96(\mathrm{dd}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, \mathrm{J}$ $=8.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, \mathrm{J}=8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (ddd, J=8.4, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.16 (s, 3H).

2-amino-1-(2-methyl-5-nitro-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (78). Following the procedure used to prepare 76, a solution of $66(625 \mathrm{mg}, 1.82 \mathrm{mmol})$ in sulfuric acid (8 mL) for 1 h provided 78 ($500 \mathrm{mg}, 76 \%$ yield) as an orange solid. ESI MS m/z $363.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta 8.50(d, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, \mathrm{J}=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (br s, 1H), 7.76 (dd, J = 8.2, 1.4 Hz, 1H), 7.59 (ddd, J = 8.4, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), 7.38 (br s, 1H), 2.17 (s, 3H).

2-amino-1-(5-amino-2-methyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (9). A suspension of 78 ($500 \mathrm{mg}, 1.38 \mathrm{mmol}$) and palladium on carbon ($10 \% \mathrm{w} / \mathrm{w}, 250 \mathrm{mg}, 0.235 \mathrm{mmol}$) in DCM (10 mL) and $\mathrm{MeOH}(10 \mathrm{~mL})$ was stirred under hydrogen atmosphere (balloon) at RT for 90 min after which the suspension was filtered on Celite. The filter cake was washed with DCM. Silica gel (5 g) was added to the filtrate that was evaporated under reduced pressure and purified by silica gel chromatography eluting with a gradient of 0 to $10 \% \mathrm{MeOH}$ in DCM to afford 9 ($240 \mathrm{mg}, 52 \%$ yield). ESI MS m/z $333.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 7.90$ (dd, J = 8.3, 1.4 Hz, 2H), 7.75 (dd, J = 8.2, 1.5 Hz, 1H), 7.71 (d, J = 3.3 $\mathrm{Hz}, 1 \mathrm{H}$), 7.53 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.43 (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), 7.33 (s, 1H), $7.15-7.07$ $(\mathrm{m}, 1 \mathrm{H}), 6.70(\mathrm{dd}, \mathrm{J}=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(1H-indazol-4-yl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (67). Following the procedure used to prepare 63, using 59 ($250 \mathrm{mg}, 1.1 \mathrm{mmol}$) and 1 H -indazol-4-amine ($431 \mathrm{mg}, 3.24 \mathrm{mmol}$) , running the reaction at $150^{\circ} \mathrm{C}$ for 2 h , and eluting with a gradient of 0 to $20 \% \mathrm{MeOH}$ in DCM provided 67 (140 mg, 38% yield) as a tan solid. ESI MS m/z $326.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 13.44(\mathrm{~s}, 1 \mathrm{H}), 8.27$ (br s, 2H), $8.01-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dt}, \mathrm{J}=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.58$ (ddd, J $=8.6,7.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46 (ddd, J = 8.4, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33 (dd, J = 7.3, $0.7 \mathrm{~Hz}, 1 \mathrm{H}$).

2-amino-1-(1H-indazol-4-yl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (10). Following the procedure used to prepare 7, a solution of $67(124 \mathrm{mg}, 0.381 \mathrm{mmol})$ was stirred in sulfuric acid (1 mL) for 1 h . The solid recovered from the filtration was purified by prep HPLC ($30-60 \% \mathrm{MeCN}$ in water, 0.1% formic acid modifier), appropriate fractions were combined and lyophilized to provide $\mathbf{1 0}$ ($74 \mathrm{mg}, 56 \%$ yield) as a
yellow solid. ESI MS m/z $344.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 13.45$ (s, 1H), 8.07 (br s, 2H), 7.96 (ddd, J = 8.3, 1.5, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.89-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.69$ (ddd, J = 8.2, 1.5, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.63-7.51(\mathrm{~m}$, $2 \mathrm{H}), 7.44$ (ddd, J = 8.3, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{dd}, \mathrm{J}=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H})$.

2-amino-1-(1H-indol-4-yl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (68). Following the procedure used to prepare 63 , using 59 ($250 \mathrm{mg}, 1.1 \mathrm{mmol}$) and 1 H -indol-4-amine ($422 \mathrm{mg}, 3.19 \mathrm{mmol}$), running the reaction at $150{ }^{\circ} \mathrm{C}$ for 1 h , and eluting with a gradient of 20 to 100% EtOAc in heptane followed by reverse phase flash chromatography on C18 cartridge with a gradient of 10 to $100 \% \mathrm{MeCN}$ in water, 0.1% formic acid modifier) provided 68 ($57 \mathrm{mg}, 38 \%$ yield) as an olive brown solid. ESI MS m/z 325.1 [M $+\mathrm{H}^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 11.49(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{brs}, 2 \mathrm{H}), 7.96-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}$, 2 H), 7.56 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), $7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, \mathrm{J}=8.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, \mathrm{J}=7.4$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-6.02(\mathrm{~m}, 1 \mathrm{H})$.

2-amino-1-(1H-indol-4-yl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (11). Following the procedure used to prepare 7, a solution of $68(57 \mathrm{mg}, 0.176 \mathrm{mmol})$ was stirred in sulfuric acid (2 mL) for 2 h . The solid recovered from the filtration was purified by prep HPLC ($35-65 \%$ MeCN in water, 0.1% formic acid modifier), appropriate fractions were combined and lyophilized to provide 11 ($20 \mathrm{mg}, 33 \%$ yield) as a yellow fluffy solid. ESI MS m/z $343.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 11.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.95$ (dd, $\mathrm{J}=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{ddd}, \mathrm{J}=8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{br} d, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, \mathrm{J}=8.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, \mathrm{J}=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ (ddd, J = 3.0, 2.0, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$).

2-amino-1-(1H-benzotriazol-4-yl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (69). Following the procedure used to prepare 62, using 59 ($250 \mathrm{mg}, 1.1 \mathrm{mmol}$) and 1 H -benzotriazol-4-amine ($427 \mathrm{mg}, 3.18 \mathrm{mmol}$, running the reaction at $150^{\circ} \mathrm{C}$ for 1 h provided $69(275 \mathrm{mg}$, quantitative yield) as a dark purple solid. ESI MS m/z $327.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$) $\delta 7.94(\mathrm{dd}, \mathrm{J}=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (dd, J=7.9, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.72-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.57$ (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.45 (ddd, J = 8.3, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.18-7.09(\mathrm{~m}, 2 \mathrm{H})$.

2-amino-1-(1H-benzotriazol-4-yl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (12). Following the procedure used to prepare 7, a solution of $69(97 \mathrm{mg}, 0.297 \mathrm{mmol})$ in sulfuric acid (1 mL) for 1.5 h . The solid recovered from the filtration was purified by prep HPLC ($30-60 \% \mathrm{MeCN}$ in water, 0.1% formic acid modifier), appropriate fractions were combined and lyophilized to provide 12 ($2.6 \mathrm{mg}, 3 \%$ yield) as a yellow fluffy solid. ESI MS m/z $345.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.25-8.05(\mathrm{~m}, 4 \mathrm{H}), 7.97$ (dd, J = 8.4, 1.3 Hz, 1H), $7.83(b r d, J=3.2 H z, 1 H), 7.73-7.64(m, 2 H), 7.64-7.61(m, 1 H), 7.61-7.56$ (m, 1H), $7.48-7.38$ (m, 2H).

2-amino-1-(1H-benzimidazol-4-yl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (70). Following the procedure used to prepare 63, using $59(250 \mathrm{mg}, 1.1 \mathrm{mmol})$ and 1 H -benzimidazol-4-amine ($454 \mathrm{mg}, 3.41$ mmol), running the reaction at $130^{\circ} \mathrm{C}$ for 2 h , and purification by reverse phase chromatography on C 18 cartridge ($10-100 \%$ MeCN in WATER, 0.1% formic acid modifier) provided 70 ($33 \mathrm{mg}, 22 \%$ yield) as a brown solid. ESI MS m/z $326.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.95$ (dd, J = 8.4, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{ddd}, \mathrm{J}=8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.34$ ($\mathrm{m}, 3 \mathrm{H}$).

2-amino-1-(1H-benzimidazol-4-yl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (13). Following the procedure used to prepare $\mathbf{7}$, a solution of $70(33 \mathrm{mg}, 0.101 \mathrm{mmol})$ was stirred in sulfuric acid (1 mL) for

45 min . The solid recovered from filtration was purified by prep HPLC ($25-55 \%$ MeCN in water, 0.1% formic acid modifier), appropriate fractions were combined and lyophilized to provide 13 ($8 \mathrm{mg}, \mathbf{2 3 \%}$ yield) as a yellow fluffy solid. ESI MS m/z $344.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.26(\mathrm{~s}, 1 \mathrm{H})$, 7.96 (dd, J = 8.4, 1.4 Hz, 1H), $7.81(\mathrm{~s}, 2 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.57$ (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.48 7.39 (m, 3H), 7.37 (br s, 1H).

2-amino-1-[5-(difluoromethyl)-2-methyl-phenyl]pyrrolo[3,2-b]quinoxaline-3-carbonitrile (71). Following the procedure used to prepare $\mathbf{6 2}$, using 59 ($50 \mathrm{mg}, 0.22 \mathrm{mmol}$) and 5-(difluoromethyl)-2-methyl-aniline ($103 \mathrm{mg}, 0.66 \mathrm{mmol}$), running the reaction at $130^{\circ} \mathrm{C}$ for 3 h provided $71(160 \mathrm{mg}, 70 \%$ yield) as a yellow solid. ESI MS m/z $350.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.29(\mathrm{~s}, 2 \mathrm{H}), 7.96-$ $7.86(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.54$ (dddd, J = 8.4, 6.9, 2.8, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.48-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.39-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=55.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.88(\mathrm{~m}, 3 \mathrm{H})$.

2-amino-1-[5-(difluoromethyl)-2-methyl-phenyl]pyrrolo[3,2-b]quinoxaline-3-carboxamide (14).

 Following the procedure used to prepare $\mathbf{7}$, a solution of $\mathbf{7 1}(150 \mathrm{mg}, 0.429 \mathrm{mmol})$ was stirred in sulfuric acid $(2 \mathrm{~mL})$ for 30 min . The solid recovered from filtration was purified by prep HPLC ($20-80 \% \mathrm{MeCN}$ in water, 0.1% formic acid modifier), appropriate fractions were combined and lyophilized to provide 14 ($46 \mathrm{mg}, 29 \%$ yield). ESI MS m/z $368.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.14(\mathrm{~s}, 2 \mathrm{H}$), $7.95(\mathrm{~m}, 1 \mathrm{H})$, $7.76(\mathrm{~m}, 3 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{t}, \mathrm{J}=55.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$.2-amino-1-(5-methyl-1H-indazol-4-yl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (72). Following the procedure used to prepare 63, using 59 ($250 \mathrm{mg}, 1.1 \mathrm{mmol}$) and 5-methyl-1H-indazol-4-amine (495 mg , $3.36 \mathrm{mmol})$, running the reaction at $130^{\circ} \mathrm{C}$ for 80 min . The solid was purified by preparative HPLC (Phenomenex Gemini) eluting with a gradient of $\mathrm{CH}_{3} \mathrm{CN}(30$ to $60 \%)$ in water both containing 0.1% formic acid provided 72 ($37 \mathrm{mg}, 10 \%$ yield) as a dark brown solid. ESI MS m/z $340.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $\mathrm{d}_{\text {) }}$) 13.32 (s, 1H), 8.25 (br s, 2H), 7.96 (dd, J = 8.4, 1.4 Hz, 1H), 7.75 (s, 1H), 7.71 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (ddd, $J=8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}$, $3 \mathrm{H})$.

2-amino-1-(5-methyl-1H-indazol-4-yl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (15). Following the procedure used to prepare $\mathbf{7}$, a solution of $72(35 \mathrm{mg}, 0.10 \mathrm{mmol})$ was stirred in sulfuric acid (1 mL) for 1.5 h . The solid recovered by filtration was purified by prep HPLC ($30-60 \% \mathrm{MeCN}$ in water, 0.1% formic acid modifier), appropriate fractions were combined and lyophilized to provide $\mathbf{1 5}$ ($15 \mathrm{mg}, \mathbf{4 1 \%}$ yield) as a light beige fluffy solid. ESI MS m/z $358.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 13.33(\mathrm{~s}, 1 \mathrm{H}), 8.03$ (br s, 2H), 7.96 (dd, J = 8.4, 1.4 Hz, 1H), 7.81 (br d, J = $3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.76-7.71$ (m, 2H), 7.68 (dd, J = 8.3, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (ddd, $J=8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (ddd, J=8.3, 6.9, 1.5 Hz, 1H), 7.39 (br s, 1H), 2.12 ($\mathrm{s}, 3 \mathrm{H}$).

2-amino-1-(2-chloro-3-methoxy-6-methyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (73).

Following the procedure used to prepare 64, using $59(250 \mathrm{mg}, 1.1 \mathrm{mmol})$ and 2-chloro-3-methoxy-6-methyl-aniline ${ }^{44}$ ($586 \mathrm{mg}, 3.41 \mathrm{mmol}$), running the reaction at $130^{\circ} \mathrm{C}$ for 7 h and eluting with a gradient of 20 to 100% EtOAc in heptane provided 73 ($120 \mathrm{mg}, 30 \%$ yield) as a brown orange solid. ESI MS m/z $364.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta 8.46$ (br s, 2 H), 7.95 (ddd, J = 8.3, 1.5, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (ddd, J = 8.2, 1.5, 0.5 Hz, 1H), 7.60 (ddd, J = 8.4, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.53-7.43$ (m, 2H), 7.37 (d, J = 8.7 Hz , $1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(2-chloro-3-methoxy-6-methyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (79).

 Following the procedure used to prepare 76 , a solution of 73 ($49 \mathrm{mg}, 0.135 \mathrm{mmol}$) was stirred in sulfuric acid (1 mL) for 1.5 h provided $79\left(48 \mathrm{mg}, 93 \%\right.$ yield) as a light yellow solid. ESI MS m/z $382.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.19$ (br s, 2H), 7.95 (dd, J = 8.5, 1.4 Hz, 1H), $7.79-7.71$ (m, 2H), 7.59 (ddd, $\mathrm{J}=8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{br} \mathrm{s}+\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H})$.2-amino-1-(2-chloro-3-hydroxy-6-methyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (16). Following the procedure used to prepare $3, \mathrm{BBr}_{3}(1 \mathrm{M}$ in $\mathrm{DCM}, 0.4 \mathrm{~mL}, 0.4 \mathrm{mmol})$ was added to a solution of 79 ($48 \mathrm{mg}, 0.126 \mathrm{mmol}$) in DCM (1 mL) and the mixture was stirred for 3 h at RT. Then more $\mathrm{BBr}_{3}(1 \mathrm{M}$ in DCM, $0.4 \mathrm{~mL}, 0.4 \mathrm{mmol}$) was added and the mixture was stirred for an additional 3 h . The residue was purified by prep HPLC (30-60\% MeCN in water, 0.1% formic acid modifier) provided 16 (17 mg , 37\% yield) as a light orange fluffy solid. ESI MS m/z 368.3 [$\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 10.56$ (br $\mathrm{s}, 1 \mathrm{H}$), 8.17 (br s, 2H), 7.95 (ddd, J = 8.3, 1.5, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (ddd, J = 8.2, 1.5, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (br d, J = $3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.58 (ddd, J = 8.4, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), $7.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.28$ (dd, J = 8.5, 0.8 Hz, 1H), 7.16 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.94(\mathrm{~s}, 3 \mathrm{H})$.

3-chloro-N-(6-chloro-3-methoxy-2-methyl-phenyl)quinoxalin-2-amine (60). To a cold ($0^{\circ} \mathrm{C}$) mixture of 58 ($303 \mathrm{mg}, 1.52 \mathrm{mmol}$) and 6-chloro-3-methoxy-2-methyl-aniline ${ }^{44}$ ($507 \mathrm{mg}, 2.95 \mathrm{mmol}$) in THF (10 mL) was added slowly a solution of potassium tert-butoxide in THF ($1 \mathrm{M}, 4.6 \mathrm{~mL}$). After stirring for 1 h at $0^{\circ} \mathrm{C}$, the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 30% EtOAc in hexanes to provide 60 ($133 \mathrm{mg}, 26 \%$ yield) as an off-white solid. ESI MS m/z $334.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, Chloroform-d) $\delta 7.86$ (ddd, J = 8.3, 1.5, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 (ddd, J = 8.4, 1.5, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (ddd, J = 8.4, $7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{ddd}, \mathrm{J}=8.3,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, \mathrm{J}=8.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(6-chloro-3-methoxy-2-methyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (74). To a suspension of sodium hydride (60% dispersion in mineral oil, $54 \mathrm{mg}, 1.41 \mathrm{mmol}$) in dioxane (2 mL), was added a solution of malononitrile ($58 \mathrm{mg}, 0.878 \mathrm{mmol}$) in dioxane (0.5 mL). After $20 \mathrm{~min}, 60$ (133 mg , $0.398 \mathrm{mmol})$ in dioxane $(2 \mathrm{~mL})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(48 \mathrm{mg}, 0.041 \mathrm{mmol})$ were added. The mixture was flushed with nitrogen and heated to $100^{\circ} \mathrm{C}$ for 1 h under a nitrogen atmosphere. The mixture was cooled to RT, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with EtOAc three times. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 100% EtOAc in hexanes to provide 74 (130 $\mathrm{mg}, 90 \%$ yield) as a yellow solid. ESI MS m/z $364.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.46$ (br s, 2 H), 7.95 (dd, J = 8.4, 1.5 Hz, 1H), 7.77 (dd, J = 8.3, 1.4 Hz, 1H), $7.63-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.49$ (ddd, J = 8.4, 7.0, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(6-chloro-3-methoxy-2-methyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (80). Following the procedure used to prepare 76, a solution of 74 ($130 \mathrm{mg}, 0.357 \mathrm{mmol}$) in sulfuric acid (1 mL) for 2.5 h provided 80 (136 mg , 98% yield) as a light yellow solid. ESI MS m/z $382.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz , DMSO-d6) $\delta 7.99-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.47$ (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), $7.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(6-chloro-3-hydroxy-2-methyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (17). Following the procedure used to prepare $3, \mathrm{BBr}_{3}(1 \mathrm{M}$ in $\mathrm{DCM}, 1 \mathrm{~mL}, 1 \mathrm{mmol})$ was added to a solution of $80(70 \mathrm{mg}, 0.183 \mathrm{mmol})$ in DCM $(1 \mathrm{~mL})$ and the mixture was stirred for 2 at RT. The residue was purified by prep HPLC (35-65\% MeCN in water, 0.1% formic acid modifier) to provide 17 ($36 \mathrm{mg}, 53 \%$ yield) as a pale yellow fluffy solid. ESI MS m/z $368.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 10.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.18$ (br s, 2H), $7.95(d d, J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{br} \mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (ddd, J=8.4, $6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), $7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}$, 3 H).

3-chloro-N-[2,6-dichloro-3-[(4-methoxyphenyl)methoxy]phenyl]quinoxalin-2-amine (61). To a cold (0 ${ }^{\circ} \mathrm{C}$) mixture of $58(98 \mathrm{mg}, 0.492 \mathrm{mmol})$ and 2,6-dichloro-3-[(4-methoxyphenyl)methoxy]aniline ${ }^{44}$ (292 $\mathrm{mg}, 0.979 \mathrm{mmol}$) in THF (4 mL) was added slowly a solution of potassium tert-butoxide in THF ($1 \mathrm{M}, 1.50$ mL). After stirring for 1 h at $0^{\circ} \mathrm{C}$, the mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with EtOAc and water. The layers were separated, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified twice by silica gel chromatography eluting with a gradient of 0 to 50% EtOAc in hexanes to provide 61 ($109 \mathrm{mg}, 48 \%$ yield) as a sticky off-white foam. ESI MS m/z $462.0[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.88$ (ddd, J = 8.3, 1.5, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (ddd, J=8.4, $1.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (ddd, J = 8.4, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (ddd, J = 8.4, 7.0, 1.5 Hz, 1H), $7.43-7.38$ (m, $2 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 3 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-[2,6-dichloro-3-[(4-methoxyphenyl)methoxy]phenyl]pyrrolo[3,2-b]quinoxaline-3carbonitrile (75). To a vial containing sodium hydride (60% dispersion in mineral oil, $15 \mathrm{mg}, 0.391 \mathrm{mmol}$) in dioxane (2 mL), was added a solution of malononitrile ($17 \mathrm{mg}, 0.257 \mathrm{mmol}$) in dioxane (0.5 mL). After $20 \mathrm{~min}, 61(59 \mathrm{mg}, 0.128 \mathrm{mmol})$ in dioxane $(1 \mathrm{~mL})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(15 \mathrm{mg}, 0.013 \mathrm{mmol})$ were added, the mixture was flushed with nitrogen and heated to $100^{\circ} \mathrm{C}$ for 1 h under nitrogen atmosphere. The mixture was cooled to RT , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with EtOAc twice. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified twice by silica gel chromatography eluting with a gradient of 0 to 50% EtOAc in hexanes to provide 75 (40 mg , 63\% yield) as a yellow solid. ESI MS m/z $490.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 8.65(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.96(\mathrm{dd}, \mathrm{J}=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, \mathrm{J}=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.51$ (ddd, J=8.4, 6.9, 1.5 Hz, 1H), 7.49-7.41(m, 2H), 7.06-6.88(m, 2 H), 5.25 (dd, J = 19.2, 11.4 Hz, 2H), 3.77 (s, 3H).

2-amino-1-(2,6-dichloro-3-hydroxy-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (18). Following the procedure used to prepare 7, a solution of 73 ($71 \mathrm{mg}, 0.145 \mathrm{mmol}$) was stirred in sulfuric acid (1 mL) for 1 h . The solid recovered from the filtration was purified by prep HPLC ($35-65 \%$ MeCN in water, 0.1% formic acid modifier), appropriate fractions were combined and lyophilized to provide 18 ($29 \mathrm{mg}, 52 \%$ yield) as a fluffy yellow solid. ESI MS m/z $388.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.33$ (br s, 2H), 7.95 (dd, J = 8.3, 1.4 Hz, 1H), 7.79 (dd, J = 8.3, 1.4 Hz, 1H), $7.74(\mathrm{br} \mathrm{s}, \mathrm{J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (ddd, J = 8.4, $6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), $7.41(\mathrm{br} \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (d, J = 9.0 Hz, 1H).

3-chloro-N-[5-(methoxymethoxy)-2-methyl-phenyl]quinoxalin-2-amine (82). In a 20 mL microwave vial, 58 ($1 \mathrm{~g}, 5.0 \mathrm{mmol}$) was dissolved in toluene (10 mL). 5 -(methoxymethoxy)-2-methyl-aniline (840 mg , 5.0 mmol) and sodium tert-butoxide ($580 \mathrm{mg}, 6.0 \mathrm{mmol}$), $\mathrm{Pd}_{2} \mathrm{dba}_{3}(230 \mathrm{mg}, 0.251 \mathrm{mmol})$, and XantPhos
($350 \mathrm{mg}, 0.605 \mathrm{mmol}$) were added. The vial was purged with nitrogen, capped, and the mixture was heated to $110{ }^{\circ} \mathrm{C}$ for 16 h . The mixture was concentrated under reduced pressure and the residue was purified by silica gel chromatography eluting with a gradient of 0 to 20% EtOAc in heptane to provide 83 (1.1 g, 66\% yield). ESI MS m/z $330.24[\mathrm{M}+\mathrm{H}]^{+} .1 \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.77$ (dd, J = $8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, \mathrm{J}=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.83 (dd, J = 8.3, 2.6 Hz, 1H), $5.14(\mathrm{~s}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(5-hydroxy-2-methylphenyl)-N-methyl-1H-pyrrolo[2,3-b]quinoxaline-3-carboxamide (19). In a microwave vial, $82(0.21 \mathrm{~g}, 0.637 \mathrm{mmol})$ was dissolved in THF (1.2 mL) at RT, followed by the addition of 2-cyano-N-methylacetamide ($0.094 \mathrm{~g}, 0.955 \mathrm{mmol}$) and potassium tert-butoxide ($0.427 \mathrm{~g}, 3.82 \mathrm{mmol}$). The mixture was capped and stirred at $80^{\circ} \mathrm{C}$ for 16 h . Water $(30 \mathrm{~mL})$ was added to the mixture and solid precipitates was filtered, washed with water, dried under a flow of air and triturated with diethyl ether to yield crude 2-amino-1-(5-(methoxymethoxy)-2-methylphenyl)-N-methyl-1H-pyrrolo[2,3-b]quinoxaline-3carboxamide ($0.2 \mathrm{~g}, 80 \%$, LC-MS (ESI) m / z : $392.56[\mathrm{M}+\mathrm{H}]^{+}$) that was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ at RT. 4M HCl in Dioxane (2 mL) was added and the mixture was stirred for 2 h at RT. The volatiles were evaporated under reduced pressure, and the residue was purified by prep HPLC to afford 19 ($48 \mathrm{mg}, 28 \%$ yield) as a white solid. ESI MS m/z $348.46[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) $\delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 8.11-7.96(\mathrm{~m}, 3 \mathrm{H})$, $7.79(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, \mathrm{J}=8.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-N-ethyl-1-(5-hydroxy-2-methylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carboxamide (20). To a solution of $82(0.22 \mathrm{~g}, 0.67 \mathrm{mmol})$ in DMF (3 mL), 2-cyano-N-ethylacetamide ($0.089 \mathrm{~g}, 0.80 \mathrm{mmol}$) and cesium carbonate ($1.09 \mathrm{~g}, 3.34 \mathrm{mmol}$) were added and the mixture was heated at $100^{\circ} \mathrm{C}$ for 1 h . After cooling to RT, the mixture was slowly poured in icy water (10 mL) and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with 30% EtOAc in hexanes to yield crude 2-amino-N-ethyl-1-(5-(methoxymethoxy)-2-methylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carboxamide ($0.08 \mathrm{~g}, 30 \%$, ESI MS m/z $406.3[\mathrm{M}+\mathrm{H}]^{+}$) that was dissolved in 4 M HCl in 1,4-dioxane (1 mL). The mixture was stirred at for 1 h at RT. The volatiles were evaporated under reduced pressure and the residue was taken in EtOAc and washed with a saturated aqueous NaHCO_{3} solution. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with $3 \% \mathrm{MeOH}$ in DCM. The desired fractions were combined, evaporated under reduced pressure, and triturated with ether to afford 20 ($22 \mathrm{mg}, 35 \%$ yield) as a white solid. ESI MS m/z $362.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right.$) $\delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=$ $8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.40(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

2-amino-1-(5-hydroxy-2-methylphenyl)-N-(2-hydroxyethyl)-1H-pyrrolo
[2,3-b]quinoxaline-3carboxamide (21). To a solution of $82(0.12 \mathrm{~g}, 0.36 \mathrm{mmol})$ in DMF (1.2 mL) at RT, 2-cyano-N-(2hydroxyethyl)acetamide ($0.069 \mathrm{~g}, 0.55 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.59 \mathrm{~g}, 1.81 \mathrm{mmol})$ were added and the mixture was heated at $100^{\circ} \mathrm{C}$ for 1 h . After cooling to RT , the mixture was slowly poured in icy water (30 mL) and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford crude 2-amino-N-(2-hydroxyethyl)-1-(5-(methoxymethoxy)-2-methylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carboxamide (150 mg, 98\% yield, ESI MS m/z $422.34[\mathrm{M}+\mathrm{H}]^{+}$) that was dissolved in 1,4-dioxane (1 mL). 4 M HCl in 1,4-dioxane was added and the mixture was stirred for 2 h at RT. The volatiles were evaporated under reduced pressure, and the
residue was purified by prep HPLC to afford 21 ($19 \mathrm{mg}, 14 \%$ yield) as a white solid. ESI MS m/z 378.26 [M $+\mathrm{H}^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.74(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$.

1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (83). To a solution of 64 ($400 \mathrm{mg}, 1.16 \mathrm{mmol}$) in THF (10 mL) was added tert-butyl nitrite ($599 \mathrm{mg}, 5.81 \mathrm{mmol}$). The mixture was stirred at RT for 30 min then refluxed for 4.75 h , cooled to RT and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 100% EtOAc in hexanes providing 83 (367 mg , 96% yield) as a light orange solid. ESI MS m/z $329.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.30(\mathrm{~s}, 1 \mathrm{H}), 8.37-8.25(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.94-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.32$ (dt, J = 8.5, 0.7 Hz, 1H), $7.18(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H})$.

1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (22). Following the procedure used to prepare 76, a solution of $83(367 \mathrm{mg}, 1.12 \mathrm{mmol})$ in sulfuric acid (2 mL) for 4.5 h provided 1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide ($356 \mathrm{mg}, 92 \%$ yield). ESI MS m/z $347.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.35-8.27(\mathrm{~m}, 1 \mathrm{H}), 8.14$ $-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}$, $3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$. Following the procedure used to prepare $3, \mathrm{BBr}_{3}(1 \mathrm{M}$ in $\mathrm{DCM}, 1 \mathrm{~mL}, 1 \mathrm{mmol})$ was added to a solution of 1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (356 $\mathrm{mg}, 1.03 \mathrm{mmol}$) in DCM (3 mL) and the mixture was stirred for 1 h at RT. The residue was purified by reverse phase flash chromatography on C18 cartridge ($10-100 \%$ MeCN in water, 0.1% formic acid modifier), appropriate fractions were combined and lyophilized to provide 22 ($189 \mathrm{mg}, 55 \%$ yield) as a beige fluffy solid. ESI MS m/z $333.4[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.67(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H})$, $8.37-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.11-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{dt}, \mathrm{J}=8.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$.

2-chloro-1-(3-methoxy-2,6-dimethylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carbonitrile (84). To a solution of tert-Butyl nitrite 90% ($0.46 \mathrm{~mL}, 3.49 \mathrm{mmol}$) and Copper (I) chloride ($576 \mathrm{mg}, 5.82 \mathrm{mmol}$) in ACN $(15 \mathrm{~mL})$ at RT was added dropwise a solution of $64(1.0 \mathrm{~g}, 2.91 \mathrm{mmol})$ in ACN (15 mL). The mixture was stirred at RT for 0.5 h and then heated at $65^{\circ} \mathrm{C}$ for 2 h . The volatiles were removed under reduced pressure at RT. The residue was diluted with EtOAc and washed with water ($3 \times 50 \mathrm{~mL}$) and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure at RT to yield a brown oil that was adsorbed on 4 g of silica gel and purified by silica gel chromatography eluting with a gradient of 0 to 50% EtOAc in heptane to afford $84\left(84.0 \mathrm{mg}, 8 \%\right.$ yield) as an orange solid. ESI MS m/z $363.0[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.82(\mathrm{~s}, 3 \mathrm{H}) 1.88(\mathrm{~s}, 3 \mathrm{H}) 6.14(\mathrm{~s}, 1 \mathrm{H}) 6.90(\mathrm{~d}, \mathrm{~J}=8.31 \mathrm{~Hz}, 1 \mathrm{H}) 7.11(\mathrm{~d}, \mathrm{~J}=$ $8.31 \mathrm{~Hz}, 1 \mathrm{H}) 7.82$ (dddd, $J=18.49,8.34,6.79,1.59 \mathrm{~Hz}, 2 \mathrm{H}) 8.12(\mathrm{dd}, J=8.31,1.47 \mathrm{~Hz}, 1 \mathrm{H}) 8.38(\mathrm{dd}, J=$ 8.44, 1.34 Hz, 1 H)

2-chloro-1-(3-hydroxy-2,6-dimethylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carboxamide (23). To a solution of 84 ($83.0 \mathrm{mg}, 0.23 \mathrm{mmol}$) and tetrabutylammonium iodide ($93.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in DCM (2 mL) at $-78^{\circ} \mathrm{C}$ in a sealed vial under nitrogen, was added dropwise boron trichloride 1 M in DCM ($0.6 \mathrm{~mL}, 0.60$ $\mathrm{mmol})$. The reaction was brought back to RT and stirred for 4 h . DCM was removed with a stream of nitrogen and the mixture was diluted with EtOAc. Sat. NaHCO_{3} was added, and the mixture left to stir 10 min. Phases were separated and the organic layer was washed once with sat. NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was adsorbed on silica gel (1 g) and purified by silica gel chromatography eluting with a gradient of 0 to 60% EtOAc in heptane to afford 2-
chloro-1-(3-hydroxy-2,6-dimethylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carbonitrile ($30 \mathrm{mg}, 34 \%$ yield) as a light orange solid. ESI MS m/z $349.0[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.82(\mathrm{~s}, 3 \mathrm{H}) 1.88$ (s, 3 H) $6.14(\mathrm{~s}, 1 \mathrm{H}) 6.90(\mathrm{~d}, J=8.31 \mathrm{~Hz}, 1 \mathrm{H}) 7.11(\mathrm{~d}, J=8.31 \mathrm{~Hz}, 1 \mathrm{H}) 7.82$ (dddd, $J=18.49,8.34,6.79,1.59 \mathrm{~Hz}$, $2 \mathrm{H}) 8.12$ (dd, $J=8.31,1.47 \mathrm{~Hz}, 1 \mathrm{H}) 8.38$ (dd, $J=8.44,1.34 \mathrm{~Hz}, 1 \mathrm{H}$). To a solution of 2-chloro-1-(3-hydroxy-2,6-dimethylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carbonitrile ($30 \mathrm{mg}, 0.08 \mathrm{mmol}$) in ethanol (2.28 mL , $39 \mathrm{mmol})$ and water ($0.23 \mathrm{~mL}, 12 \mathrm{mmol}$) was added Ghaffar-Parkins catalyst ($3.4 \mathrm{mg}, 0.008 \mathrm{mmol}$). The mixture was stirred 2.5 h at $80^{\circ} \mathrm{C}$. The solvent was reduced to a minimum using a stream of nitrogen and the crude was loaded (liquid deposit in DMSO) on a 30 g C18 column and purified using a gradient of MeCN/water from 0% to 100% MeCN. The pure fractions were combined and concentrated under reduced pressure to remove a maximum of the organic solvent. The remaining was lyophilized to afford 23 ($30.0 \mathrm{mg}, 62 \%$ yield) as an off-white solid. ESI MS m/z 367.2, $369.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta \mathrm{ppm} 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.88(\mathrm{~m}, 2 \mathrm{H})$, $7.94(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1$ H), 9.75 (s, 1 H).

3-bromo-N-[5-(methoxymethoxy)-2-methyl-phenyl]quinolin-2-amine (87) and 2-chloro-N-(5-

 (methoxymethoxy)-2-methylphenyl)quinolin-3-amine (86). In a 20 mL microwave vial, 85 (1 g, 4.12 mmol) and 5-(methoxymethoxy)-2-methyl-aniline ($830 \mathrm{mg}, 4.96 \mathrm{mmol}$) were dissolved in toluene (10 mL) at RT followed by the addition of sodium tert-butoxide ($475 \mathrm{mg}, 4.94 \mathrm{mmol}$) , XantPhos (290 mg , $0.501 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(115 \mathrm{mg}, 0.512 \mathrm{mmol})$. The mixture was purged with nitrogen gas for 5 min and the vial was capped. The mixture was heated at $85^{\circ} \mathrm{C}$ for 16 h . The volatiles were evaporated under reduced pressure and the residue was purified by silica gel chromatography eluting with a gradient of 0 to 5% EtOAc in heptane to yield 87 ($465 \mathrm{mg}, 30 \%$ yield). ESI MS m/z $373.2[\mathrm{M}+\mathrm{H}]^{+}$. $1 \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, \mathrm{J}=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$. Then the silica gel purification was continued with a gradient was 5% to 20% EtOAc in heptane to yield $86(1.1 \mathrm{~g}, 66 \%$ yield). ESI MS m/z $329.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 7.83(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.17 (s, 2H), $3.38(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$.2-amino-1-(5-(methoxymethoxy)-2-methylphenyl)-1H-pyrrolo[3,2-b]quinoline-3-carbonitrile (88). In a microwave vial, malononitrile (0.054 g 0.82 mmol) was dissolved in DME (10 mL) at $0^{\circ} \mathrm{C}$ followed by the addition of potassium tert-butoxide ($0.36 \mathrm{~g}, 3.29 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and 86 ($0.18 \mathrm{~g}, 0.55 \mathrm{mmol}$) was added. The vial was capped and heated at $150^{\circ} \mathrm{C}$ for 3 h . After cooling to RT, water (30 mL) was added, and the mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with 70% EtOAc in hexanes to afford 88 ($0.05 \mathrm{~g}, 25 \%$ yield). ESI MS $\mathrm{m} / \mathrm{z} 359.5[\mathrm{M}+\mathrm{H}]^{+}$. 1H NMR (400 MHz, DMSO-d6) $\delta 7.42$ (dd, J = 7.8, 1.2 Hz, 1H), $7.31(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~m}$, 3 H), $7.05(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{dd}, \mathrm{J}=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.34(\mathrm{~s}$, $3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(5-hydroxy-2-methylphenyl)-1H-pyrrolo[3,2-b]quinoline-3-carboxamide (24). $4 \mathrm{M} H \mathrm{HCl}$ in dioxane (2 mL) was added to $88(50 \mathrm{mg}, 0.14 \mathrm{mmol})$ and the mixture was stirred for 3 h at RT. The volatiles were evaporated under reduced pressure and the residue was triturated with n-pentane to obtain impure 2-amino-1-(5-hydroxy-2-methylphenyl)-1H-pyrrolo[3,2-b]quinoline-3-carbonitrile (50 mg , ESI MS m/z $315.2[\mathrm{M}+\mathrm{H}]^{+}$) that was dissolved in sulfuric acid (2 mL) and mixture was stirred for 20 min . The mixture was slowly poured in icy water (30 mL) and the mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by prep HPLC carried out using SUNFIRE C18 ($250 \times 19 \mathrm{~mm}$) $5 \mu \mathrm{~m}$ column and 0.1%

TFA in water and 100% ACN as mobile phase. The combined pure fractions were lyophilized to afford 24 ($3 \mathrm{mg}, 6 \%$ yield). ESI MS m/z $333.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(5-(methoxymethoxy)-2-methylphenyl)-1H-pyrrolo[2,3-b]quinoline-3-carbonitrile (89). In a microwave vial, malononitrile ($14 \mathrm{mg}, 0.21 \mathrm{mmol}$) was dissolved in THF (3 mL) and mixture was cooled to $0^{\circ} \mathrm{C}$ followed by addition of $\mathrm{NaH}(60 \%$ dispersion in oil, $17 \mathrm{mg}, 0.42 \mathrm{mmol}$). The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 30 min and $87(40 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 0.010 \mathrm{mmol})$ were added. The vial was capped and heated at $80^{\circ} \mathrm{C}$ for 4 h , cooled to RT , diluted with water (3 mL) and extracted with EtOAc (10 $\mathrm{mL} \times 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 20 to 50% EtOAc in hexanes to afford 89 (39 mg , 25\% yield). ESI MS m/z $359.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 8.04$ (s, 1H), 7.96 (d, J = 8 Hz, 1H), $7.74(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{dd}, \mathrm{J}=20.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(5-hydroxy-2-methylphenyl)-1H-pyrrolo[2,3-b]quinoline-3-carboxamide (25). 3 M HCl in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added to $89(38 \mathrm{mg}, 0.10 \mathrm{mmol})$ and mixture was stirred for 3 h at RT. The volatiles were evaporated under reduced pressure and the residue was triturated with pentane to afford 2-amino-1-(5-hydroxy-2-methylphenyl)-1H-pyrrolo[2,3-b]quinoline-3-carbonitrile ($32 \mathrm{mg}, 90 \%$ yield, LCMS: m / z $315.2[\mathrm{M}+\mathrm{H}]^{+}$) that was dissolved in sulfuric acid (2 mL) and stirred for 2 h . Saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution was added until slightly basic pH and the mixture was extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 2 to 50% EtOAc in hexanes to provide a residue that was further purified by prep HPLC carried out using X-select Phenyl Hexyl (250 X 19 $\mathrm{mm}) 5 \mu \mathrm{~m}$ column and 0.1% FA in water and 100% ACN as mobile phase. The combined pure fractions were lyophilized to afford 25 ($6 \mathrm{mg}, 17 \%$ yield). ESI MS m/z $333.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.70(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, \mathrm{J}=2.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H})$.

5-bromo-2,3-dichloro-quinoxaline (91). Adapting a known procedure, ${ }^{32}$ a solution of $90(37.50 \mathrm{~g}, 200.5$ mmol) in diethyl oxalate ($205 \mathrm{~g}, 1.40 \mathrm{~mol}, 190 \mathrm{~mL}$) was refluxed for 4 h . The mixture was cooled to RT and EtOAc (500 mL) was added. The precipitate was filtered, washed with EtOAc three times, and dried under vacuum to give as a brown powder that was suspended in thionyl chloride ($623 \mathrm{~g}, 5.24 \mathrm{~mol}, 380$ $\mathrm{mL})$. A catalytic amount of DMF ($2.36 \mathrm{~g}, 32.3 \mathrm{mmol}, 2.5 \mathrm{~mL}$) was added at RT and the mixture was refluxed for 4 h . The volatiles were evaporated under reduced pressure and the thick residue was poured slowly into icy water (500 mL) with vigorous stirring. The precipitate was filtered, dissolved in EtOAc (750 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. 40 g of silica gel was added to the filtrate, and the suspension was evaporated under reduced pressure to afford a brown residue that was purified by silica gel chromatography eluting with a gradient of 0 to 20% EtOAc in hexanes to yield 91 ($35.4 \mathrm{~g}, 64 \%$ yield) as a white solid. ESI MS molecular ion not observed. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $88.24-8.19$ (m, 1H), $8.05-8.00(m, 1 H), 7.81-7.74(m, 1 H)$.

2-amino-8-bromo-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carbonitrile (94)

 and 2-amino-5-bromo-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]quinoxaline-3-carbonitrile (93). Adapting a known procedure, ${ }^{43}$ malononitrile ($4.2 \mathrm{~g}, 63.5 \mathrm{mmol}$) was added portionwise to a vigorously stirred suspension of sodium hydride (60% dispersion in mineral oil, $2.6 \mathrm{~g}, 67 \mathrm{mmol}$) in DME $(150 \mathrm{~mL})$. After the addition, the stirring was continued for 30 min and then $91(8.85 \mathrm{~g}, 32 \mathrm{mmol})$ wasadded. The mixture was stirred at RT for 15 min and then refluxed for 4 h . The volatiles were evaporated under reduced pressure and the resulting residue was poured by portion in cold aqueous 1 M HCl to give a yellow precipitate that was filtered and washed with water to afford a mixture of 2-(5-bromo-3-chloro-quinoxalin-2-yl)malononitrile and 2-(8-bromo-3-chloro-quinoxalin-2-yl)malononitrile ($9.0 \mathrm{~g}, 92 \%$ yield) (in about 1:1 ratio estimated by UPLCMS, LC-MS (ESI) $m / z: 306.9[\mathrm{M} \mathrm{-} \mathrm{H]}$) as a yellow solid that was dissolved in in NMP (50 mL). $92(13.3 \mathrm{~g}, 88 \mathrm{mmol})$ was added and the mixture was heated to $130^{\circ} \mathrm{C}$ for 6 h, cooled to RT , and poured into vigorously stirring aqueous NaHCO_{3} sat. The precipitate was collected by filtration, washed with water, and residual water was removed by azeotropic evaporation with toluene under reduced pressure twice. The brown residue was taken in 550 mL of $15 \% \mathrm{MeOH}$ in DCM and 25 g of silica gel was added. The mixture was evaporated under reduced pressure and the residue was purified by silica gel chromatography eluting with a gradient of 20 to 60% EtOAc in hexanes to provide a mixture of 93 and 94 ($8.9 \mathrm{~g}, 72 \%$ yield) as an orange solid. ESI MS m/z $424.1[\mathrm{M}+\mathrm{H}]^{+}$.

2-amino-5-bromo-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]quinoxaline-3-carboxamide (29) and 2-amino-8-bromo-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide
(26). Following the procedure used to prepare $\mathbf{7 6}$, a solution of 93 and $94(5.0 \mathrm{~g}, 11.8 \mathrm{mmol})$ in sulfuric acid (50 mL) was stirred for 1 h at RT to provide a mixture of 2 -amino-8-bromo-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide and 2-amino-5-bromo-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]quinoxaline-3-carboxamide (5.2 g , quantitative yield, ESI MS m/z 442.0 $[\mathrm{M}+\mathrm{H}]^{+}$) as a yellow solid. Following the procedure used to prepare 3, BBr_{3} (1 M in DCM, $36 \mathrm{~mL}, 36$ mmol) was added to a solution of the yellow solid in DCM (36 mL) and the mixture was stirred for 2 h at RT. The residue was purified by silica gel chromatography eluting with a gradient of 0 to $10 \% \mathrm{MeOH}$ in DCM to obtain 3.75 g of a mixture of the two bromo regiomers that were separated by SFC (Column: ZymorSPHER HA-Dipyridyl, $30 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$; Conditions: Isocratic at $50 \% \mathrm{MeOH}+0.1 \%$ Formic Acid with $50 \% \mathrm{CO}_{2}$; Flow Rate: $70 \mathrm{~mL} / \mathrm{min}$; outlet pressure 100 bar) providing 29 (RT $4.33 \mathrm{~min}, 1.14 \mathrm{~g}, 46 \%$ yield) as a white solid. ESI MS m/z $428.0[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.61$ ($\mathrm{s}, 1 \mathrm{H}$), 8.12 (m, 2 H), 7.89 (dd, J = 7.6, 1.3 Hz, 1H), 7.82 (d, J = $3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (dd, J = 8.3, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48 (d, J = 3.3 Hz , $1 \mathrm{H}), 7.33(\mathrm{dd}, \mathrm{J}=8.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dt}, \mathrm{J}=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.72$ ($\mathrm{s}, 3 \mathrm{H}$); and 26 (RT $4.99 \mathrm{~min}, 520 \mathrm{mg}, 22 \%$ yield) as a white solid. ESI MS $\mathrm{m} / \mathrm{z} 428.0[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.68$ (s, 1H), 8.12 (s, 2H), 7.96 (dd, J = 8.3, 1.3 Hz, 1H), 7.80 (dd, J = 7.6, 1.3 Hz, 1 H), $7.70(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, \mathrm{J}=8.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dt}, \mathrm{J}=8.3,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H})$. The position of the bromine in 29 was confirmed by Xray structure of 39 .

6-bromo-2,3-dichloro-quinoxaline (96). Adapting a known procedure, ${ }^{32}$ a solution of 95 ($12.5 \mathrm{~g}, 66.8$ mmol) in diethyl oxalate ($70.2 \mathrm{~g}, 480 \mathrm{mmol}, 65 \mathrm{~mL}$) was refluxed for 16 h . The mixture was cooled to RT and EtOAc (175 mL) was added. The precipitate was filtered, washed with EtOAc three times, and dried under vacuum to give a brown powder that was suspended in thionyl chloride ($81.5 \mathrm{~g}, 685 \mathrm{mmol}, 50$ mL). A catalytic amount of DMF ($472 \mathrm{mg}, 6.46 \mathrm{mmol}, 0.5 \mathrm{~mL}$) was added at RT and the mixture was refluxed for 8 h . The volatiles were evaporated under reduced pressure and the thick residue was poured slowly into icy water (200 mL) with vigorous stirring. The precipitate was filtered and dried under vacuum to yield 96 ($35.4 \mathrm{~g}, 64 \%$ yield) as an orange solid. ESI MS molecular ion not observed. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$) $\delta 8.29$ (dd, J = 2.1, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.00(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.97(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 1 \mathrm{H}$).

2-amino-6-bromo-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]quinoxaline-3-carbonitrile (97) and 2-amino-7-bromo-1-(3-methoxy-2,6-dimethylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carbonitrile
(98). Adapting a known procedure, ${ }^{43}$ malononitrile ($475 \mathrm{mg}, 7.19 \mathrm{mmol}$) was added portionwise to a vigorously stirred suspension of sodium hydride (60% dispersion in mineral oil, $285 \mathrm{mg}, 7.44 \mathrm{mmol}$) in DME (30 mL). After the addition, the stirring was continued for 30 min and then $96(1.0 \mathrm{~g}, 3.60 \mathrm{mmol})$ was added. The mixture was stirred at RT for 15 min and then refluxed for 2 h . The volatiles were evaporated under reduced pressure and the resulting residue was poured by portions in cold aqueous 1 M HCl to give a brown mixture that was extracted twice with EtOAc, the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The brown residue was dissolved in 10% MeOH in DCM and 4 g of silica gel was added. The suspension was evaporated under reduced pressure and the residue was purified by silica gel chromatography eluting with a gradient of 0 to $10 \% \mathrm{MeOH}$ in DCM to provide a mixture of 97 and 98 (750 mg , 68\% yield, ESI MS m/z $306.9[\mathrm{M} \mathrm{-} \mathrm{H}]^{-}$) as one major and one minor regiomer (estimated by UPLCMS) as a yellow solid that was dissolved in NMP (5 mL). 92 (1.1 $\mathrm{g}, 7.3 \mathrm{mmol}$) was added and the mixture was heated to $130^{\circ} \mathrm{C}$ for 3 h , cooled to RT , and poured into vigorously stirring aqueous NaHCO_{3} sat. The precipitate was collected by filtration, washed with water, and residual water was removed by azeotropic evaporation with toluene under reduced pressure twice. The brown residue was taken in 250 mL of $15 \% \mathrm{MeOH}$ in DCM and 5 g of silica gel was added. The suspension was evaporated under reduced pressure and the residue was purified by silica gel chromatography eluting with a gradient of 20 to 60% EtOAc in hexanes to provide a mixture of 97 and 98 ($675 \mathrm{mg}, 72 \%$ yield) as one major and one minor regiomer (estimated by UPLCMS) as an orange solid. ESI MS m/z $424.1[\mathrm{M}+\mathrm{H}]^{+}$.

2-amino-7-bromo-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]quinoxaline-3-carboxamide (27) and 2-amino-6-bromo-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (28). Following the procedure used to prepare 76, a solution of a mixture of 93 and 94 ($450 \mathrm{mg}, 1.07$ mmol) in sulfuric acid (5 mL) was stirred for 1 h at RT providing a mixture of 2-amino-6-bromo-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]quinoxaline-3-carboxamide and 2-amino-7-bromo-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]quinoxaline-3-carboxamide ($450 \mathrm{mg}, 96 \%$ yield, ESI MS m/z $442.1[\mathrm{M}+\mathrm{H}]^{+}$) as one major and one minor regiomer (estimated by UPLCMS) as a yellow solid. Following the procedure used to prepare $3, \mathrm{BBr}_{3}(1 \mathrm{M}$ in $\mathrm{DCM}, 3.4 \mathrm{~mL}, 3.4 \mathrm{mmol})$ was added to a solution of the yellow solid in DCM (3.4 mL) and the mixture was stirred for 2 h at RT . The residue was purified by silica gel chromatography eluting with a gradient of 0 to $10 \% \mathrm{MeOH}$ in DCM to obtain 450 mg of a mixture of the bromo regiomers as one major and one minor regiomer (estimated by UPLCMS) that were separated by SFC (Column: Chiral Technologies OJ $10 \times 250 \mathrm{~mm}$, 5um; Conditions: Isocratic 40\% ACN+EtOH 1:1, $10 \mathrm{~mL} / \mathrm{min} 100$ Bar) providing 27 (RT $3.30 \mathrm{~min}, 45 \mathrm{mg}, 10 \%$ yield) as a white solid. ESI MS $\mathrm{m} / \mathrm{z} 426.1\left[\mathrm{M}+\mathrm{H}^{+} ;{ }^{1} \mathrm{H}\right.$ NMR (400 MHz, DMSO-d6) $\delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dt}, \mathrm{J}=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$; and 28 (RT $6.56 \mathrm{~min}, 250 \mathrm{mg}, 56 \%$ yield) as a white solid. ESI MS m/z $426.1[\mathrm{M}+\mathrm{H}]^{+}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 8.09$ (d, J = 2.3 Hz , $3 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dq}, \mathrm{J}=4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, \mathrm{J}=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.32(\mathrm{~m}$, $1 \mathrm{H}), 7.06(\mathrm{dt}, \mathrm{J}=8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$. The position of the bromine in $\mathbf{2 8}$ was confirmed by Xray structure.

2-amino-8-cyano-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3-carboxamide (30). Copper (I) cyanide ($32 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added to a solution of 26 ($50 \mathrm{mg}, 0.12 \mathrm{mmol}$) in DMF (1 mL) and the suspension was stirred at $80^{\circ} \mathrm{C}$ for 8 h . The mixture was filtered through a 0.45 micron PTFE filter and purified by preparative HPLC ($30-80 \%$ MeCN in water, 0.1% formic acid modifier). The
recovered tubes were combined and lyophilized to provide 26 ($16 \mathrm{mg}, 36 \%$ yield). ESI MS m/z 373.2 [$\mathrm{M}+$ $\mathrm{H}]^{+}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.64$ (s, 1H), $8.44-8.03$ (m, 3H), 7.96 (dd, J = 7.3, 1.3 Hz, 1H), $7.79-$ $7.32(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(3-hydroxy-2,6-dimethyl-phenyl)-8-(2-methylpyrazol-3-yl)pyrrolo[3,2-b]quinoxaline-3carboxamide (31). $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{mg}, 0.007 \mathrm{mmol})$ was added to $26(30 \mathrm{mg}, 0.070 \mathrm{mmol})$ and 1-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyrazole ($21 \mathrm{mg}, 0.105 \mathrm{mmol}$) in DMF (1 mL) and aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution ($2 \mathrm{M}, 0.21 \mathrm{~mL}, 0.21 \mathrm{mmol}$). After stirring at $80^{\circ} \mathrm{C}$ for 2 h , the mixture was cooled to RT, filtered through a 0.45 micron PTFE filter and purified by prep HPLC (gradient of 20 to $80 \% \mathrm{MeCN}$ in water, 0.1% formic acid modifier). The recovered tubes were combined and lyophilized to provide 31 ($16 \mathrm{mg}, 53 \%$ yield) as a pale-yellow solid. ESI MS m/z $428.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) δ $9.59(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{dd}, \mathrm{J}=8.3,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, \mathrm{J}=8.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, \mathrm{J}$ $=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.23(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-8-(cyclopenten-1-yl)-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3carboxamide (32). Following the procedure used to prepare 31, using 26 and 2-(cyclopenten-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane afforded 32 ($21 \mathrm{mg}, 70 \%$ yield) as a pale-yellow solid. ESI MS $\mathrm{m} / \mathrm{z} 414.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 2 \mathrm{H}), 7.79(\mathrm{dd}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, \mathrm{J}=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}$, $\mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~s}$, $3 \mathrm{H}), 1.75$ ($\mathrm{m}, 5 \mathrm{H}$).

2-amino-6-cyano-1-(3-hydroxy-2,6-dimethylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carboxamide (33). Following the procedure used to prepare $\mathbf{3 0}$, cyanation of $\mathbf{2 8}$ yielded $\mathbf{3 3}$ ($16 \mathrm{mg}, \mathbf{3 6 \%}$ yield) as a paleyellow solid. ESI MS m/z $373.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.63$ ($\mathrm{s}, 1 \mathrm{H}$), 8.42 (d, J = 1.8 Hz , 1 H), $8.39-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, \mathrm{J}=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-7-(3,6-dihydro-2H-pyran-4-yl)-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3carboxamide (34). Following the procedure used to prepare 31, using 28 and (2-methylpyrazol-3yl)boronic acid afforded $\mathbf{3 4}\left(6 \mathrm{mg}, 6 \%\right.$ yield) as a pale yellow solid. ESI MS m/z $428.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 8.18-7.93(\mathrm{~m}, 3 \mathrm{H}), 7.83(\mathrm{dd}, \mathrm{J}=8.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}$, 1 H), 7.57 (dd, J = 8.6, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.47(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.39(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dt}, \mathrm{J}=8.3,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-7-(cyclopenten-1-yl)-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[3,2-b]quinoxaline-3carboxamide (35). Following the procedure used to prepare 31, using 28 and 2-(cyclopenten-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane afforded $\mathbf{3 5}$ ($41 \mathrm{mg}, 38 \%$ yield) as a pale-yellow solid. ESI MS m/z $414.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 8.11$ - 7.84 (m, 2H), 7.81 (m, 1H), 7.75 $7.68(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ $(\mathrm{m}, 1 \mathrm{H}), 2.82-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{p}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-5-cyano-1-(3-hydroxy-2,6-dimethylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carboxamide (36). Following the procedure used to prepare 30, cyanation of 29 yielded $\mathbf{3 6}$ ($12 \mathrm{mg}, 26 \%$ yield) as a paleyellow solid. ESI MS m/z $373.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 2 \mathrm{H}), 8.18$ -
$8.02(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, \mathrm{J}=8.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(3-hydroxy-2,6-dimethyl-phenyl)-5-(2-methylpyrazol-3-yl)pyrrolo[2,3-b]quinoxaline-3carboxamide (37). Following the procedure used to prepare 31, using 29 and (2-methylpyrazol-3yl)boronic acid afforded 37 ($10 \mathrm{mg}, 20 \%$ yield) as a pale yellow solid. ESI MS m/z $428.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{dd}, \mathrm{J}=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.64-$ $7.31(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}$, $3 \mathrm{H})$.

2-amino-5-(cyclopenten-1-yl)-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]quinoxaline-3carboxamide (38). Following the procedure used to prepare 31, using 29 and 2-(cyclopenten-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane afforded 38 ($25 \mathrm{mg}, 51 \%$ yield) as a pale yellow solid. ESI MS $\mathrm{m} / \mathrm{z} 414.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$) $\delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.73-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.47$ (dd, J = 7.3, 1.6 Hz, 1H), $7.43-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~m}, 1 \mathrm{H})$, $2.91(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$.
(S)-2-amino-5-bromo-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]quinoxaline-3-carboxamide (39) and (R)-2-amino-5-bromo-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]quinoxaline-3-carboxamide (40). SFC separation of 29 (150 mg) using Mettler Toledo Minigram instrument equipped with a Chiral Technologies IC, $10 \times 250 \mathrm{~mm}$, $5 \mu \mathrm{~m}$ column eluting with $35 \% \mathrm{MeOH}$ containing 10 mM ammonium formate with a flow rate of $10 \mathrm{~mL} / \mathrm{min}$ yielded 40 (RT $6.00 \mathrm{~min}, 68 \mathrm{mg}, 45 \%$ yield) as a white solid. ESI MS m/z $427.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.73-7.57(\mathrm{~m}, 2 \mathrm{H})$, 7.47 (dd, J = 7.3, 1.6 Hz, 1H), $7.43-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~m}$, $1 \mathrm{H}), 2.91(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 100 \% \mathrm{ee},[\alpha]^{23.4} \mathrm{~d}-74.0(c 0.1$, MeOH); and 39 (RT $8.31 \mathrm{~min}, 60 \mathrm{mg}, 40 \%$ yield) as a white solid. ESI MS m/z 427.3 [$\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 2 \mathrm{H}), 7.73-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dd}, \mathrm{J}=7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.26$ $(\mathrm{m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}$, $2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .100 \% \mathrm{ee},[\alpha]^{23.4} \mathrm{D}+80.0(c 0.1, \mathrm{MeOH})$. The position of the bromine in 39 was confirmed by Xray structure.
(S)-2-amino-1-(5-hydroxy-2-methylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carboxamide (41) and (R)-2-amino-1-(5-hydroxy-2-methylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carboxamide (42). SFC separation of $1(205 \mathrm{mg})$ using Mettler Toledo Minigram instrument equipped with a Chiral Technologies IC, $10 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with $45 \% \mathrm{MeOH}$ with a flow rate of $10 \mathrm{~mL} / \mathrm{min}$ yielded 42 (RT 3.98 $\mathrm{min}, 72 \mathrm{mg}, 35 \%$ yield) as a white solid. MS m/z $334.3[\mathrm{M}+\mathrm{H}]^{+},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.64$ (s, $1 \mathrm{H}), 7.98(\mathrm{~s}, 3 \mathrm{H}), 7.96-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.11$ ($\mathrm{dt}, J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 99 \% \mathrm{ee},[\alpha]^{24.9} \mathrm{D}-90.0(c 0.1$, MeOH); and 41 (RT $6.81 \mathrm{~min}, 71 \mathrm{mg}, 35 \%$ yield) as a white solid. $\mathrm{MS} \mathrm{m} / \mathrm{z} 334.3[\mathrm{M}+\mathrm{H}]^{+},{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{brs}, 3 \mathrm{H}), 7.97-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~m}, 1 \mathrm{H}), 7.46$ (m, 1H), 7.35 (br s, 1H), 7.11 (dt, J = 8.3, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$, $96 \% \mathrm{ee},[\alpha]^{25.1} \mathrm{D}+100.0$ (c 0.1, MeOH).
(S)-1-(3-hydroxy-2,6-dimethylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carboxamide (43) and (R)-1-(3-hydroxy-2,6-dimethylphenyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carboxamide (44). SFC separation of 22 $(180 \mathrm{mg})$ using Mettler Toledo Minigram instrument equipped with a Chiral Technologies IA, 10×250
$\mathrm{mm}, 5 \mu \mathrm{~m}$ column eluting with 40% isopropanol containing 10 mM ammonium formate with a flow rate of $10 \mathrm{~mL} / \mathrm{min}$ yielded 44 (RT $3.06 \mathrm{~min}, 70 \mathrm{mg}, 39 \%$ yield) as a white solid. $\mathrm{MS} \mathrm{m} / \mathrm{z} 333.4[\mathrm{M}+\mathrm{H}]^{+},{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 9.67(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.37-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.11-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.91-$ $7.73(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{dt}, J=8.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 100 \% \mathrm{ee}$, $[\alpha]^{25.3}{ }_{\mathrm{D}}-92.0(c 0.1, \mathrm{MeOH})$; and 43 (RT $5.38 \mathrm{~min}, 70 \mathrm{mg}, 39 \%$ yield) as a white solid. $\mathrm{MS} \mathrm{m} / \mathrm{z} 333.4[\mathrm{M}+$ $\mathrm{H}]^{+},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 9.67(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.37-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.11-8.04(\mathrm{~m}, 2 \mathrm{H})$, $7.91-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{dt}, J=8.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$. $100 \% \mathrm{ee},[\alpha]^{25.5}{ }_{\mathrm{D}}+99.0(c 0.1, \mathrm{MeOH})$.

2-(3-chloropyrazin-2-yl)propanedinitrile (101). Malononitrile ($26.6 \mathrm{~g}, 403 \mathrm{mmol}$) was added dropwise with vigorous stirring to a suspension of $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $16 \mathrm{~g}, 418 \mathrm{mmol})$ in DME $(600 \mathrm{~mL})$. The mixture was stirred for 30 min and then $99(30 \mathrm{~g}, 201 \mathrm{mmol})$ was added. The mixture was stirred for 30 min and then heated to reflux for 1 h . The volatiles were evaporated under reduced pressure and the residue was treated with cold aqueous HCl 1 M to give a yellow solid that was recovered by filtration, washed with water and a minimum of cold ethanol to afford 101 (34.2 g, 95\% yield) as a yellow solid. ESI MS m/z $177.0[\mathrm{M}-\mathrm{H}]^{-} .1 \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta 7.85$ (d, J = 3.2 Hz , 1H), 7.56 (d, J = $3.2 \mathrm{~Hz}, 1 \mathrm{H}$).

6-amino-5-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-7-carbonitrile (103). A microwave vial containing $101(1.00 \mathrm{~g}, 5.60 \mathrm{mmol}), 92(2.54 \mathrm{~g}, 16.8 \mathrm{mmol})$ and NMP (10 mL) was capped, stirred at $150{ }^{\circ} \mathrm{C}$ for 1 h then at $200^{\circ} \mathrm{C}$ for 8 h . The mixture was cooled to RT, poured into saturated aqueous NaHCO_{3} and diluted with water and EtOAc. The mixture was filtered through a pad of Celite and the layers were separated. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, adsorbed on silica gel and purified by silica gel chromatography eluting with a gradient of 0 to 100% EtOAc in hexanes. The appropriate fractions were combined, concentrated under reduced pressure. The residue was purified again by silica gel chromatography eluting with a gradient of 0 to $20 \% \mathrm{MeOH}$ in DCM to provide 103 ($346 \mathrm{mg}, 21 \%$ yield) as a beige solid. ESI MS m/z $294.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.13$ ($\mathrm{d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.78(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 2 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ $(\mathrm{s}, 3 \mathrm{H}), 1.80(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$.

6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-7-carboxamide (106). Following the procedure used to prepare 76, a solution of $103(346 \mathrm{mg}, 1.18 \mathrm{mmol})$ in sulfuric acid (4 mL) was stirred at RT for 1 h providing 6-amino-5-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-7carboxamide ($295 \mathrm{mg}, 80 \%$ yield, ESI MS m/z $312.3[\mathrm{M}+\mathrm{H}]^{+}$) as a beige solid. Following the procedure used to prepare 3, $\mathrm{BBr}_{3}(1 \mathrm{M}$ in $\mathrm{DCM}, 2.8 \mathrm{~mL}, 2.8 \mathrm{mmol})$ was added to a solution of the beige solid in DCM (2.8 mL) and the mixture was stirred for 2 h at RT . The residue was triturated with saturated NaHCO_{3}. The solid was collected by filtration on Buchner, washed with water, air-dried, affording 106 ($214 \mathrm{mg}, 76 \%$ yield) as a light-yellow solid. ESI MS m/z $299.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $9.60(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 7.21(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$.
(S)-6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-7-carboxamide (45). SFC separation of $106(214 \mathrm{mg})$ using Mettler Toledo Minigram instrument equipped with a Phenomenex Lux Cellulose-2, $10 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with $55 \% 1: 1 \mathrm{ACN}$:EtOH with a flow rate of 10 $\mathrm{mL} / \mathrm{min}$ yielded 45 (RT $3.93 \mathrm{~min}, 76 \mathrm{mg}, 36 \%$ yield) as a light beige fluffy solid. ESI MS m/z 299.3 [$\mathrm{M}+$ $\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{br}$
m, 2H), 7.21 (br m, 1H), $7.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 100 \% \mathrm{ee}$, $[\alpha]^{26.5}+35.0(c 0.1, \mathrm{MeOH})$. The distomer (RT 4.52 min$)$ was not characterized.

2-(3-chloro-5,6-dimethyl-pyrazin-2-yl)propanedinitrile (102). To a suspension of NaH (60% dispersion in mineral oil, $3.54 \mathrm{~g}, 92 \mathrm{mmol}$, $)$ in THF (100 mL) at $0^{\circ} \mathrm{C}$ was added malononitrile ($3.99 \mathrm{~g}, 60.4 \mathrm{mmol}$) in THF (30 mL) dropwise via an addition funnel. The cold bath was removed at the end of the addition and the resulting mixture was allowed to stir for 45 min at $\mathrm{RT} .100(5.49 \mathrm{~g}, 31.0 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.76 \mathrm{~g}$, 1.52 mmol) were added, and the mixture was refluxed for 3.25 h . After cooling to RT, it was poured into 200 mL of cold 1 N HCl and extracted with DCM (3x). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was adsorbed on silica using DCM/THF and purified by silica gel chromatography eluting with a gradient of 0 to 100% EtOAc in hexanes. Mix fractions were re-purified by a second silica gel chromatography using same conditions. Clean fractions from both columns were combined, concentrated under reduced pressure, and dried under vacuum to afford 102 ($5.0 \mathrm{~g}, 78 \%$ yield) as an orange solid. ESI MS m/z 205.0 [M - H] ${ }^{-1}{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 5.44(\mathrm{~s}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$.

6-amino-5-(3-methoxy-2,6-dimethyl-phenyl)-2,3-dimethyl-pyrrolo[2,3-b]pyrazine-7-carbonitrile (104). A microwave vial was charged with 102 ($1.01 \mathrm{~g}, 4.9 \mathrm{mmol}), 92(2.2 \mathrm{~g}, 14.6 \mathrm{mmol})$, potassium tertbutoxide ($1.1 \mathrm{~g}, 9.8 \mathrm{mmol}$) and Pd-PEPPSITM - SIPr catalyst ($171 \mathrm{mg}, 0.25 \mathrm{mmol}$), flushed with nitrogen three times, then dry NMP (10 mL) was added, flushed again with nitrogen, capped and submitted to microwave irradiation $\left(100^{\circ} \mathrm{C}\right)$ for 30 min . The vial was diluted with EtOAc , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and water. The layers were separated, and the aqueous layer was extracted twice with EtOAc. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 100% EtOAc in heptane to provide 104 (0.85 g , 54\% yield) as a yellow solid. ESI MS m/z 322.3 [M + H] . ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.20$ (dt, J = 8.5, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.96 (d, J = 8.4 Hz, 1H), 4.96 (br s, 2H), $3.87(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$.

6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)-2,3-dimethyl-pyrrolo[2,3-b]pyrazine-7-carboxamide (107). Following the procedure used to prepare 76, a solution of 104 ($7.11 \mathrm{~g}, 22.1 \mathrm{mmol}$) in sulfuric acid (70 mL) was stirred at RT for 45 min providing 6-amino-5-(3-methoxy-2,6-dimethyl-phenyl)-2,3-dimethyl-pyrrolo[2,3-b]pyrazine-7-carboxamide (7.5 g , quantitative yield) as a yellow solid. ESI MS m/z 341.3 [$\mathrm{M}+$ $\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.04(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~s}$, $3 H), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$. Following the procedure used to prepare $3, \mathrm{BBr}_{3}$ ($6.4 \mathrm{~mL}, 66.3 \mathrm{mmol}$) was added to a solution of the yellow solid in DCM (132 mL) and the mixture was stirred for 70 min at RT. The residue was triturated with saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The solid was collected by filtration, washed with water, air-dried, then adsorbed on silica gel and purified by silica gel chromatography eluting with a gradient of 0 to $20 \% \mathrm{MeOH}$ in DCM. Mixed fractions were combined and re-purified by silica gel chromatography using the same conditions. The clean material from both columns was combined, concentrated then dried under vacuum, affording affording 107 (5.3 g, 74\% yield). ESI MS m/z $327.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.18$ $7.02(\mathrm{~m}, 4 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~s}$, $3 \mathrm{H})$.
(S)-6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)-2,3-dimethyl-pyrrolo[2,3-b]pyrazine-7-carboxamide
(46). SFC separation of $107(5.40 \mathrm{~g})$ using Waters Prep 100 SFC-MS instrument equipped with a

Phenomenex Lux Cellulose-2, $30 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with 55% 1:1 ACN:EtOH with a flow rate of $70 \mathrm{~mL} / \mathrm{min}$ yielded $\mathbf{4 6}$ (RT $4.07 \mathrm{~min}, 1.31 \mathrm{~g}, 20 \%$ yield) as a light beige fluffy solid. ESI MS m/z $327.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.09(\mathrm{br} \mathrm{s}$, 2 H), 7.06 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.93(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$. $100 \% e \mathrm{e},[\alpha]^{26.4}{ }_{\mathrm{D}}+54.0(c 0.1, \mathrm{MeOH})$. The distomer (RT 4.81 min) was not characterized.

6-amino-3-bromo-5-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-7-carbonitrile (105). To a solution of $103(600 \mathrm{mg}, 2.05 \mathrm{mmol})$ in DMF (10 mL) was added NBS ($436 \mathrm{mg}, 2.45 \mathrm{mmol}$). The mixture was stirred for 10 min , diluted with water, stirred for 20 min then filtered. The solid was washed with water, dried under vacuum and purified by silica gel chromatography eluting with a gradient of 0 to 100% EtOAc in hexanes to provide 105 ($350 \mathrm{mg}, \mathbf{4 6 \%}$ yield). ESI MS m/z 374.3 [$\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 2 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 1.77 ($\mathrm{s}, 3 \mathrm{H}$), $1.69(\mathrm{~s}, 3 \mathrm{H})$.

6-amino-3-bromo-5-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-7-carboxamide (108). Following the procedure used to prepare $\mathbf{7}$, a solution of $\mathbf{1 0 5}$ ($350 \mathrm{mg}, 0.94 \mathrm{mmol}$) in sulfuric acid (1 mL) was stirred at RT for 1 h . The solid recovered by filtration was purified by silica gel purification eluting with a gradient of 0 to $20 \% \mathrm{MeOH}$ in DCM to provide 6 -amino-2-bromo-5-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-7-carboxamide ($300 \mathrm{mg}, 82 \%$ yield) as a yellow solid. ESI MS m/z 392.0 [M $+\mathrm{H}]^{+}$. Following the procedure used to prepare $\mathbf{3}, \mathrm{BBr}_{3}(1 \mathrm{M}$ in $\mathrm{DCM}, 2.3 \mathrm{~mL}, 2.3 \mathrm{mmol})$ was added to a solution of the yellow solid in DCM (2.3 mL) and the mixture was stirred for 2 h at RT . The residue was purified by silica gel chromatography eluting with a gradient of 0 to $20 \% \mathrm{MeOH}$ in DCM affording 108 ($263 \mathrm{mg}, 91 \%$ yield). ESI MS m/z 378.3 [$\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}$, 2 H), $7.31(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H})$.

6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)-3-methyl-pyrrolo[2,3-b]pyrazine-7-carboxamide (109). To a solution of methyl magnesium chloride ($3 \mathrm{M}, 0.3 \mathrm{~mL}, 0.9 \mathrm{mmol}$) in THF (1.5 mL) in a MW vial was added $\mathrm{ZnCl}_{2}(0.5 \mathrm{M}$ in THF, $1.8 \mathrm{~mL}, 0.9 \mathrm{mmol})$ dropwise at RT . After addition, the resulting white suspension was stirred for 35 min at RT. $108(69 \mathrm{mg}, 0.180 \mathrm{mmol})$ in THF (1 mL) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25 \mathrm{mg}$, 0.02 mmol) were added. The vial was flushed with nitrogen, capped, transferred to a preheated $\left(70^{\circ} \mathrm{C}\right)$ heat block and stirred at this temperature for 18 h . The mixture was cooled to RT, diluted with 0.5 N HCl $(3 \mathrm{~mL})$, and extracted twice with EtOAc. Combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by preparative HPLC using a gradient of 25 to 55% ACN in water (both containing 0.1% formic acid) over 12 min at a flow of $40 \mathrm{~mL} / \mathrm{min}$ on a Phenomenex Gemini ${ }^{\oplus} 5 \mu \mathrm{~m}$ NX-C18 110 $150 \times 21.2 \mathrm{~mm}$ column. The recovered tubes were combined and lyophilized to yield $\mathbf{1 0 9}\left(60 \mathrm{mg}\right.$, 93% yield) as a white fluffy solid. ESI MS m/z $312.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 9.62(\mathrm{brs}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.23(\mathrm{brs}, 2 \mathrm{H}), 7.16$ (br s, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$.
(S)-6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)-3-methyl-pyrrolo[2,3-b]pyrazine-7-carboxamide (47). SFC separation of $109(42 \mathrm{mg})$ using Mettler Toledo Minigram instrument equipped with a Phenomenex Lux Cellulose- $2,10 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with 50% isopropanol with a flow rate of $10 \mathrm{~mL} / \mathrm{min}$ yielded 47 (RT $3.81 \mathrm{~min}, 8,9 \mathrm{mg}, 21 \%$ yield) as a white fluffy solid. ESI MS m/z $312.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.23(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.16$ (br s, $1 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$. $99 \% e \mathrm{e},[\alpha]^{26.3_{\mathrm{D}}}+55.0$ ($c 0.1, \mathrm{MeOH}$). The distomer (RT 4.38 min) was not characterized.

5-bromo-6-chloro-pyrazin-2-ol (111). Sodium nitrite ($40 \mathrm{~g}, 580 \mathrm{mmol}$) was added portion wise to a solution of $\mathbf{1 1 0}(110 \mathrm{~g}, 528 \mathrm{mmol})$ in sulfuric acid $(770 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under mechanical stirring. The resulting thick mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and was then slowly poured in 6 L of cold water containing crushed ice maintaining temperature below $30^{\circ} \mathrm{C}$. The resulting precipitate was collected by filtration, washed with water then dried by azeotropic evaporation with toluene under reduced pressure twice to give 111 (104.6 g , 95\% yield) as a pale beige solid. ESI MS m/z $208.9[\mathrm{M}-\mathrm{H}] .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.76$ (br s, 1H), 7.97 (s, 1H).

5-benzyloxy-2-bromo-3-chloro-pyrazine (112). Benzyl bromide ($48 \mathrm{~mL}, 404 \mathrm{mmol}$) was added dropwise to a suspension of $111(80 \mathrm{~g}, 382 \mathrm{mmol})$ and silver carbonate ($216 \mathrm{~g}, 778 \mathrm{mmol}$) in toluene (2 L). After stirring for 3 h , the suspension was filtered on Celite. The filtrate was evaporated under reduced pressure to provide a yellow oil that was dissolved in warm EtOH. After slow addition of water under sonication, the precipitate was collected by filtration to provide $112(85.2 \mathrm{~g}, 75 \%$ yield) as a beige solid. ESI MS molecular ion not observed. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.44-7.33(\mathrm{~m}, 3 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H})$.

5-benzyloxy-3-chloro-N-(3-methoxy-2,6-dimethyl-phenyl)pyrazin-2-amine (113). To a solution of 112 ($90 \mathrm{~g}, 300 \mathrm{mmol}$) in toluene (1350 mL) were added potassium tert-butoxide ($45.0 \mathrm{~g}, 401 \mathrm{mmol}$), $92(48 \mathrm{~g}$, $318 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(14.4 \mathrm{~g}, 15.7 \mathrm{mmol})$ and Xantphos ($\left.18.0 \mathrm{~g}, 31 \mathrm{mmol}\right)$. The mixture was degassed under vacuum and back filled with nitrogen. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 45 min and then concentrated under reduced pressure. The residue was dissolved in DCM (500 mL), 200 g of silica gel was added, and the suspension was evaporated to under reduced pressure. The residue was purified on a pad of silica gel (1 kg of silica gel) eluting with a gradient of 0 to $15 \% \mathrm{EtOAc}$ in hexanes to provide 113 (108.4 g , 98% yield) as a pale beige solid. ESI MS m/z $370.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, Chloroform-d) $\delta 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H})$.

6-amino-2-benzyloxy-5-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-7-carbonitrile (114).

 To a solution of malononitrile $(42.1 \mathrm{~g}, 637 \mathrm{mmol})$ in DME $(1.8 \mathrm{~L})$ was added portion wise $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $25.0 \mathrm{~g}, 628 \mathrm{mmol}$). The resulting mixture was stirred for 30 min , then 113 (115 $\mathrm{g}, 311 \mathrm{mmol})$ in $\operatorname{DME}(500 \mathrm{~mL})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17.7 \mathrm{~g}, 15.3 \mathrm{mmol})$ were added. The resulting mixture was stirred at reflux for 2 h , and then concentrated under reduced pressure to $\sim 1 \mathrm{~L}$. Water (1 L) was added slowly and the resulting biphasic mixture was stirred for 18 h with a mechanical stirrer. The resulting solid was recovered by filtration, washed with water, and dried under vacuum. Trituration in DCM provided the first batch of the desired material as a beige solid isolated by filtration. The mother liquor was concentrated under reduced pressure, and the residue was purified by silica gel chromatography eluting with a gradient of 10 to 60% EtOAc in hexanes to provide a second batch of the desired material. The two batches were combined to provide $114(103.1 \mathrm{~g}, 83 \%$ yield) as a beige solid. ESI MS m/z $400.4[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.47$ (m, 2H), 7.42 $7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H})$.6-amino-2-hydroxy-5-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-7-carboxamide (115). A solution of $114(83 \mathrm{~g}, 208 \mathrm{mmol})$ in sulfuric acid $(550 \mathrm{~mL})$ was stirred with a mechanical stirrer for 18 h . The thick brown mixture was poured slowly in icy water (2 L) in an ice bath maintaining internal temperature below $20^{\circ} \mathrm{C}$ while stirred with a mechanical stirrer. A pale-yellow solid precipitated out.

The resulting suspension in an ice bath was slowly neutralized to basic pH with aqueous ammonium hydroxide (28% solution; 850 mL) while maintaining the internal temperature below $40^{\circ} \mathrm{C}$. The precipitate was collected by filtration, washed with water, and dried under vacuum to provide 115 (65.1 g, 96% yield) as a pale beige solid. ESI MS m/z $328.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.61$ (s, 1 H), $7.24(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.75(\mathrm{~s}$, $3 H), 1.69(\mathrm{~s}, 3 \mathrm{H})$.
[6-amino-7-carbamoyl-5-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazin-2-yl] trifluoromethanesulfonate (116). To a solution of $\mathbf{1 1 5}(30.5 \mathrm{~g}, 93.2 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(34.9 \mathrm{~g}, 107$ $\mathrm{mmol})$ in DMF (300 mL) was added 1,1,1-trifluoro-N-phenyl-N-
(trifluoromethylsulfonyl)methanesulfonamide ($36.6 \mathrm{~g}, 103 \mathrm{mmol}$). The mixture was stirred for 1 h , diluted with water $(900 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 300 \mathrm{~mL})$. The combined organic extracts were washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 20 to 100% EtOAc in hexanes to provide 116 ($28 \mathrm{~g}, 65 \%$ yield) as an off-white solid. ESI MS m/z $460.4[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.22 \mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$.
[6-amino-7-carbamoyl-5-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazin-2-yl]
trifluoromethanesulfonate (117). Following the procedure used to prepare 3, $\mathrm{BBr}_{3}(1 \mathrm{M}$ in $\mathrm{DCM}, 9.3 \mathrm{~mL}$, $9.3 \mathrm{mmol})$ was added to a solution of $116(1.07 \mathrm{~g}, 2.33 \mathrm{mmol})$ in DCM (11 mL) and the mixture was stirred for 2 h at RT. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 20\% MeOH in DCM to provide 117 ($744 \mathrm{mg}, 72 \%$ yield) as an off-white solid. ESI MS m/z 446.2 [$\mathrm{M}+\mathrm{H}]^{+}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$.

6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)-2-methyl-pyrrolo[2,3-b]pyrazine-7-carboxamide (118). To a solution of methyl magnesium chloride ($3 \mathrm{M}, 1.08 \mathrm{~mL}, 3.24 \mathrm{mmol}$) in THF (9 mL) in a MW vial was added $\mathrm{ZnCl} 2(0.5 \mathrm{M}$ in THF, $6.60 \mathrm{~mL}, 3,3 \mathrm{mmol}$) dropwise at RT . After addition, the resulting white suspension was stirred at RT for 50 min . Then to the zincate solution was added 117 ($300 \mathrm{mg}, 0.65$ $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(74 \mathrm{mg}, 0.064 \mathrm{mmol})$. The vial was flushed with nitrogen, capped, and transferred to a preheated $\left(70^{\circ} \mathrm{C}\right)$ heat block and stirred for 18 h . The mixture was cooled to RT , diluted with 0.5 N $\mathrm{HCl}(25 \mathrm{~mL})$, extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). Combined organic extracts washed with brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 100% EtOAc in heptane to provide 118 ($96 \mathrm{mg}, 45 \%$ yield) as an amber solid. The solid was further purified by preparative HPLC using a gradient of 25 to 55% ACN in water (both containing 0.1% formic acid) over 12 min at a flow of $40 \mathrm{~mL} / \mathrm{min}$ on a Phenomenex Gemini${ }^{-} 5 \mu \mathrm{~m}$ NX-C18 110Å $150 \times 21.2 \mathrm{~mm}$ column to provide 118 ($24 \mathrm{mg}, 12 \%$ yield) as a white solid. ESI MS m/z $312.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.29$ (br s, 2H), 7.18 (br s, 1H), 7.06 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.93 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.46(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}$, $3 \mathrm{H})$.
(S)-6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)-2-methyl-pyrrolo[2,3-b]pyrazine-7-carboxamide (48). SFC separation of $\mathbf{1 1 8}(24 \mathrm{mg})$ using Mettler Toledo Minigram instrument equipped with a Phenomenex Lux Cellulose-2, $10 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with 50% isopropanol with a flow rate of $10 \mathrm{~mL} / \mathrm{min}$ yielded 48 (RT $3.76 \mathrm{~min}, 6 \mathrm{mg}, 25 \%$ yield) as a white fluffy solid. ESI MS m/z $312.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400

MHz, DMSO- d_{6}) $\delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.30(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.19(\mathrm{brs}, 1 \mathrm{H}), 7.07$ $(d, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) .99 \% \mathrm{ee},[\alpha]^{26.5}{ }_{\mathrm{D}}+48.0(c$ $0.1, \mathrm{MeOH}$). The distomer (RT 4.43 min) was not characterized.

6-amino-2-cyclopropyl-5-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-7-carboxamide (119). To a solution of $117(222 \mathrm{mg}, 0.50 \mathrm{mmol})$ in DMF (5 mL) were added lithium chloride ($48 \mathrm{mg}, 1.1$ $\mathrm{mmol})$, and tributyl(cyclopropyl)stannane ($330 \mathrm{mg}, 1 \mathrm{mmol}$). The mixture was stirred at $120^{\circ} \mathrm{C}$ for 18 h. The mixture was cooled to RT, filtered, and the filtrate was purified by preparative HPLC eluting with a gradient of $\mathrm{CH}_{3} \mathrm{CN}$ (25 to 60%) in water both containing 0.1% formic acid to afford $119(36 \mathrm{mg}, 21 \%$ yield) as an off-white solid. ESI MS m/z $338.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.54(\mathrm{~s}, 1 \mathrm{H})$, 7.66 (s, 1H), $7.29(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.05$ $(\mathrm{m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 0.97-0.84(\mathrm{~m}, 4 \mathrm{H})$.
(S)-6-amino-2-cyclopropyl-5-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-7-carboxamide
(49). SFC separation of 119 (36 mg) using Mettler Toledo Minigram instrument equipped with a Phenomenex Lux Cellulose-2, $10 \times 250 \mathrm{~mm}, 5$ lolumn eluting with 50% isopropanol with a flow rate of $10 \mathrm{~mL} / \mathrm{min}$ yielded 49 (RT $5.34 \mathrm{~min}, 6 \mathrm{mg}, 25 \%$ yield) as a white fluffy solid. ESI MS m/z $338.2\left[\mathrm{M} \mathrm{+} \mathrm{H]}{ }^{+}\right.$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 10.10(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~s}$, $1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~m}, \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.11-0.75(\mathrm{~m}, 4 \mathrm{H}) .99 \% \mathrm{ee},[\mathrm{a}]^{25.2}{ }_{\mathrm{D}}+45.0(c 0.1$, $\mathrm{MeOH})$. The distomer (RT 4.58 min) was not characterized.
methyl 6-amino-7-carbamoyl-5-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-2-carboxylate (120). A solution of 117 ($744 \mathrm{mg}, 1.67 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(117 \mathrm{mg}, 0.167 \mathrm{mmol})$ in a mixture of DMF (8 $\mathrm{mL})$ and $\mathrm{MeOH}(8 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.40 \mathrm{~mL}, 10.0 \mathrm{mmol})$ was heated at $70^{\circ} \mathrm{C}$ under an atmosphere of carbon monoxide (balloon). The apparatus was previously flushed with carbon monoxide once. After 2 h , more $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(117 \mathrm{mg}, 0.167 \mathrm{mmol})$ was added, and the reaction was continued for 18 h . The mixture was cooled to RT, filtered through Celite, rinsing with MeOH and the filtrate was concentrated. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 20% of MeOH in DCM to provide a dark green sticky solid. The solid was dissolved in EtOAc and filtered through a pad of silica gel. The pad was washed with $5 \% \mathrm{MeOH}$ in EtOAc and the volatiles were evaporated under reduced pressure to provide 120 ($418 \mathrm{mg}, 70 \%$ yield) as a light brown sticky solid. ESI MS m/z $356.1[\mathrm{M}+$ $\mathrm{H}]^{+}$.

6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)-2-(1-hydroxy-1-methyl-ethyl)pyrrolo[2,3-b]pyrazine-7carboxamide (121). A solution of 120 ($322 \mathrm{mg}, 0.906 \mathrm{mmol}$) in THF (12 mL) was cooled to $-40^{\circ} \mathrm{C}$ and MeMgCl solution in THF ($3 \mathrm{M}, 4.53 \mathrm{~mL}, 13.1 \mathrm{mmol}$) was added dropwise. The mixture was left to warm to RT for 18 h , quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$, the pH was adjusted to $7-8$ with 1 N HCl and the mixture was extracted with DCM (3x). The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel chromatography eluting with a gradient of 0 to $20 \% \mathrm{MeOH}$ in DCM to provide 121 ($103 \mathrm{mg}, 32 \%$ yield) as a light tan solid. ESI MS m/z $338.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{brs}, 1 \mathrm{H}), 7.42$ (br s, 2H), $7.23(b r s, 1 H), 7.08(d, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.17$ $(\mathrm{m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H})$.
(S)-6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)-2-(1-hydroxy-1-methyl-ethyl)pyrrolo[2,3-b]pyrazine-7carboxamide (50). SFC separation of $\mathbf{1 2 1}(39 \mathrm{mg})$ using Mettler Toledo Minigram instrument equipped
with a Phenomenex Lux Cellulose-2, $10 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with 40% isopropanol containing 10 mM ammonium formate with a flow rate of $10 \mathrm{~mL} / \mathrm{min}$ yielded 50 (RT $3.83 \mathrm{~min}, 10 \mathrm{mg}, 26 \%$ yield) as an off-white solid. ESI MS m/z $356.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $\left.{ }_{6}\right) \delta 9.59(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H})$, $7.51(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}$, $1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}) .99 \% \mathrm{ee},[\alpha]^{26.3} \mathrm{D}+44.0(c 0.1, \mathrm{MeOH})$. The distomer (RT 4.07) was not characterized.

6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)-2-morpholino-pyrrolo[2,3-b]pyrazine-7-carboxamide

 (122). To a solution of 117 ($500 \mathrm{mg}, 1.09 \mathrm{mmol}$) in NMP (4 mL) was added morpholine ($598 \mathrm{mg}, 6.86$ $\mathrm{mmol}, 0.60 \mathrm{~mL}$) and the mixture was stirred at $130^{\circ} \mathrm{C}$ for 18 h . The mixture was then purified using prep-HPLC C18 column eluting with ACN/water/0.1\% formic acid to provide $\mathbf{1 2 2}$ ($80 \mathrm{mg}, \mathbf{1 9 \%}$ yield) as an off-white solid. ESI MS m/z $383.2[\mathrm{M}+\mathrm{H}]^{+}$.
(S)-6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)-2-morpholino-pyrrolo[2,3-b]pyrazine-7-carboxamide

 (51). SFC separation of 122 (80 mg) using Mettler Toledo Minigram instrument equipped with a Phenomenex Lux Cellulose-2, $10 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with $55 \% \mathrm{MeOH}$ containing 10 mM ammonium formate with a flow rate of $10 \mathrm{~mL} / \mathrm{min}$ yielded 51 (RT $5.22 \mathrm{~min}, 21 \mathrm{mg}, 26 \%$ yield) as an offwhite solid. ESI MS m/z $383.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d) $\delta 9.51(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}$, $1 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{~m}, 4 \mathrm{H})$, $1.73(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .100 \% \mathrm{ee},[\alpha]^{25.1_{\mathrm{D}}}+47.0(c 0.1, \mathrm{MeOH})$. The distomer (RT 5.89 min$)$ was not characterized.6-amino-2-(3,5-difluoro-2-pyridyl)-5-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-7carboxamide (123). A microwave vial was loaded with 117 ($497 \mathrm{mg}, 1.1 \mathrm{mmol}$), copper(I) iodide (33 mg , 0.17 mmol) , lithium chloride ($100 \mathrm{mg}, 2.36 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \bullet \mathrm{CH}_{2} \mathrm{Cl}_{2}(85 \mathrm{mg}, 0.11 \mathrm{mmol}), \mathrm{DMF}(8 \mathrm{~mL})$ and tributyl-(3,5-difluoro-2-pyridyl)stannane ($888 \mathrm{mg}, 2.20 \mathrm{mmol}$). The vial was purged with nitrogen, capped, and transferred to a preheated $\left(110{ }^{\circ} \mathrm{C}\right)$ heat block for 2.25 h . The reaction mixture was cooled to RT, concentrated under reduced pressure and the residue was purified by silica gel chromatography eluting with a gradient of 0 to $10 \% \mathrm{MeOH}$ in DCM to provide 123 ($659 \mathrm{mg}, 61 \%$ yield) as a tan solid. ESI MS m/z $411.3[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, \mathrm{~J}=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{ddd}, J=11.3,9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.10(\mathrm{dt}, J=8.3,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$.
(S)-6-amino-2-(3,5-difluoro-2-pyridyl)-5-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyrazine-7carboxamide (52). SFC separation of 123 (270 mg) using Mettler Toledo Minigram instrument equipped with a Chiral Technologies ID, $10 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with 40% isopropanol containing 10 mM ammonium formate with a flow rate of $10 \mathrm{~mL} / \mathrm{min}$ yielded 52 (RT $7.87 \mathrm{~min}, 62 \mathrm{mg}, 23 \%$ yield) as an off-white solid. ESI MS m/z $411.4[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, \mathrm{~J}=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{ddd}, J=11.3,9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.10$ (dt, J = 8.3, $0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) .100 \% \mathrm{ee},[\alpha]^{26.4}{ }_{\mathrm{D}}+62.0(c 0.1$, MeOH). The distomer (RT 6.02 min) was not characterized.

6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)-2-thiazol-2-yl-pyrrolo[2,3-b]pyrazine-7-carboxamide (124). The solution of 117 ($6.0 \mathrm{~g}, 13.1 \mathrm{mmol}$), copper(I) iodide ($400 \mathrm{mg}, 2.10 \mathrm{mmol}$), lithium chloride ($1.32 \mathrm{~g}, 31.1 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \bullet \mathrm{CH}_{2} \mathrm{Cl}_{2}(950 \mathrm{mg}, 1.21 \mathrm{mmol})$ and tributyl(thiazol-2-yl)stannane (9.52 g , $25.4 \mathrm{mmol})$ in DMF (100 mL) was degassed under vacuum and backfilled with nitrogen. The mixture was
stirred at $110{ }^{\circ} \mathrm{C}$ for 8 h . The volatiles were removed under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 20 to 100% EtOAc in hexanes to provide 124 ($2.74 \mathrm{~g}, 52 \%$ yield) as an off-white solid. ESI MS m/z $381.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.60$ $(\mathrm{s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H})$, 7.06 (d, J = 8.3 Hz, 1H), 6.92 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.77(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$.
(S)-6-amino-5-(3-hydroxy-2,6-dimethyl-phenyl)-2-thiazol-2-yl-pyrrolo[2,3-b]pyrazine-7-carboxamide (53). SFC separation of 124 (2.74 g) using Waters Prep 15 SFC-MS instrument equipped with a Chiral Technologies ID, $10 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with 40% isopropanol containing 10 mM ammonium formate with a flow rate of $10 \mathrm{~mL} / \mathrm{min}$ yielded 53 (RT $4.82 \mathrm{~min}, 601 \mathrm{mg}, 29 \%$ yield) as an offwhite solid. ESI MS m/z $381.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.91$ $(d, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) .100 \% \mathrm{ee},[\alpha]^{26.3} \mathrm{D}+57.0(c 0.1, \mathrm{MeOH})$. The distomer (RT 5.43 min) was not characterized.

3-bromo-N-(3-methoxy-2,6-dimethyl-phenyl)-5-nitro-pyridin-2-amine (127). To a solution of 125 (20 g, 63.85 mmol) in NMP (120 mL) were added 2,6-dimethylpyridine ($11.08 \mathrm{~g}, 103.4 \mathrm{mmol}, 12 \mathrm{~mL}$) and 92 ($14 \mathrm{~g}, 95.2 \mathrm{mmol}$). The mixture was heated at $130^{\circ} \mathrm{C}$ for 18 h . After cooling the mixture to RT, water was added dropwise to yield a precipitate. The suspension was stirred at RT for 20 min , then filtered. The solid was washed with water, dried under vacuum, and the residue was purified by silica gel chromatography eluting with a gradient of 10 to 30% EtOAc in heptane to provide 127 (12 g, 53\% yield) as an off-white solid. ESI MS m/z $354.0[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.80$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dt}, J=8.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(3-methoxy-2,6-dimethyl-phenyl)-5-nitro-pyrrolo[2,3-b]pyridine-3-carbonitrile (129). To a solution of malononitrile ($4.4 \mathrm{~g}, 66.6 \mathrm{mmol}$) in DME (120 mL) was added portion wise $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $2.90 \mathrm{~g}, 66.9 \mathrm{mmol})$. After stirring for $5 \mathrm{~min}, 127(11.6 \mathrm{~g}, 32.9$ $\mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.34 \mathrm{~g}, 1.65 \mathrm{mmol})$ were added. The mixture was heated at $110{ }^{\circ} \mathrm{C}$ for 2 h. After cooling to RT, the mixture was diluted with water and extracted twice with EtOAc. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 60% EtOAc in hexanes to provide 129 ($11 \mathrm{~g}, 99 \%$ yield) as a yellow solid. ESI MS m/z $338.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 8.74(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.27(\mathrm{dt}, \mathrm{J}=$ $8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H})$.
tert-butyl N-[3-cyano-1-(3-methoxy-2,6-dimethyl-phenyl)-5-nitro-pyrrolo[2,3-b]pyridin-2-yl]carbamate (131). To a solution of $129(1.130 \mathrm{~g}, 3.35 \mathrm{mmol})$ in THF (15 mL) were added $\mathrm{Et}_{3} \mathrm{~N}(3.37 \mathrm{mmol}, 0.47$ mL), DMAP ($45 \mathrm{mg}, 368 \mu \mathrm{~mol}$) and tert-butoxycarbonyl tert-butyl carbonate ($1.47 \mathrm{~g}, 6.73 \mathrm{mmol}$). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h then cooled to RT. Ethylenediamine ($500 \mu \mathrm{~L}$) was added and the mixture was stirred for 2 h , then diluted with water and extracted with DCM twice. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 20 to 60% EtOAc in to provide 131 ($1.27 \mathrm{~g}, 87 \%$ yield). ESI MS m/z $438.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $10.28(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dt}, J=8.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$.
tert-butyl N -[5-amino-3-cyano-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyridin-2-
yl]carbamate (133). To a solution of $131(2.94 \mathrm{~g}, 6.72 \mathrm{mmol})$ in DCM (30 mL) and $\mathrm{MeOH}(30 \mathrm{~mL})$ was added palladium on carbon ($10 \% \mathrm{w} / \mathrm{w}, 400 \mathrm{mg}, 0.376 \mathrm{mmol}$). The mixture was stirred for 3 h under 1 atm of H_{2} (balloon). The suspension was filtered over a pad of Celite and the filtrate was concentrated under reduced pressure to provide 133 (2.7 g , 99\% yield) as an off-white solid. ESI MS m/z 408.2 [$\mathrm{M}+$ $\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}^{-} \mathrm{d}_{6}\right) \delta 9.59(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H})$.
tert-butyl N -[5-bromo-3-cyano-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyridin-2-
yl]carbamate (135). To a solution of $133(15.1 \mathrm{~g}, 37.1 \mathrm{mmol})$ in a mixture of DMF (60 mL) and ACN (80 mL) was added tert-butyl nitrite (5.72 g , $55.5 \mathrm{mmol}, 6.6 \mathrm{~mL}$) followed by Copper(II) bromide ($10 \mathrm{~g}, 44.8$ $\mathrm{mmol})$. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 min , then diluted with water and extracted with EtOAc $(3 x)$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered. The filtrate was evaporated under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 5% EtOAc in DCM to provide 135 ($9.67 \mathrm{~g}, 55 \%$ yield) as an off-white solid. ESI MS m/z $471.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.27(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (d, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.98(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.

2-amino-5-bromo-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyridine-3-carboxamide (137). To a solution of $135(1.05 \mathrm{~g}, 2.23 \mathrm{mmol})$ in $\mathrm{EtOH}(15 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ was added aqueous $\mathrm{HCl}(6 \mathrm{M}, 6 \mathrm{~mL})$. The mixture was stirred for 20 min then concentrated to dryness. The residue was dissolved in MeOH , made alkaline with $\mathrm{Et}_{3} \mathrm{~N}$ and the volatiles were evaporated under reduced pressure. The residue was purified by reverse phase flash chromatography on a C 18 cartridge eluting with $\mathrm{CH}_{3} \mathrm{CN} /$ water/ 0.1% formic acid to provide 2-amino-5-bromo-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyridine-3-carbonitrile ($515 \mathrm{mg}, 60 \%$ yield) as an off-white solid. ESI MS m/z $371.2[\mathrm{M}+\mathrm{H}]^{+}$. The off-white solid was solubilized in a mixture of EtOH (6 mL) and water (2 mL). LiOH monohydrate ($500 \mathrm{mg}, 11.9 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}_{2}(27 \%$ w / w aq. solution, $0.65 \mathrm{~mL}, 21 \mathrm{mmol}$) were added and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 min , cooled to RT, diluted with water and the precipitate was recovered by filtration. The solid was washed with water, dried under vacuum to provide 137 ($600 \mathrm{mg}, 69 \%$ yield) as an off-white solid. ESI MS m/z 389.2 $[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.21(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dt}, \mathrm{J}=8.4$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~s}$, 3H).

2-amino-5-bromo-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyridine-3-carboxamide (139). Following the procedure used to prepare $3, \mathrm{BBr}_{3}(1 \mathrm{M}$ in $\mathrm{DCM}, 8 \mathrm{~mL}, 8 \mathrm{mmol})$ was added to a solution of 137 ($1.0 \mathrm{~g}, 2.57 \mathrm{mmol}$) in DCM (8 mL) and the mixture was stirred for 30 min at RT. The residue was purified by silica gel chromatography eluting with a gradient of 0 to $20 \% \mathrm{MeOH}$ in DCM to provide 139 ($605 \mathrm{mg}, 62 \%$ yield) as an off-white solid. ESI MS m/z $375.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $9.47(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.76$ $(\mathrm{m}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(3-hydroxy-2,6-dimethyl-phenyl)-5-methyl-pyrrolo[2,3-b]pyridine-3-carboxamide (140). To a solution of $139(120 \mathrm{mg}, 0.31 \mathrm{mmol})$ in THF (3 mL) was added $\mathrm{Pd}\left(t-\mathrm{Bu}_{3} \mathrm{P}\right)_{2}(15 \mathrm{mg}, 0.029 \mathrm{mmol})$. The mixture was flushed with nitrogen and dimethylzinc ($2 \mathrm{M}, 0.75 \mathrm{~mL}$) was added. The mixture was stirred at $70^{\circ} \mathrm{C}$ under nitrogen for 1 h . After cooling to RT , it was diluted with EtOAc (50 mL), washed with water and brine, and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated
under reduced pressure, and the residue was purified by silica gel chromatography eluting with a gradient of 0 to 10% MeOH in DCM to provide 140 ($58 \mathrm{mg}, 61 \%$ yield) as an off-white solid. ESI MS m/z $311.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.47(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=$ $1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}$, $3 \mathrm{H})$.
(S)-2-amino-1-(3-hydroxy-2,6-dimethyl-phenyl)-5-methyl-pyrrolo[2,3-b]pyridine-3-carboxamide (54). SFC separation of $140(29 \mathrm{mg})$ using Waters Prep 100 SFC-MS instrument equipped with a Phenomenex Lux Cellulose-2, $30 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with $45 \% 1: 1 \mathrm{ACN}$:EtOH with a flow rate of 70 $\mathrm{mL} / \mathrm{min}$ yielded 53 (RT $3.74 \mathrm{~min}, 8.5 \mathrm{mg}, 30 \%$ yield) as an off-white solid. ESI MS m/z $311.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.49(s, 1 H), 7.87(d d, J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (dd, J=1.9, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.04 $(\mathrm{d}+\mathrm{br} \mathrm{s}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.70(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.31(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.65$ $(\mathrm{s}, 3 \mathrm{H}) .100 \% \mathrm{ee},[\alpha]_{\mathrm{D}}^{26.3}+32.0(c 0.1, \mathrm{MeOH})$. The distomer (RT 4.05 min) was not characterized.

2-amino-5-cyclopropyl-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyridine-3-carboxamide (141).
To a solution of 2-amino-5-bromo-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyridine-3carboxamide ($817 \mathrm{mg}, 2.10 \mathrm{mmol}$) in THF (20 mL) were added cyclopropylzinc bromide (0.5 M in THF, 16 $\mathrm{mL})$ and $\mathrm{Pd}\left(t-\mathrm{Bu}_{3} \mathrm{P}\right)_{2}(110 \mathrm{mg}, 0.22 \mathrm{mmol})$. The mixture was flushed with nitrogen, then heated to $70{ }^{\circ} \mathrm{C}$ for 1 h under nitrogen atmosphere. The mixture was cooled to RT and sat. $\mathrm{NH}_{4} \mathrm{Cl}$ was added. It was diluted with water, extracted with EtOAc twice. The organic extracts were combined and washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel chromatography eluting with a gradient of 30-90\% EtOAc in heptane to provide 141 (300 mg , 40\% yield) as an off-white solid. ESI MS m/z $337.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta 9.43(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}), 1.88$ $\mathrm{m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~m}, 2 \mathrm{H}), 0.81-0.68(\mathrm{~m}, 2 \mathrm{H})$.

(S)-2-amino-5-cyclopropyl-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyridine-3-carboxamide

(56). SFC separation of 141 (300 mg) using Waters Prep 100 SFC-MS instrument equipped with a Phenomenex Lux Cellulose-2, $30 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with 50% 1:1 ACN:EtOH with a flow rate of $70 \mathrm{~mL} / \mathrm{min}$ yielded 56 (RT $5.60 \mathrm{~min}, 90 \mathrm{mg}, 30 \%$ yield) as an off-white solid. ESI MS m/z 337.2 [M $+\mathrm{H}^{+} .1 \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~s}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~m}, 2 \mathrm{H})$, $0.68(\mathrm{~m}, 2 \mathrm{H}) .100 \% e e,[\alpha]^{25.1} \mathrm{D}+38.0(c 0.1, \mathrm{MeOH})$. The distomer (RT 7.81 min) was not characterized.

3-bromo-N-(3-methoxy-2,6-dimethyl-phenyl)-6-methyl-5-nitro-pyridin-2-amine (128). 92 (9.20 g, 60.8 mmol, 126 ($10.11 \mathrm{~g}, 40.2 \mathrm{mmol}$), NMP (40 mL) and 2,6-dimethylpyridine ($8.58 \mathrm{~g}, 80.1 \mathrm{mmol}, 9.3 \mathrm{~mL}$) were heated to $130^{\circ} \mathrm{C}$ for 5 days under nitrogen atmosphere. The mixture was cooled to RT and the resulting paste transferred to a conical flask and $0.5 \mathrm{~N} \mathrm{HCl}(500 \mathrm{~mL})$ was added dropwise while stirring, resulting in a sticky brown solid. The supernatant was filtered on a Buchner funnel and the recovered gum was washed with water, dissolved in DCM, and combined with the sticky brown solid which had also been dissolved in DCM (200 mL total). The DCM solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 100% DCM in heptane to provide 128 ($10.5 \mathrm{~g}, 71 \%$ yield) as a light yellow solid. ESI MS m/z $368.0[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$) $\delta 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, 1 H), 6.83 ($\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(3-methoxy-2,6-dimethyl-phenyl)-6-methyl-5-nitro-pyrrolo[2,3-b]pyridine-3-carbonitrile

(130). To a RBF containing sodium hydride ($3.13 \mathrm{~g}, 72.2 \mathrm{mmol}, 60 \% \mathrm{w} / \mathrm{w}$ in mineral oil) in DME (150 mL) was added a solution of malononitrile ($4.75 \mathrm{~g}, 71.9 \mathrm{mmol}$) in DME (50 mL) slowly at RT. After stirring for $30 \mathrm{~min}, 128(10.5 \mathrm{~g}, 28.7 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.31 \mathrm{~g}, 2.83 \mathrm{mmol})$ were added. The resulting mixture was degassed by bubbling nitrogen through the solution, equipped with a condenser, and heated to reflux for 1 h . After cooling to RT , the mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\operatorname{DCM}(3 x)$. The combined organic extracts were washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and adsorbed on silica gel. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 100% EtOAc in heptane. Appropriate fractions were combined, concentrated and the resulting solid was triturated with DCM, filtered, and dried under vacuum, affording 130 ($7.97 \mathrm{~g}, 79 \%$ yield) as a bright yellow solid. ESI MS m/z $352.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 2 \mathrm{H})$, $7.22(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$.
tert-butyl N -[5-amino-3-cyano-1-(3-methoxy-2,6-dimethyl-phenyl)-6-methyl-pyrrolo[2,3-b]pyridin-2yl]carbamate (134). To a solution of compound $130(9.0 \mathrm{~g}, 25.6 \mathrm{mmol})$ in THF (120 mL) was added triethylamine ($7.99 \mathrm{~g}, 78.9 \mathrm{mmol}, 11 \mathrm{~mL}$), DMAP ($312 \mathrm{mg}, 2.55 \mathrm{mmol}$) and tert-butoxycarbonyl tertbutyl carbonate ($17.0 \mathrm{~g}, 77.9 \mathrm{mmol}$). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 40 min . The heating was stopped, ethylenediamine ($6.20 \mathrm{~g}, 103 \mathrm{mmol}, 6.90 \mathrm{~mL}$) was added, the mixture was stirred at RT for 45 min , then diluted with water and DCM. The layers were separated, and the aqueous layer was extracted with DCM twice. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 60% EtOAc in heptane to provide impure $132(13.94 \mathrm{~g})$ as an off-white solid, which was contaminated with tert-butyl N -[2-(tert-butoxycarbonylamino)ethyl]carbamate ($50 \mathrm{~mol} \%$ by ${ }^{1} \mathrm{H}$ NMR). ESI MS m/z $452.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$) $\delta 10.16(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$. To a RBF containing crude $132(13.94 \mathrm{~g}, 25.6 \mathrm{mmol})$ in $\mathrm{DCM}(280 \mathrm{~mL})$ and $\mathrm{MeOH}(280 \mathrm{~mL})$ was added palladium on carbon ($2.08 \mathrm{~g}, 1.95 \mathrm{mmol}, 10 \% \mathrm{w} / \mathrm{w}$) as a slurry in some of the solvent mixture. The mixture was flushed with H_{2} and stirred under H_{2} atmosphere (balloon) for 18 h . The mixture was flushed with nitrogen, filtered on a celite pad and the pad was rinsed with DCM. The filtrate was concentrated under reduced pressure, and the residue was purified by silica gel chromatography eluting with a gradient of 20 to 100\% EtOAc in heptane to afford $134\left(9.34 \mathrm{~g}, 87 \%\right.$ yield) as an off-white solid. ESI MS m/z $422.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 9.46(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$, 1.59 (s, 3H), 1.31 (s, 9H).
tert-butyl N-[5-chloro-3-cyano-1-(3-methoxy-2,6-dimethyl-phenyl)-6-methyl-pyrrolo[2,3-b]pyridin-2yl]carbamate (136). To a solution of $134(390 \mathrm{mg}, 0.93 \mathrm{mmol})$ in ACN (3 mL) and DMF (2 mL) was added tert-butyl nitrite ($193.64 \mathrm{mg}, 1.88 \mathrm{mmol}, 0.22 \mathrm{~mL}$), followed by Copper(II) chloride ($149 \mathrm{mg}, 1.11$ mmol) . The mixture was transferred to a preheated $60^{\circ} \mathrm{C}$ heat block and equipped with a condenser. After 45 min at this temperature, the volatiles were evaporated under reduced pressure and the residue was purified by silica gel chromatography eluting with a gradient of 0 to 100% EtOAc in heptane to provide 136 (156 mg, 38\% yield) as a yellow foamy solid. ESI MS m/z $441.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz, DMSO-d6) $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 H), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$.

2-amino-5-chloro-1-(3-methoxy-2,6-dimethyl-phenyl)-6-methyl-pyrrolo[2,3-b]pyridine-3-carboxamide (138). A solution of $136(135 \mathrm{mg}, 0.31 \mathrm{mmol})$ in NMP (1.3 mL) was heated at $160^{\circ} \mathrm{C}$ for 75 min . After
cooling to RT , the mixture was diluted with water (3 mL). EtOAc (15 mL) then a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (0.5 mL) were added. The layers were separated, and the aqueous layer was extracted with EtOAc twice. Combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 100% EtOAc in heptane to provide 2-amino-5-chloro-1-(3-methoxy-2,6-dimethyl-phenyl)-6-methyl-pyrrolo[2,3-b]pyridine-3-carbonitrile ($80 \mathrm{mg}, 77 \%$ yield) as a light beige solid. ESI MS m/z $341.1[\mathrm{M}+\mathrm{H}]^{+}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$. Sulfuric acid (1 mL) was added to the light beige solid. After 30 min , the solution was diluted with cold water (5 mL) and concentrated ammonium hydroxide was added until the pH was slightly basic. The solid recovered by filtration was purified by preparative HPLC (Phenomenex Gemini) eluting with a gradient of $\mathrm{CH}_{3} \mathrm{CN}(30$ to $80 \%)$ in water both containing 0.1% formic acid. Appropriate fractions were combined and lyophilized to afford 138 ($62 \mathrm{mg}, 49 \%$ yield). ESI MS m/z $359.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O-d 6\right) \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-5-chloro-1-(3-hydroxy-2,6-dimethylphenyl)-6-methyl-1H-pyrrolo[2,3-b]pyridine-3carboxamide (142). Following the procedure used to prepare 3, BBr_{3} (1 M in $\mathrm{DCM}, 9.2 \mathrm{~mL}, 9.2 \mathrm{mmol}$) was added to a solution of $138(1.1 \mathrm{~g}, 3.07 \mathrm{mmol})$ in DCM $(9.2 \mathrm{~mL})$ and the mixture was stirred for 60 \min at RT. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 20% MeOH in DCM to provide 142 (1.0 g , 90\% yield) as an off-white solid ESI MS m/z $345.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz, DMSO-d6) $\delta 9.51(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$.
(S)-2-amino-5-chloro-1-(3-hydroxy-2,6-dimethylphenyl)-6-methyl-1H-pyrrolo[2,3-b]pyridine-3carboxamide (57). SFC separation of $142(610 \mathrm{mg})$ using Waters Prep 100 SFC-MS instrument equipped with a Phenomenex Lux Cellulose-2, $30 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with $45 \% 1: 1 \mathrm{ACN}$:EtOH with a flow rate of $70 \mathrm{~mL} / \mathrm{min}$ yielded 57 (RT $4.22 \mathrm{~min}, 177 \mathrm{mg}, 29 \%$ yield) as an off-white solid. ESI MS m/z $345.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$) $\delta 9.51(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) .99 \% e e,[\alpha]_{\mathrm{D}}^{25.0}+46.0(c$ $0.1, \mathrm{MeOH}$). The distomer (RT 4.94 min) was not characterized.

3-bromo-5-chloro-N-(3-methoxy-2,6-dimethyl-phenyl)pyridin-2-amine (144). To a solution of 92 (3.61 g, 23.9 mmol) and $143(5.02 \mathrm{~g}, 23.9 \mathrm{mmol})$ in THF (50 mL) was added LiHMDS solution in THF (1 M, 48 mL) dropwise over $18 \mathrm{~min}\left(16{ }^{\circ} \mathrm{C}\right.$ exotherm was observed). After 30 min , the mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography eluting with a gradient of 0 to 20% EtOAc in heptane to provide 144 (6.58 g , 81% yield) as a peach solid. ESI MS m/z $343.0[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.03$ (d, J = 2.3 $\mathrm{Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dt}, J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $3 H), 2.01(d, J=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-5-chloro-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyridine-3-carbonitrile (145). To a suspension of NaH (60% dispersion in mineral oil, $1.08 \mathrm{~g}, 24.9 \mathrm{mmol}$) in DME (60 mL) was added malononitrile ($1.62 \mathrm{~g}, 24.6 \mathrm{mmol}$) in DME (15 mL) dropwise. After stirring for $30 \mathrm{~min}, 144$ ($4.00 \mathrm{~g}, 11.7$ $\mathrm{mmol})$ in DME $(15 \mathrm{~mL})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.08 \mathrm{~g}, 1.32 \mathrm{mmol})$ were added. The mixture was flushed with nitrogen, then stirred at $100^{\circ} \mathrm{C}$ for 5 h . After cooling to RT, icy water (250 mL) was added dropwise.

The resulting precipitate was collected by filtration and washed with water. The solid was air-dried and purified by silica gel chromatography eluting with a gradient of 0 to 100% EtOAc in heptane to afford 145 ($3.27 \mathrm{~g}, 85 \%$ yield) as an ivory crystalline solid. ESI MS m/z $327.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.80(d, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{br} s, 2 \mathrm{H}), 7.24(\mathrm{dt}, J=8.5,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-5-chloro-1-(3-methoxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyridine-3-carboxamide (146). To a suspension of $145(7.50 \mathrm{~g}, 23.0 \mathrm{mmol})$ in water $(60 \mathrm{~mL})$ and EtOH (180 mL) was added LiOH monohydrate ($7.22 \mathrm{~g}, 172 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}_{2}(27 \% \mathrm{w} / \mathrm{w}$ aq. solution, 9.8 mL$)$. The mixture was stirred at 60 ${ }^{\circ} \mathrm{C}$ for 30 min , then cooled to RT. Water was added dropwise (500 mL) and the solid was collected by filtration, washed with water and air-dried. The filtrate was diluted with more water (500 mL) and a second crop of solid was obtained by filtration. Finally, the filtrate was extracted with EtOAc (3x). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, then dried under reduced pressure affording a third crop of solid. The three crops were combined and purified by silica gel chromatography eluting with a gradient of 50 to 100% EtOAc in heptane to provide 146 (3.90 g , 49\% yield) as a light-yellow solid. Alternatively, this nitrile hydrolysis could be performed under acidic conditions following the procedure used to prepare 76: a solution of 145 ($7.50 \mathrm{~g}, 23.0 \mathrm{mmol}$) in sulfuric acid was stirred at RT for 2 h providing 146 (7.9 g , quantitative yield). ESI MS m/z $345.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 8.15(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-5-chloro-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyridine-3-carboxamide (147). Following the procedure used to prepare $3, \mathrm{BBr}_{3}(1 \mathrm{M}$ in $\mathrm{DCM}, 34 \mathrm{~mL}, 34 \mathrm{mmol})$ was added to a solution of $146(3.90 \mathrm{~g}, 11.3 \mathrm{mmol})$ in DCM (34 mL) and the mixture was stirred for 2 h at RT. The residue was purified by silica gel chromatography using a gradient of 0 to $20 \% \mathrm{MeOH}$ in DCM to provide $(3.54 \mathrm{~g}, 95 \%$ yield) as a light beige solid. ESI MS m/z $331.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 8.14$ (d, J=2.2 Hz, 1H), $7.74(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{brs}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$.
(S)-2-amino-5-chloro-1-(3-hydroxy-2,6-dimethyl-phenyl)pyrrolo[2,3-b]pyridine-3-carboxamide (55). SFC separation of 147 (3.54 g) using Waters Prep 100 SFC-MS instrument equipped with a Phenomenex Lux Cellulose-2, $30 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with $45 \% 1: 1 \mathrm{ACN}$:EtOH with a flow rate of 70 $\mathrm{mL} / \mathrm{min}$ yielded 55 (RT $5.37 \mathrm{~min}, 1.26 \mathrm{~g}, 36 \%$ yield) as an off-white solid. ESI MS m/z $331.1[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $7.06(\mathrm{dt}, \mathrm{J}=8.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$. $100 \% e e,[\alpha]^{26.5}+40.0(c 0.1, \mathrm{MeOH})$. The distomer (RT 7.79 min) was not characterized.

3-bromo-5,6-dimethylpyridin-2-ol (149). Sulfuric acid (140 mL) was added slowly to water (1.15 L) and the solution was cooled at $25^{\circ} \mathrm{C} .148(114.80 \mathrm{~g}, 571 \mathrm{mmol})$ was added at this temperature and the solution was cooled at $0-5^{\circ} \mathrm{C}$ with an ice/water bath to get a suspension. Under vigorous stirring, a solution of sodium nitrite ($49.25 \mathrm{~g}, 714 \mathrm{mmol}$) in water (175 mL) was added dropwise over 90 minutes. The ice-water bath was removed, and the suspension was warmed up slowly to $11^{\circ} \mathrm{C}$ and stirred for 1 h . A solution of sodium hydroxide ($175 \mathrm{~g}, 4.37 \mathrm{~mol}$) in water $(400 \mathrm{~mL})$ was added dropwise at $20^{\circ} \mathrm{C}$. The pH of the solution was adjusted to 7 with $\mathrm{K}_{2} \mathrm{HPO}_{4}(\sim 58 \mathrm{~g}, 0.33 \mathrm{~mol})$ in water (70 mL). The suspension was filtered at $10{ }^{\circ} \mathrm{C}$. The solid was triturated in water $(250 \mathrm{~mL})$ and recovered by filtration. The solid was washed profusely with ice-cold water and dried by vacuum suction. The solid was oven-dried under
reduced pressure at $60^{\circ} \mathrm{C}$ for 18 h to yield 149 as a light yellow crystalline solid ($105.69 \mathrm{~g}, 92 \%$ yield). ESI MS m/z $202.0204 .0[\mathrm{M}+\mathrm{H}]^{+}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 11.96$ (br s, 1H), 7.73 (s, 1H), 2.11 (s, 3H), $1.96(\mathrm{~s}, 3 \mathrm{H})$.

2,3-dibromo-5,6-dimethylpyridine (150). To a solution of 149 ($105.3 \mathrm{~g}, 521 \mathrm{mmol}$) in DMF (316 mL) and toluene (527 mL) at $90^{\circ} \mathrm{C}$ under nitrogen was added phosphorus oxybromide (1.3:1, $56.5 \% \mathrm{wt} / \mathrm{wt}$ in xylenes) ($278 \mathrm{~mL}, 782 \mathrm{mmol}$) dropwise over 90 min . After the addition was complete, the mixture was stirred at $90^{\circ} \mathrm{C}$ for 18 h , cooled to RT, and was slowly added to water (2 L). The flask was washed with 500 mL of water. The combined aqueous phases were extracted with MTBE ($3 \times 1 \mathrm{~L}$). The organic phases were combined and washed with $0.5 \mathrm{~N} \mathrm{NaOH}(1 \mathrm{~L})$, water $(3 \times 1 \mathrm{~L})$ and brine (1 L) then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The solid was partially dissolved in MTBE (400 mL) and heptane (300 mL) was added. The volatiles were partially evaporated under reduced pressure to ~175 mL resulting in a suspension that was filtered. The solid was rinsed with heptane and dried under vacuum to afford 149 as a beige solid ($114.3 \mathrm{~g}, 83 \%$ yield). The filtrate was concentrated under reduced pressure and filtered as previously to get a second crop ($8.7 \mathrm{~g}, 6.3 \%$ yield). ESI MS m/z 264.0, 266.0, $268.0[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$.

3-bromo-N-(3-methoxy-2,6-dimethylphenyl)-5,6-dimethylpyridin-2-amine (151). A 2 L 4-neck roundbottomed flask was charged with 92 ($32.96 \mathrm{~g}, 218 \mathrm{mmol}$), DME (750 mL), 150 ($55 \mathrm{~g}, 208 \mathrm{mmol}$), XantPhos ($10.81 \mathrm{~g}, 18.7 \mathrm{mmol}$) and cesium carbonate ($169.1 \mathrm{~g}, 519 \mathrm{mmol})$. The mixture was sonicated for 20 minutes while sparging the suspension with nitrogen. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(8.6 \mathrm{~g}, 9.3 \mathrm{mmol})$ was added and the suspension was heated to reflux. After 13 h the mixture was cooled to RT and filtered over a pad of silica gel. The pad was washed with EtOAc (1.2L). The filtrate was partially evaporated under reduced pressure to about ~200 mL and heptane (300 mL) was added. The volatiles were partially evaporated under reduced pressure to $\sim 100 \mathrm{~mL}$ resulting in a suspension. The solid was collected by filtration and washed with heptane to get 151 as a light-yellow solid ($56.23 \mathrm{~g}, 81 \%$ yield). ESI MS m/z 335.2, 337.2 [M $+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$) $\delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(3-methoxy-2,6-dimethylphenyl)-5,6-dimethyl-1H-pyrrolo[2,3-b]pyridine-3-carbonitrile (152). To a degassed solution of malononitrile ($33.26 \mathrm{~g}, 503.5 \mathrm{mmol}$) in DME (1 L) was added sodium tert-butoxide ($46.32 \mathrm{~g}, 482 \mathrm{mmol}$) in 4 equal portions. The mixture was stirred 30 min at RT to obtain a solution. $151(80 \mathrm{~g}, 238.6 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(14.91 \mathrm{~g}, 18.26 \mathrm{mmol})$ were added in one portion and the suspension was heated to a strong reflux. After 17 h , the mixture was cooled, transferred into a 5 L flask and EtOAc (1.5 L) was added. A solution of N-acetyl-L-cysteine ($12.1 \mathrm{~g}, 74$ mmol, 4x Pd mol content) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(15.7 \mathrm{~g}, 148 \mathrm{mmol})$ in water (500 mL) were added. The biphasic solution was stirred for 10 minutes at $60^{\circ} \mathrm{C}$ and then cooled slowly to $40^{\circ} \mathrm{C}$ over 75 minutes. Inside the 5 L flask, the two layers were separated at $40^{\circ} \mathrm{C}$ and the organic phase was washed with water (2×250 $\mathrm{mL})$, brine (200 mL), and then filtered over a pad of silica gel (185 g). The pad was rinsed with DCM/EtOAc (1:1). The filtrate was evaporated under reduced pressure, and the solvents were switched for EtOAc during rotavap evaporation to get a suspension. The suspension was filtered at RT and the solid was suspended and triturated in 50 mL of ice-cooled EtOAc. The suspension was filtered, and the solid was rinsed with 50 mL of ice-cooled EtOAc. The solid was oven-dried under reduced pressure at 60 ${ }^{\circ} \mathrm{C}$ for 18 h to afford 152 as a light yellow solid ($65.38 \mathrm{~g}, 86 \%$ yield). ESI MS m/z $321.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$.

2-amino-1-(3-hydroxy-2,6-dimethylphenyl)-5,6-dimethyl-1H-pyrrolo[2,3-b]pyridine-3-carboxamide (153). To methanesulfonic acid (600 mL) was added slowly a solution of sulfuric acid (93 mL) and water $(7.0 \mathrm{~mL})$ over 5 minutes at RT. $\mathbf{1 5 2}(80 \mathrm{~g}, 249.7 \mathrm{mmol})$ was added portion wise over 15 minutes to keep the reaction temperature below $40^{\circ} \mathrm{C}$. The resulting solution was stirred at RT for 90 minutes. DLmethionine ($149.0 \mathrm{~g}, 999 \mathrm{mmol}$) was added portion wise over 20 minutes below $40^{\circ} \mathrm{C}$. The solution was stirred at $40^{\circ} \mathrm{C}$ for 37 h . The mixture was cooled to RT and slowly added over 1.5 h to a solution of $\mathrm{K}_{2} \mathrm{HPO}_{4}(100 \mathrm{~g})$ and $\mathrm{NaOH}(540 \mathrm{~g})$ in water (5 L). EtOAc (1 L) was added, and the biphasic mixture was stirred for 5 min to get a precipitate. The suspension was filtered. The filtrate was extracted with EtOAc $(3 \times 1 \mathrm{~L})$. The organic phases were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to ~ 100 mL to get a suspension. The suspension was filtered and rinsed with EtOAc $(50 \mathrm{~mL})$. The solids were combined and triturated in water (800 mL) two times. The residue was suspended in EtOAc (500 mL), stirred for 10 min and filtered. The product was oven-dried under reduced pressure to get 67.8 g of a solid that was suspended in DMSO ($350 \mathrm{~mL}, 5 \mathrm{vol}$) and the mixture was heated to $65^{\circ} \mathrm{C}$ to get a solution. The solution was cooled slowly at $28^{\circ} \mathrm{C}$ with a water bath. Water (1.05 L) was added dropwise over 2 hours to get a suspension. After 5 minutes of stirring at RT, the suspension was filtered. The solid was triturated in 100 mL of water and filtered. The filter cake was washed with $2 \times 100 \mathrm{~mL}$ of water. The product was oven dried at $60^{\circ} \mathrm{C}$ under reduced pressure to get 153 as a light yellow solid ($61.50 \mathrm{~g}, 75 \%$ yield). ESI MS m/z $325.2[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.47(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (br. s, 2 H), 6.64 (br. s., $2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H})$.
(S)-2-amino-1-(3-hydroxy-2,6-dimethyl-phenyl)-5,6-dimethyl-pyrrolo[2,3-b]pyridine-3-carboxamide (RP-6306). SFC separation of $153(1.60 \mathrm{~g})$ using Waters Prep 100 SFC-MS instrument equipped with a Phenomenex Lux Cellulose-2, $30 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column eluting with $55 \% 1: 1 \mathrm{ACN}$:EtOH containing 10 mM ammonium formate with a flow rate of $70 \mathrm{~mL} / \mathrm{min}$ yielded RP-6306 (RT $3.94 \mathrm{~min}, 381 \mathrm{mg}, 24 \%$ yield) as an off-white solid. ESI MS m/z 325.1 [M + H] ${ }^{+}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.50$ (s, 1H), 7.83 $(\mathrm{s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$, $1.74(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , dmso) $\delta 168.90,154.62,152.27,145.59,143.95,133.10$, $128.26,127.51,125.66,124.47,124.11,116.59,115.97,83.55,22.22,19.34,17.37,11.35 .[a]^{28} \mathrm{~d}+35.0$ (c 5.00, EtOH). Melting point: 273.8 to $279.0^{\circ} \mathrm{C} . \mathrm{m} / \mathrm{z}$ (ESI, +ve ion): $325.1(\mathrm{M}+\mathrm{H})^{+}$. HRMS calculated for: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2} 325.1665$; found 325.1659 . 100% ee. The distomer (RT 4.35 min) was not characterized.

REFERENCES

1. Sonntag, R.; Giebeler, N.; Nevzorova, Y. A.; Bangen, J.-M.; Fahrenkamp, D.; Lambertz, D.; Haas, U.; Hu, W.; Gassler, N.; Cubero, F. J.; Müller-Newen, G.; Abdallah, A. T.; Weiskirchen, R.; Ticconi, F.; Costa, I. G.; Barbacid, M.; Trautwein, C.; Liedtke. C. Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation, but not for progression of hepatocellular carcinoma. Proc. Natl. Acad. Sci. 2018, 115, 9282-9287
2. Teixeira, L. K.; Reed S. I. Cyclin E Deregulation and Genomic Instability. Adv. Exp. Med. Biol. 2017, 1042, 527-547.
3. Schmidt, M.; Rohe, A.; Platzer, C.; Najjar, A.; Erdmann, F.; Sippl, W. Regulation of G2/M Transition by Inhibition of WEE1 and PKMYT1 Kinases. Molecules, 2017, 22, 2045.
4. Xu, H.; George, E.; Kinose, Y.; Kim, H.; Shah, J. B.; Peake, J. D.; Ferman, B.; Medvedev, S.; Murtha, T.; Barger, C. J.; Devins, K. M.; D'Andrea, K.; Wubbenhorst, B.; Schwartz, L. E.; Hwang, W. T.; Mills, G. B.; Nathanson, K. L.; Karpf, A. R.; Drapkin, R.; Brown, E. J.; Simpkins, F. CCNE1 copy number is a biomarker for response to combination WEE1-ATR inhibition in ovarian and endometrial cancer models. Cell Rep. Med. 2021, 2, 100394.
5. Chow, J. P.; Poon, R. Y. The CDK1 inhibitory kinase MYT1 in DNA damage checkpoint recovery. Oncogene 2013, 32, 4778-4788.
6. Gallo, D.; Young, J. T. F.; Fourtounis, J.; Martino, G.; Álvarez-Quilón, A.; Bernier, C.; Duffy, N.; Papp, R.; Roulston, A.; Stocco, R.; Szychowski, J.; Veloso, A.; Alam, H.; Baruah, P.; Bonneau-Fortin, A.; Bowlan, J.; Chaudhary, N.; Desjardins, J.; Dietrich, E.; Fournier, S.; Fugère-Desjardins, C.; Goullet de Rugy, T.; Leclaire, M.-L.; Liu, B.; Melo, H.; Nicolas, O.; Pellerin, C.; Singhania, A.; Szilard, R.; Tkáč, J.; Yin, S. Y.; Zinda, M.; Marshall, C. G.; Durocher, D. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature, 2022, in press.
7. Uehling, D. E.; Joseph, B.; Chung, K. C.; Zhang, A. X.; Ler, S.; Prakesch, M. A.; Poda, G.; Grouleff, J.; Aman, A.; Kiyota, T.; Leung-Hagesteijn, C.; Konda, J. D.; Marcellus, R.; Griffin, C.; Subramaniam, R.; Abibi, A.; Strathdee, C. A.; Isaac, M. B.; Al-Awar, R.; Tiedemann, R. E. Design, Synthesis, and Characterization of 4-Aminoquinazolines as Potent Inhibitors of the G Protein-Coupled Receptor Kinase 6 (GRK6) for the Treatment of Multiple Myeloma J. Med. Chem. 2021, 64, 11129-11147.
8. Grinshtein, N.; Datti, A.; Fujitani, M.; Uehling, D.; Prakesch, M.; Isaac, M.; Irwin, M. S.; Wrana, J. L.; AlAwar, R.; Kaplan, D. R., Small molecule kinase inhibitor screen identifies polo-like kinase 1 as a target for neuroblastoma tumor-initiating cells. Cancer Res. 2011, 71, 1385-1395.
9. Trzcinska-Daneluti, A. M.; Nguyen, L.; Jiang, C.; Fladd, C.; Uehling, D.; Prakesch, M.; Al-awar, R.; Rotin, D., Use of kinase inhibitors to correct DeltaF508-CFTR function. Mol. Cell. Proteomics 2012, 11, 745-757.
10. Zegzouti, H.; Zdanovskaia, M.; Hsiao, K.; Goueli, S. A.; ADP-Glo: A Bioluminescent and homogeneous ADP monitoring assay for kinases. Assay Drug Dev. Technol. 2009, 7, 560-572.
11. Das, J.; Chen, P.; Norris, D.; Padmanabha, R.; Lin, J.; Moquin, R. V.; Shen, Z.; Cook, L. S.; Doweyko, A. M.; Pitt, S.; Pang, S.; Shen, D. R.; Fang, Q.; de Fex, H. F.; McIntyre, K. W.; Shuster, D. J.; Gillooly, K.; Behnia, K.; Schieven, G. L.; Wityak, J.; Barrish. J. C. 2-Aminothiazole as a Novel Kinase Inhibitor Template. StructureActivity Relationship Studies toward the Discovery of N-(2-Chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (Dasatinib, BMS-354825) as a Potent pan-Src Kinase Inhibitor. J. Med. Chem. 2006, 49, 6819-6832.
12. Boschelli, D. H.; Ye, F.; Wang, Y. D.; Dutia, M.; Johnson, S. L.; Wu, B.; Miller, K.; Powell, D. W.; Yaczko, D.; Young, M.; Tischler, M.; Arndt, K.; Discafani, C.; Etienne, C.; Gibbons, J.; Grod, J.; Lucas, J.; Weber, Boschelli, F. Optimization of 4-Phenylamino-3-quinolinecarbonitriles as Potent Inhibitors of Src Kinase Activity. J. Med Chem. 2001, 44, 3965-3977.
13. Moasser, M.M.; Srethapakdi, M.; Sachar, K. S.; Kraker, A. J.; Rosen, N.; Inhibition of Src kinases by a selective tyrosine kinase inhibitor causes mitotic arrest. Cancer Res. 1999, 59, 6145-6152.
14. Unzue, A.; Dong, J.; Lafleur, K.; Zhao, H.; Frugier, E.; Caflisch, A.; Nevado, C. Pyrrolo[3,2-b]quinoxaline Derivatives as Types I1/2 and II Eph Tyrosine Kinase Inhibitors: Structure-Based Design, Synthesis, and in Vivo Validation. J. Med. Chem. 2014, 57, 6834-6844.
15. Zhao, H.; Huang, D. Hydrogen bonding penalty upon ligand binding. PloS one, 2011, 6, e19923.
16. Bamborough, B.; Angell, R. M.; Bhamra, I.; Brown, D.; Bull, J.; Christopher, J. A.; Cooper, A. W. J.; Fazal, L. H.; Giordano, I.; Hind, L; Patel, V. K.; Ranshaw, L. E.; Sims, M. J.; Skone, P. A.; Smith, K. J.; Vickerstaff, E.; Washington, M. N-4-Pyrimidinyl-1H-indazol-4-amine inhibitors of Lck: Indazoles as phenol isosteres with improved pharmacokinetics. Bioorg. Med. Chem. Lett. 2007, 17, 4363-4368.
17. Dong; D.; Ako, R.; Hu, M.; Wu, B. Understanding substrate selectivity of human UDPglucuronosyltransferases through QSAR modeling and analysis of homologous enzymes. Xenobiotica 2012, 42, 808-820.
18. Beaudet, L.; Rodriguez-Suarez, R.; Venne, M.-H.; Caron, M.; Bedard, J.; Brechler, V.; Parent, S.; Bielefeld, M.; AlphaLISA immunoassays: the no-wash alternative to ELISAs for research and drug discovery. Nat. Meth. 2008, 5, an8-an9.
19. Vasta, J. D.; Corona, C. R.; Wilkinson, J.; Zimprich, C. A.; Hartnett, J. R.; Ingold, M. R.; Zimmerman, K.; Machleidt, T.; Kirkland, T. A.; Huwiler, K. G.; Ohana, R. F.; Slater, M.; Otto, P.; Cong, M.; Wells, C. I.; Berger, B. T.; Hanke, T.; Glas, C.; Ding, K.; Drewry, D. H.; Robers, M. B. Quantitative, Wide-Spectrum Kinase

Profiling in Live Cells for Assessing the Effect of Cellular ATP on Target Engagement. Cell chemical biology, 2018, 25, 206-214.
20. LaPlante, S. R.; Fader, L. D.; Fandrick, K. R.; Fandrick, D. R.; Hucke, O.; Kemper, R.; Miller, S. P. F.; Edwards, P. J. Assessing Atropisomer Axial Chirality in Drug Discovery and Development. J. Med. Chem. 2011, 54, 7005-7022.
21. Patricelli, M. P.; Szardenings, A. K.; Liyanage, M.; Nomanbhoy, T. K.; Wu, M.; Weissig, H.; Aban, A.; Chun, D.; Tanner, S.; Kozarich, J. W. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry, 2007, 46, 350-358.
22. MOE: Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite \#910, Montreal, QC, Canada, H3A 2R7, 2022.
23. Liu, Y.; Zhou, P.; Da, H.; Jia, H.; Bai, F.; Hu, G.; Zhang, B.; Fang, J. An Azo Coupling Strategy for Protein 3Nitrotyrosine Derivatization. Chem. Eur. J. 2019, 25, 11228-11232.
24. Brai, A.; Riva, V.; Saladini, F.; Zamperini, C.; Trivisani, C. I.; Garbelli, A.; Pennisi, C.; Giannini, A.; Boccuto, A.; Bugli, F.; Martini, M.; Sanguinetti, M.; Zazzi, M.; Dreassi, E.; Botta, M.; Maga, G. DDX3X inhibitors, an effective way to overcome HIV-1 resistance targeting host proteins. Eur. J. Med. Chem. 2020, 200, 112319.
25. Ruiz-Castillo, P.; Buchwald, S. L. Palladium-catalyzed C-N coupling conditions Applications of PalladiumCatalyzed C-N Cross-Coupling Reactions. Chem. Rev. 2016, 116, 12564-12649
26. Ledneczki, I.; Tapolcsányi, P.; Gábor, E.; Visegrády, A.; Vass, M.; Éles, J.; Holm, P.; Horváth, A.; Pocsai, A.; Mahó, S.; Greiner, I.; Krámos, B.; Béni, Z.; Kóti, J.; Káncz, A. E.; Thán, M.; Kolok, S.; Laszy, J.; Balázs, O.; Bugovits, G. Némethy, Z. Discovery of novel positive allosteric modulators of the $\alpha 7$ nicotinic acetylcholine receptor: Scaffold hopping approach. Eur. J Med Chem. 2021, 214, 113189.
27. Jiang, M.; Xiang, H.; Zhu, F.; Xu, X.; Deng, L.; Yang, C. Efficient Pd-catalyzed domino synthesis of 1-phenyl-1H-indol-2-amine and 5-amino-indolo[1,2-a]quinazoline derivatives. Org. Biomol. Chem. 2015, 13, 10122-10126.
28. Brooks, P. R.; Wirtz, M. C.; Vetelino, M. G.; Rescek, D. M.; Woodworth, G. F.; Morgan, B. P.; Coe, J. W.; Boron Trichloride/Tetra-n-Butylammonium lodide: A Mild, Selective Combination Reagent for the Cleavage of Primary Alkyl Aryl Ethers. J. Org. Chem. 1999, 64, 9719-9721.
29. Ghaffar, T.; Parkins, A.W. A new homogeneous platinum containing catalyst for the hydrolysis of nitriles. Tetrahedron Lett. 1995, 36, 8657-8660.
30. Yamanaka, H.; Ogawa, S.; Konno, S.; Studies on pyrimidine derivatives. XXI. Nucleophilic substitution of 4chloropyrimidines and related compounds with carbanions. Chem. Pharm. Bull. 1981, 29, 98-104.
31. Schnyder, A.; Indoleseb, A. F.; Maetzkec, T.; Wengerd, J.; Blasera, H.-U. A Convenient Protocol for the Synthesis of Hindered Aryl Malononitriles. Synlett, 2006, 18, 3167-3169.
32. Demmer, C. S.; Møller, C.; Brown, P. M. G. E.; Han, L.; Pickering, D. S.; Nielsen, B.; Bowie, D.; Frydenvang, K.; Kastrup, J. S.; Bunch, L. Binding Mode of an α-Amino Acid-Linked Quinoxaline-2,3-dione Analogue at Glutamate Receptor Subtype GluK1. ACS Chemical Neuroscience, 2015, 6, 845-854.
33. Majetich, G.; Yu, J. Synthesis of (\pm)-14-epi-hydroxydolasta-1(15),7,9-triene and (\pm)-7-epi -acetoxy-14-epi-hydroxydolasta-1(15),8-diene. Can. J. Chem. 2012, 90, 75-84.
34. Ellis, G. P.; Romney-Alexander, T. M.; Cyanation of aromatic halides. Chem. Rev. 1987, 87, 779-794
35. Miyaura, N.; Suzuki, A. Suzuki Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457-2483.
36. Doyle, M. P.; Siegfried, B.; Dellaria, J. F. Alkyl nitrite-metal halide deamination reactions. 2. Substitutive deamination of arylamines by alkyl nitrites and copper(II) halides. A direct and remarkably efficient conversion of arylamines to aryl halides. J. Org. Chem. 1977, 42, 2426-2431.
37. Bateman, K. P.; Castonguay, G.; Xu, L.; Rowland, S.; Nicoll-Griffith, D. A.; Kelly, N.; Chan, C.-C. J. Chromatogr. B 2001, 754, 245-251.
38. Kabsch, W. Acta Crystallogr. D. Biol. Crystallogr. 2010, 66, 125-132.
39. McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658-674.
40. Adams, P.D.; Afonine, P. V.; Bunkóczi, G.; Chen, V. B.; Echols, N.; Headd, J. J.; Hung, L. W.; Jain, S.; Kapral, G. J.; Kunstleve, G. R.W. The Phenix software for automated determination of macromolecular structures. Methods 2011, 55, 94-106.
41. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 486-501.
42. Morin, A.; Eisenbraun, B.; Key, J.; Sanschagrin, P. C.; Timony, M. A.; Ottaviano, M.; Sliz, P. Collaboration gets the most out of software. Elife 2013, 2013, 1-6.
43. Obafemi, C. A.; Pfleiderer, W. Synthesis and Some Reactions of 3-Chloro-2-(cyanomethylene)-1,2dihydroquinoxalines. Molecules 2004, 9, 223-231.
44. Szychowski, J.; Liu, B.; Dietrich, E.; Vallée, F.; Perryman, A.; Truchon, J.-F.; Papp, R.; Beaulieu, P. Compounds, pharmaceuticals compositions, and methods of preparing compounds and of their use. 2021 WO2021/195781.

