The onset of CVD graphene formation on γ-Al₂O₃ is promoted by unsaturated CH₂ end

Qi Zhao^a, Masanori Yamamoto^b, , Kaoru Yamazaki^{c†}, Hirotomo Nishihara^b, Rachel Crespo-Otero^a*, Devis Di Tommaso^a*

^a Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK

^c Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan

[†]Present Address: RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351–0198, Japan

Corresponding Authors: r.crespo-otero@qmul.ac.uk, d.ditomaso@qmul.ac.uk

Abstract

Chemical vapor deposition of methane onto a template of alumina (Al_2O_3) nanoparticles is a prominent synthetic strategy of graphene meso-sponge, a new class of nanoporous carbon materials consisting of single-layer graphene walls. However, the elementary steps controlling the early stages of graphene growth on Al_2O_3 surfaces are still not well understood. In this study, density functional calculations provide insights into the initial stages of graphene growth. We have modelled the mechanism of CH₄ dissociation on (111), (110), (100), and (001) γ -Al₂O₃ surfaces. Subsequently, we have considered the reaction pathway leading to the formation of a C6 ring. We found the γ -Al₂O₃(110) and γ -Al₂O₃(100) are both active for CH₄ dissociation, but the (100) surface has a higher catalytic activity towards the carbon growth reaction. The overall mechanism involves the formation of the reactive intermediate CH₂* that then can couple to form $C_n H_{2n}^*$ (n = 2-6) species. The unsaturated CH₂ end promotes the sustained carbon growth in a nearly barrierless process. Also, the short length between terminal carbon atoms leads to strong interactions, which might lead to the high activity among unsaturated CH₂* of hydrocarbon chain. Analysis of the electron localization and geometries of the carbon chains reveal the formation of C-Al- σ bonds with the chain growing towards the gas rather than C-Al- π bonds covering the γ -Al₂O₃(100) surface. This growth behaviour prevents catalysis poison during the initial stage of graphene nucleation.

Key Words: CH₄, carbon growth, graphene, γ-Al₂O₃, density functional calculations

1. Introduction

Graphene, the atomic thick layer of carbon, has been called a 'wonder material' due to its superior properties such as its high charge carrier mobility, high optical transmissivity, high tensile strength, and excellent thermal conductivity¹⁻⁴. Geim and Novoselov first produced graphene by using mechanical exfoliation technique with Scotch tape[®], which provides high

^b Advanced Institute for Materials Research (WPI-AIMR) / Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2–1–1 Katahira, Aoba, Sendai 980–8577, Japan

quality graphene, i.e., monolayer and defect-free¹. However, this method is only applicable to small-area production. A variety of methods have then been developed to produce large-area and high-quality graphene including chemical exfoliation¹, electrochemical exfoliation^{5, 6}, chemical synthesis^{7, 8}, and chemical vapor deposition (CVD)^{9, 10}. Among these techniques, CVD is one of the most promising synthetic methods because it can produce monolayer graphene over a large area^{7, 8, 11-14}.

Various hydrocarbon feedstocks have been successfully used as carbon sources, ranging from gases such as methane (CH₄)^{3, 15, 16} and ethylene¹⁷, liquids such as benzene¹⁸, to solids such as polymethylmethacrylate (PMMA)¹⁹ and amorphous carbon thin films^{20, 21}. Since it can generate single-layered graphene (SLG), the most popular combination of carbon feedstock and substrate for graphene production is CH₄ and Cu²². In addition to Cu, different metal substrates, including Ni^{14, 23-26}, Ru²⁷⁻²⁹, Ir³⁰⁻³², Co^{33, 34}, Fe³⁵, Au³⁶, Rh³⁷, Pt^{38, 39}, and their alloys^{40, 41}, have been used for CVD synthesis of graphene films. Also, graphene layers can directly grow on insulating substrates such as SiC^{41, 42}, sapphire⁴³, SiO₂^{44, 45}, and h-BN^{46, 47}.

Recently, oxides of earth abundant catalysts without noble metal supporting like MgO⁴⁸, CaO^{49} and $Al_2O_3^{50}$ have been reported as substrates in the synthesis of novel graphene mesosponge (GMS), a new class of mesoporous carbon materials consisting mainly of single-layer graphene walls with an unique set of properties compared to traditional graphene materials: higher surface area, more developed mesopores, higher oxidation resistance^{51, 52}, higher softness and elasticity, lower bulk modulus, and better force-driven reversible liquid-gas phase transition⁵³. Hence, a better understanding of the reaction mechanisms is required to modify the catalytic sites and make them more active in the processes involved. These processes include CH₄ activation, formation of carbon-hydrogen nuclei, and the subsequent edge growth of graphene islands. By combining experiments and density functional theory (DFT), we previously found that oxygen vacancies on the metal oxide surface of $\gamma\text{-Al}_2\text{O}_3{}^{54,\;55}$ play an influential role on the CH₄* activation. For further graphene growth study, Park et al.⁵⁵ have reported calculations of graphene nucleation mechanism on γ -Al₂O₃, but in their work, the hypothesis was that growth occurs from adsorbed C* atoms. Alister J. Page et al.⁵⁶ have also reported graphene nucleation on γ -Al₂O₃ using a simplified surface model that did not consider hydroxylated surfaces, which we recently demonstrated to remain during realistic experimental conditions⁵⁴.

In this work, we focus on the initial stages of graphene nucleation on hydroxylated atomistic models of γ -Al₂O₃(110) and γ -Al₂O₃(100) using DFT calculations, transition-state modelling, and electron localization function analysis. In addition to the complete dehydrogenation of

CH₄* to C* and subsequent sequential formation of graphene nuclei, we found the methylene (CH_2^*) coupling path to be the lowest energy pathway to the growth of graphene. Our calculations indicate that the radical CH₂* is involved in the CH₄ conversion into various $C_n H_{2n}^*$ (n = 2-6) intermediates during the formation of graphene on γ -Al₂O₃(100) in the CVD processes. We also found that the CH₄* activation and nucleation occur preferentially on the γ -Al₂O₃(100) surface rather than γ -Al₂O₃(110).

2. Computational details

DFT calculations were performed by using the "Vienna ab initio simulation package" (VASP.5.4.1). We used the Perdew-Burke-Ernzerhof (PBE) generalized-gradient approximation (GGA) for the exchange and correlation terms⁵⁷, under a spin-polarized model and the Grimme's-D3 dispersion correction⁵⁸, which provides a more accurate description of the ionic induce dipole interaction than standard DFT-GGA methods⁵⁹. A plane-wave basis set was employed within the framework of the projector augmented wave method⁶⁰. Transition states (TSs) for the elementary reactions were located using the climbing image nudged elastic band (CI-NEB) method⁶¹. The convergence criteria for both TS searching and single point calculation were 0.05 eV Å⁻¹. We used a Monkhorst-Pack k-point grid of $(3 \times 3 \times 1)$ and the plane-wave cut-off was 450 eV. All atoms were relaxed during the structural optimization of γ -Al₂O₃ and reaction intermediates.

Crystallographic structure of bulk γ-alumina			
Space group	P21/m	experimental value	

	1
5.538	5.587
8.347	8.413
8.024	8.068
90.603	90.59
Position	(x, y, z)
	5.538 8.347 8.024 90.603 Position

Figure 1. The bulk cell of γ -Al₂O₃ (red and blue sphere represent the O anions and Al cations respectively). Parameters of optimized γ -Al₂O₃ bulk and experiment value are listed in the table ⁶².

IR experiments showed that isolated hydroxyl groups (around 3701 cm⁻¹) at the γ -Al₂O₃ surfaces are present even after annealing at 900 °C for 30 min⁵⁴. Starting from the optimized bulk structure with the parameters shown in **Fig. 1**, we built a $p(1 \times 1)$ slab of partially hydrated γ -Al₂O₃ (100) surface containing 4 atomic layers of the oxide and 15 Å vacuum. The

mechanisms of CH₄ activation and carbon nucleation were also investigated using the OHcovered γ -Al₂O₃ (111), γ -Al₂O₃ (110) and γ -Al₂O₃ (001) surfaces. These models are shown in **Fig. 2**. Herein we have mainly modelled the reactions assuming the tetrahedrally-coordinated (4-coordinated) Al as the active site because we have previously shown that these Al centers to be the most favorable towards the CH₄ activation⁵⁴. The adsorption energies were computed using the following expression:

$$E_{ads} = E(adsorbate + slab) - E(adsorbate) - E(slab)$$
(1)

where the first term is the energy of the optimized surface slab with the adsorbate, the second term is the energy of the isolated optimized adsorbate molecule, and the third term is the energy of the optimized bare surface slab. Negative values of E_{ads} correspond to an exothermic adsorption process.

Figure 2. Top view of CH₄* adsorption models on (a) γ -Al₂O₃(111); (b) γ -Al₂O₃(110); (c) γ -Al₂O₃(100); (d) γ -Al₂O₃(001). (Red, blue, gray, and white spheres represent the O, Al, C and H atoms respectively).

3. Results and Discussion

3.1 Methane activation on y-Al₂O₃

We report the calculations of the intermediates and transition states of the first two steps of the CH₄* dehydrogenation, CH₄* \rightarrow CH₃* + H* and CH₃* + H* \rightarrow CH₂* + 2H*. The profiles in **Fig. 3(b)** show the ability to activate CH₄* depending on the surface of γ -Al₂O: (100), (110), (111), and (001). The structures of the intermediates and transitions states on the γ -Al₂O₃ (100) surface are reported in **Fig. 3(a)**. For the other surfaces, these structures are shown in **Fig. S2** of Supporting Information.

On γ -Al₂O₃ (100), the exothermic adsorption of CH₄* ($E_{ads} = -0.20$ eV) is followed by the breakage of the first C–H bond with a barrier of 1.20 eV and a reaction energy of 0.10 eV. The subsequent dehydrogenation of CH_3^* has a barrier of 1.32 eV and reaction energy of -0.06 eV. The barriers for the dissociate step $CH_4^* \rightarrow CH_3^* + H^*$ on the (111), (001), and (110) are 1.92 eV, 1.46 eV, and 1.66 eV, respectively (Fig. 3(b)). The subsequent dehydrogenation step, CH₃* \rightarrow CH₂* + H*, requires even higher barriers. Consequently, the first two CH₄* dehydrogenation steps are kinetically favorable on the γ -Al₂O₃ (100) surface. Martínez et al. reported that CH₂* leads to spontaneous C–C chain growth⁶³. Hence, the ability to promote the CH₃* dehydrogenation step to generate a stable CH₂* species will also assess the catalytic activity towards carbon growth. However, stable CH₂* will be a trapped species on (111) surface due to unfavorable thermodynamic and kinetic conversion energies depicted in the blue line of Fig. 3(b). These calculations indicate the (100) and (110) surfaces as the most catalytically active for CH4* activation. We have considered these y-Al2O3 surfaces to investigate the subsequent steps of CH₂* coupling that initiates the graphene growth. Note that the (111) surface is more unstable than the (100) and (110) surfaces⁶⁴ and the (111) surface nearly does not contribute to the CH₄ activation.

Figure 3. (a) The structures of intermediates and translation states of the first two CH₄* dehydrogenation steps on the γ -Al₂O₃ (100) surface. (Red, blue, gray, and white spheres represent the O, Al, C, and H, respectively); (b) The energy profiles of the first two steps of the CH₄* dehydrogenation, CH₄* \rightarrow CH₃* + H* and CH₃* \rightarrow CH₂* + H*, on the γ -Al₂O₃ (001), γ -Al₂O₃ (111), γ -Al₂O₃ (110) and γ -Al₂O₃ (100) surfaces.

The CH₄ molecules interacts significantly with the Al₂O₃ (110) surface with an adsorption energy of -2.44 eV (**Fig. 3(b)**). According to the volcano-type relationship between activity and bond strength illustrated in the Sabatier principle⁶⁵, the strong adsorbed CH₄ would tightly bound on γ -Al₂O₃ (110) hindering the next step of the reaction. On the other hand, Park *et al.*^{55, 66} and Cholewinski *et al.*^{55, 66} reported that γ -Al₂O₃ (110) can have different levels of hydroxyl coverages that in turn could affect the strength of CH₄* interaction with the surface. To resolve this contradiction, we have considered several models of γ -Al₂O₃ (110) with varying OH coverage, from 2.4 OH/nm² (2OH; one H₂O molecule per supercell) to 9.8 OH/nm² (8OH, four H₂O molecules per supercell). These models are shown in **Fig. S3** of Supporting Information. As shown in **Fig. S1**, the activation barriers of the first CH₄ dehydrogenation step on the 6OH and 8OH models are twice the ones of 2OH and 4OH. For the subsequent dehydrogenation step, the high barrier on the 4OH model also suggests no catalytic activation of the C–H bond on this surface. Consequently, the catalysis of the C–H breaking can only occur for low OH coverage of γ -Al₂O₃ (110).

3.2 Contribution of the (100) and (110) surfaces on the CH₂ generation

Here, we evaluate the contributions of the (100) and (110) surfaces on the CH₄ activation in terms of methane activation rate constant *k*. CH₂ generation on the γ -Al₂O₃ surface is a pseudo-first order reaction on the methane partial pressure ⁵⁴. If the entropy contribution is negligible, *k* can be approximated with an Eyring-like equation as a function of reaction temperature *T*,

$$k(T) \sim \frac{k_{\rm B}T}{h} \exp\left[-\frac{E^*}{k_{\rm B}T}\right],$$
 (2)

where k_B and *h* are the Boltzmann and Planck constants, and E^* represents effective activation energy which experimentally measurable via Arrhenius plot⁶⁷. For the (100) surface, the CH₄ is weakly physiosorbed on the surface (E_{ads} (CH₄^{*}) = -0.20 eV) and E^* can be calculated as the energy difference between E_{ads} (TS2) and E_{ads} (CH₄). For (110), the CH₄ is strongly physiosorbed on the surface (E_{ads} (CH₄^{*}) = -2.44 eV) and the E^* can be obtained as the difference between E_{ads} (TS2) and E_{ads} (CH₄^{*})⁶⁷. The effective activation energies and rate constants at T = 900 °C are summarized in Table 1. The value of $E^* = 1.22$ eV for (100) reasonably agrees with the experimental one (1.29 eV). The obtained value of k(T = 900 °C) is 1.40 x 10⁸ s⁻¹. For (110) with 2 OH groups, the value of $E^* = 4.78$ eV is too large and consequently the rate is negligibly small (k(T = 900 °C) = 7.14 x 10⁻⁸ s⁻¹). These calculations indicate that the generation of CH₂ mostly occurs on the (100) surface. The hydroxylated surface can generate CH₃ as shown in Figure S1, however subsequent dehydrogenation is kinetically unfavorable. Hereafter, we focus on the reactions on the (100) surface.

Surface	<i>E</i> * (eV)	$k (s^{-1})$
(100)	1.22	1.40 x 10 ⁸
(110) 2OH	4.78	7.14 x 10 ⁻⁸
Experiment ⁵⁴	1.29	7.01 x 10 ^{7a}

Table 1. Calculated effective activation energies (E^*) for the generation of CH₂ and rate constants k(T) at T = 900 °C obtained using Eq. 2. a) This rate constant was estimated using the experimental barrier.

3.3 Onset of graphene formation: methylene coupling and carbon chain growth

We then investigated a complete dehydrogenation of CH₄ on the γ -Al₂O₃ (100) surface as a representative surface leading to the formation of an adsorbed carbon atom. The complete dehydrogenation of CH₄ on the γ -Al₂O₃ (100) surface leads to the formation of an adsorbed carbon atom. Fig. 4(a) shows that while the first two dehydrogenation steps $CH_4^* \rightarrow CH_3^* +$ H* and $CH_3^* + H^* \rightarrow CH_2^* + 2H^*$ are both favourable, the subsequent steps $CH_2^* + 2H^* \rightarrow$ $CH^* + 3H^*$ and $CH^* + 3H^* \rightarrow C^* + 4H^*$ are endothermic with high activation barriers. Therefore, the CH₂* species could be a key intermediate during the CVD growth of graphene on the γ -Al₂O₃ (100) surface. But since the pyrolytic carbon deposition of CH₄ occurs at temperatures higher than 800°C⁵⁴, CH₄ could be dissociated into CH₃*, CH₂*, CH* and C* species on the catalytic surface. To verify the relative stability of these species, we have compared in **Fig. 4(b)** the binding energies (E_b) of the CH_n (n = 0-4) on γ -Al₂O₃ (100). For CH₄*, CH₃*, and CH₂*, the value of E_b is between 0.2 and 0.62 and 0.49 eV, but for CH* and C* are 4.3 and 4.1 eV, respectively. According to the Sabatier principle, the strong binding of CH* and C* on γ -Al₂O₃ (100) may poison the active centres. We may conclude that the CVD growth of graphene on alumina does not involve CH* and C* species. Therefore, we hypothesize the next steps in the formation of C–C bonds on the γ -Al₂O₃ (100) surface are the coupling reactions $2CH_3^* \rightarrow C_2H_6^*$ (Fig. 4(c)) and $2CH_2^* \rightarrow C_2H_4^*$ (Fig. 4(d)). The pathway leading to $C_2H_4^*$ in Fig. 4(d) has a lower activation barrier (0.19 eV) compared to $C_3H_6^*$ (0.82 eV) shown in Fig. 4(c). Moreover, the subsequent coupling of CH_3^* with the $C_2H_6^*$ intermediate is unlikely to occur as the CH₃ ends of the molecule is saturated, inhibiting further growth as shown in Fig. S4 and Fig. S5 of Supporting Information. We have also calculated that the dehydrogenation of C₂H₆* into C₂H₄* is unlikely to occur as this reaction is both kinetically hindered ($E_a = 4.5 \text{ eV}$) and thermodynamically unfavourable ($\Delta E = 1.7 \text{ eV}$) as shown

in **Fig. S6**. From the above results, we can conclude that C_2H_4* generated by the CH_2* coupling reaction is the key intermediate for the subsequent carbon growth steps.

Figure 4. Energy profiles of the CH₄* dissociation, CH_x* (x = 0–4) binding, and CH_y* (y = 2, 3) coupling reaction on the γ -Al₂O₃ (100) surface. (a) Complete CH₄* dehydrogenation; (b) Binding energies of CH₄*, CH₃*, CH₂*, CH* and C; (c) CH₃* coupling; (d) CH₂* coupling. The asterisk (*) denotes a molecule adsorbed on the γ -Al₂O₃ (100) surface.

Starting from C₂H₄*, we have computed the methylene coupling processes to form linear C_nH_{2n}* (n = 3-6) species and the C₆H₁₂ ring unit, the minimal unit of graphene on γ -Al₂O₃ (100). The energy profile of the chain growth reactions and the corresponding snapshots are shown in **Fig. 5 and 6**, respectively. **Fig. 5** shows that like the CH₂* to C₂H₄* coupling reaction, the subsequent methylene coupling processes have low activation barriers and are thermodynamically favorable with each adsorption step, C_nH_{2n} + CH₂(g) \rightarrow C_nH_{2n} + CH₂*, having favorable reaction energies in the order of -2 eV. The barrier of formation of C₂H₄*, C₃H₆*, C₅H₁₀*, C₆H₁₂* and the C6 ring are all well below 1 eV. The exception is the step CH₂* + C₃H₆* \rightarrow C₄H₈* with an activation energy of 1.87 eV, whose explanation will be shown in the next section. In addition to coupling with another surface CH₂* unit to achieve carbon chain growth, both unsaturated CH₂* ends are also active to couple with each other to form a carbon ring shown in **Fig. S7**. This reaction undergoes the barrier of 0.34 eV and the reaction energy of -3.09 eV. These results confirm that the role of unsaturated CH₂* end during the graphene nucleation stage which makes the initial growth process to be highly favorable.

Figure 5. Energy profile of the formation of $C_nH_{2n}^*$ (n = 2-6) species via CH_2^* coupling on the γ -Al₂O₃ (100) surface.

Figure 6. Structures of the formation of $C_nH_{2n}^*$ (n = 2-6) species via CH_2^* coupling on the γ -Al₂O₃ (100) surface.

3.4 The role of unsaturated CH₂ end in promoting graphene growth

To understand the process of CH₂* coupling leading to the carbon chain growth on the γ -Al₂O₃ (100) surface, we have computed the electron localization function (ELF) of the linear C_nH_{2n} (n = 2-6) intermediates. The ELF maps in **Fig. 7** represent the electron cloud localized and delocalized around atoms. Using this information, we can determine critical points, chemical bonds, and regions relevant for reactivity (red and orange) (**Fig. 8**).

The ELF map for the C₂H₄* structure in **Fig. 7(b)** shows a localized electron around one end of CH₂* (red area) and a lower electronic charge density distribution around the other end. This weakly saturated CH₂* end allows coupling with free CH₂* on the γ -Al₂O₃ (100) surface making the formation of C₂H₄* highly favorable (**Fig.5**). When the longer carbon chains C₄H₈*, C₅H₁₀* and C₆H₁₂* are formed, the sole CH₂* end of C_nH_{2n}* is located on the γ -Al₂O₃ (100) surface as shown in **Figs. 7(d)**-(**f**). Consequently, the initial growth direction of carbon occurs away from the surface and the long carbon species form C-Al- σ bond with γ -Al₂O₃ (100) surface rather than grow along the catalytic surface forming C-Al- π bond. Otherwise, the accumulation of C_nH_{2n}* species on the surface would poison the catalyst in the very early stage by covering these heavy carbon species on the surface, which protect CVD graphene nucleation reaction sites on γ -Al₂O₃ (100) to remain active. This 'loop' away surface carbon growth mechanism previously proposed by Zhu *et al.*⁶⁸ in the case of Ni clusters.

Figure 7. The electron localization function maps and corresponding side view structures with localized electrons of (a) $C_2H_6^*$; (b) $C_2H_4^*$; (c) $C_3H_6^*$; (d) $C_4H_8^*$; (e) $C_5H_{10}^*$; (f) $C_6H_{12}^*$. Ongoing from the blue to the red area, there is an increase in electron density, i.e., red areas indicate electron localization.

We can use the ELF analysis to rationalize the high activation energy (1.87 eV) of the $CH_{2}^{*} + C_{3}H_{6}^{*}$ coupling step shown in **Fig. 5**. The ELF map of $C_{3}H_{6}^{*}$ (**Fig. 7**(c)) shows that the electron density of both ends of CH_{2}^{*} in $C_{3}H_{6}^{*}$ are highly localized on the catalyst

surface because the C atoms of the methylene groups are both coordinated to the sites on the alumina surface. This situation leads to a high barrier for the $CH_2^* + C_3H_6^* \rightarrow C_4H_8^*$ step (**Fig.** 5) as the CH_2^* ends are both saturated. Unsaturated CH_2^* species play, therefore, a crucial role in promoting the nucleation reaction on γ -Al₂O₃.

The length of the C–C bonds of the C_nH_{2n} species binding on γ -Al₂O₃(100) expands with the chain length (**Fig. 8**), which could support the carbon units growing away from the Al₂O₃(100) surface with the formation of C-Al- σ bonds rather than C-Al- π bonds covering the surface⁶³. In addition, from **Fig. 8**, the C-C length between carbon atoms close to the solid surface is longer than the C-C length of carbon atoms away from the surface. For instance, the structure of C₆H_{12*} in **Fig. 8(g)** shows that for the C atoms in the middle positions, C1, C2, C3 and C4, the distances are d(C1-C2) = 1.54 Å, d(C1-C3) = 1.54 Å, d(C2-C4) = 1.54 Å. In comparison, for the terminal C atoms, C5 and C6, d(C4-C6) = 1.49 Å and d(C3-C5) = 1.49 Å. A similar situation can be found in C₄H₈* and C₅H₁₀*. Shorter bond lengths between terminal carbons correspond to stronger interatomic interaction, which might contribute to the high activity among unsaturated CH₂* of the hydrocarbon chain.

Figure 8 The structures of (a) $C_2H_6^*$, (b) $C_2H_4^*$, (c) $C_3H_6^*$, (d) $C_4H_8^*$, (e) $C_5H_{10}^*$, (f) $C_6H_{12}^*$ on γ -Al₂O₃(100) and (g) bond length in C_6H_{12} structure.

3.5 Dehydrogenation of C_nH_{2n} species

We have demonstrated that the methylene coupling reaction on γ -Al₂O₃ leading to C_nH_{2n} species is favorable compared to complete CH₄* dehydrogenation (**Figs. 3-4**). Consequently, according to our simulations the species involved in the early stage of graphene growth will contain hydrogen. A possible picture is that small carbon-containing species are not stable without H until they grow to a defined size. **Figure. 9** shows the dehydrogenation ability of hydrocarbon chains. The intermediates C₃H₆*, C₄H₈*, C₅H₁₀* and C₆H₁₂* will not lose hydrogen due to the demanding activation barrier and the significantly endothermic energies. Xie et al. have reported that similar sequential PT on a Lewis acid/base pair will also activate intermediate hydrocarbons including propane to give unsaturated hydrocarbons and hydrogen with a comparable barrier of C-H activation⁶⁹. Even after the formation of C6 ring, it is still hard to desorb H from the hydrocarbon species depicted in **Fig. S8**. However, in the early nucleation stage, H transfer among carbon atoms is much easier than H desorption from carbon (**Fig. S9**).

These results indicate that the initial steps of graphene growth involve carbon species that contain hydrogens and confirm that the process does not involve the formation of single carbon. These hydrogens could also hinder the formation of a strong binding carbon island covering the catalyst surface. With this picture, an interesting question is when hydrogen-free graphene flake would nucleate. In perspective, we look forward to answering this question with our future work and filling the gap between hydrogen-free graphene nucleation and the hydrocarbon sub-intermediates in the nucleation stage.

Figure 9. The energy profiles for the dehydrogenation of carbon chains to form H₂ gas (**a**) $C_3H_6^*$; (**b**) $C_4H_8^*$; (**c**) $C_5H_{10}^*$ and (**d**) $C_6H_{12}^*$. The structures of (**e**), (**f**) $C_3H_6^*$ UD and RL desorption; (**g**), (**h**) $C_4H_8^*$ UD and RL desorption, (**i**), (**j**) $C_5H_{10}^*$ UD and RL desorption, (**k**), (**l**) $C_6H_{12}^*$ UD and RL desorption. on γ -Al₂O₃(100). (Red spheres represent the O atoms; blue spheres represent the Al atoms; gray spheres represent the C atoms; white spheres represent the hydrogen atoms). The asterisk (*) denotes a molecule adsorbed on the Al₂O₃(100) surface.

RL: two H atoms on the right and left neighbour carbons to form H_2 ; UD: two H atoms on the up and down same carbon to form H_2 .

Conclusions

We have reported a systematic investigation of the mechanism of CH₄* dissociation and formation of C_nH_{2n} (n = 2-6) species on γ -Al₂O₃. We found the (100) to be the most active for the CH₄* dissociation compared with other low-index surfaces of γ -Al₂O₃. On this surface, the methylene coupling to C₂H₄* is kinetically and thermodynamically more favourable than the complete CH4* dehydrogenation to form C. Starting from C2H4*, we have modelled the formation of linear $C_n H_{2n}^*$ (n = 3–6) species and the $C_6 H_{12}$ ring unit, which is the minimal graphene unit. We found these early stages of graphene nucleation are nearly barrierless. ELF and structural analysis of carbon chains reveal that the early stages of nucleation involve the formation of C–Al σ bonds with chains "looping" away from the catalysis surface and unsaturated CH₂* end remaining active. This is favorable for the initial steps of graphene growth. Our calculations show that hydrogenated carbon species are involved in the early stages of graphene nucleation. These protective bonded hydrogens could weaken the direct C-Al interaction, which could remain active sites for heavy carbon covering the γ -Al₂O₃ (100) surface. In this work, our calculations illustrate the first steps of graphene nucleation on γ - Al_2O_3 surfaces and give insight into the role of different active species during the catalytic process

Supplementary Material

See the supplementary material for the energy diagram of the first two CH₄ dehydrogenation steps on γ -Al₂O₃ (110) with different OH coverages (Figure S1), the structures in intermediates and translation states in the first two steps of the CH₄ dehydrogenation on γ -Al₂O₃ surfaces (Figure S2), structures of γ -Al₂O₃ (110) with different OH coverage (Figure S3); NEB searching for C₂H₆ interacting with surface flexible carbon species (Figure S4) and NEB intermediates structures for C₂H₆ interacting with surface flexible carbon species (Figure S5); energy diagram and structures of the C₂H₆ dehydrogenation (Figure S6); energy diagram and structures of C₆H₁₂ ring formation process (Figure S7); energy diagram and structures of C₆H₁₂ ring desorption (Figure S8); energy diagram and structures for H-transfer and H desorption after carbon ring (Figure S9).

Acknowledgement

This work was supported by Cooperative Research Program for CORE lab of "Five-star Alliance", JST SICORP Grant no. JPMJSC2112, Ensemble Grant for Early Career Researchers at Tohoku University, and the UK's Royal Society International Exchanges Cost Share (IEC\R3\193106). Q.Z. thanks the China Scholarship Council for financial support. K.Y. is grateful for the financial support from Building of Consortia for the Development of Human Resources in Science and Technology funded by MEXT and Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency (JST CREST, Grant No. JPMJCR16P3). We are grateful to the UK Materials and Molecular Model-ling Hub for computational resources, which is partially funded by EPSRC (EP/P020194/1). Via our membership of the UK's HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). This research utilized Queen Mary's Apocrita HPC facility, supported by QMUL Research-IT. http://doi.org/10.5281/zenodo.438045.

Reference

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, *Science*, 2004, **306**, 666-669.

- 2. A. A. Balandin, *Nature Materials*, 2011, **10**, 569-581.
- 3. A. A. Balandin, Nature Nanotechnology, 2010, 5, 574-578.
- 4. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science, 2008, 321, 385-388.

5. P. Yu, S. E. Lowe, G. P. Simon and Y. L. Zhong, *Current Opinion in Colloid & Interface Science*, 2015, **20**, 329-338.

6. J. Liu, Springer Singapore, 2017.

7. S. Eigler, M. Enzelberger-Heim, S. Grimm, P. Hofmann, W. Kroener, A. Geworski, C. Dotzer, M. Röckert, J. Xiao and C. Papp, *Advanced Materials*, 2013, **25**, 3583-3587.

8. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, *Carbon*, 2007, **45**, 1558-1565.

- 9. A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer and J. Kong, *Nano Res*, 2009, **2**, 509-516.
- 10. X. Li, W. Cai, L. Colombo and R. S. Ruoff, ACS Nano Letters, 2009, 9, 4268-4272.

11. K. Parvez, S. Yang, X. Feng and K. Müllen, Synthetic Metals, 2015, 210, 123-132.

12. Y. Zhang, L. Zhang and C. Zhou, ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46, 2329-2339.

13. M. A. Azam, N. N. Zulkapli, N. Dorah, R. N. A. R. Seman, M. H. Ani, M. S. Sirat, E. Ismail, F. B. Fauzi, M. A. Mohamed, B. Y. Majlis, *ECS Journal of Solid State Science and Technology*, 2017, **6**, M3035-M3048.

14. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, ACS NANO LETTERS, 2009, 9, 30-35.

15. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung and E. Tutuc, *SCIENCE*, 2009, **324**, 1312-1314.

16. J. K. Wassei, M. Mecklenburg, J. A. Torres, J. D. Fowler, B. Regan, R. B. Kaner and B. H. Weiller, *SMALL*, 2012, **8**, 1415-1422.

- 17. L. Gao, J. R. Guest and N. P. Guisinger, ACS Nano Letters, 2010, 10, 3512-3516.
- 18. Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang and J. Hou, *ACS Nano*, 2011, **5**, 3385-3390.
- 19. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu and J. M. Tour, *Nature* 2010, 468, 549-552.

20. T. Liang, Y. Kong, H. Chen and M. Xu, Chin. J. Chem, 2016, 34, 32-40.

21. H. Ji, Y. Hao, Y. Ren, M. Charlton, W. H. Lee, Q. Wu, H. Li, Y. Zhu, Y. Wu and R. Piner, ACS *Nano*, 2011, **5**, 7656-7661.

22. P. Wu, W. Zhang, Z. Li and J. L. Yang, Small, 2014, 10, 2136-2150.

23. M. Xu, D. Fujita, K. Sagisaka, E. Watanabe and N. Hanagata, ACS Nano, 2011, 5, 1522-1528.

24. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S.-S. Pei, Appl. Phys. Lett. , 2008, 93, 113103.

25. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, *Nature*, 2009, **457**, 706-710.

26. J. Lahiri, T. Miller, L. Adamska, I. I. Oleynik and M. Batzill, ACS Nano Letters, 2011, 11, 518-522.

27. P. W. Sutter, J.-I. Flege and E. A. Sutter, Nature Materials, 2008, 7, 406-411.

28. E. Loginova, N. C. Bartelt, P. J. Feibelman and K. F. McCarty, *New Journal of Physics*, 2008, **10**, 093026.

29. E. Loginova, N. Bartelt, P. Feibelman and K. F. McCarty, New Journal of Physics, 2009, 11, 063046.

30. E. Loginova, S. Nie, K. Thürmer, N. C. Bartelt and K. F. McCarty, *PHYSICAL REVIEW B*, 2009, **80**, 085430.

31. J. Coraux, M. Engler, C. Busse, D. Wall, N. Buckanie, F.-J. M. Zu Heringdorf, R. Van Gastel, B. Poelsema and T. Michely, *New Journal of Physics*, 2009, **11**, 023006.

32. P. Lacovig, M. Pozzo, D. Alfe, P. Vilmercati, A. Baraldi and S. Lizzit, *Phys. Rev. Lett.*, 2009, **103**, 166101.

33. O. Rader, A. Varykhalov, J. Sánchez-Barriga, D. Marchenko, A. Rybkin and A. M. Shikin, *PhysRevLett.*, 2009, **102**, 057602.

34. D. Eom, D. Prezzi, K. T. Rim, H. Zhou, M. Lefenfeld, S. Xiao, C. Nuckolls, M. S. Hybertsen, T. F. Heinz and G. W. Flynn, *Nano Letters*, 2009, **9**, 2844-2848.

35. N. A. Vinogradov, A. A. Zakharov, V. Kocevski, J. Rusz, K. A. Simonov, O. Eriksson, A. Mikkelsen, E. Lundgren, A. S. Vinogradov, N. Mårtensson and A. B. Preobrajenski, *Physical Review Letters*, 2012, **109**, 026101.

36. S. Nie, N. C. Bartelt, J. M. Wofford, O. D. Dubon, K. F. McCarty and K. Thürmer, *Physical Review B*, 2012, **85**, 205406.

37. E. N. Voloshina, Y. S. Dedkov, S. Torbrügge, A. Thissen and M. Fonin, *Appl. Phys. Lett.*, 2012, **100**, 241606.

38. P. Sutter, J. T. Sadowski and E. Sutter, *Physical Review B*, 2009, **80**, 245411.

39. X. Feng, J. Wu, A. T. Bell and M. Salmeron, *The Journal of Physical Chemistry C*, 2015, **119**, 7124-7129.

40. X. Liu, L. Fu, N. Liu, T. Gao, Y. Zhang, L. Liao and Z. Liu, *The Journal of Physical Chemistry C*, 2011, **115**, 11976-11982.

41. T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu, Z. Liu, H. Wang, H. Wang, F. Ding, Q. Yu, X. Xie and M. Jiang, *Nature Materials*, 2016, **15**, 43-47.

42. C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov and U. Starke, *Physical Review Letters*, 2009, **103**, 246804.

43. M. K. Jeonghyun Hwang, Dorr Campbell, Hussain A. Alsalman, Joon Young Kwak, Shriram Shivaraman, Arthur R. Woll, Arunima K. Singh, Richard G. Hennig, Sandeep Gorantla, Mark H. Rümmeli, and Michael G. Spencer, *ACS Nano*, 2013, **7**, 385-395.

44. J. Chen, Y. Wen, Y. Guo, B. Wu, L. Huang, Y. Xue, D. Geng, D. Wang, G. Yu and Y. Liu, *Journal of the American Chemical Society*, 2011, **133**, 17548-17551.

45. H. Bi, S. Sun, F. Huang, X. Xie and M. Jiang, *Journal of Materials Chemistry*, 2012, **22**, 411-416. 46. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi,

P. Jarillo-Herrero and B. J. LeRoy, *Nature Materials*, 2011, **10**, 282-285.

47. W. Yang, G. Chen, Z. Shi, C.-C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang and G. Zhang, *Nature Materials*, 2013, **12**, 792-797.

48. S. Sunahiro, K. Nomura, S. Goto, K. Kanamaru, R. Tang, M. Yamamoto, T. Yoshii, J. N. Kondo, Q. Zhao, A. Ghulam Nabi, R. Crespo-Otero, D. Di Tommaso, T. Kyotani and H. Nishihara, *Journal of Materials Chemistry A*, 2021, **9**, 14296-14308.

49. C. Tang, B. Q. Li, Q. Zhang, L. Zhu, H. F. Wang, J. L. Shi and F. Wei, *Adv. Funct. Mater.*, 2016, **26**, 577-585.

- 50. H. Nishihara, T. Simura, S. Kobayashi, K. Nomura, R. Berenguer, M. Ito, M. Uchimura, H. Iden, K. Arihara, A. Ohma, Y. Hayasaka and T. Kyotani, *Adv. Funct.Mater.*, 2016, **26**, 6418-6427.
- 51. M. Yamamoto, S. Goto, R. Tang, K. Nomura, Y. Hayasaka, Y. Yoshioka, M. Ito, M. Morooka, H. Nishihara, T. Kyotani, ACS Appl. Mater. Interfaces, 2021, **13**, 38613-38622.
- 52. K. Nomura, H. Nishihara, N. Kobayashi, T. Asada, T. Kyotani and E. Science, 2019, 12, 1542-1549.
- 53. K. Nomura, H. Nishihara, M. Yamamoto, A. Gabe, M. Ito, M. Uchimura, Y. Nishina, H. Tanaka,
- M. T. Miyahara and T. Kyotani, Nature Communications, 2019, 10, 2559.
- 54. M. Yamamoto, Q. Zhao, S. Goto, Y. Gu, T. Toriyama, T. Yamamoto, H. Nishihara, A. Aziz, R. Crespo-Otero and D. Di Tommaso, *Chemical Science*, 2022, **13**, 3140-3146.
- 55. J. Park, J. Lee, J.-H. Choi, D. K. Hwang and Y. W. Song, Scientific Reports, 2015, 5, 11839.
- 56. A. J. Page, S. Saha, H.-B. Li, S. Irle and K. J. Morokuma, J. Am. Chem. Soc., 2015, 137, 9281-9288.
- 57. J. P. Perdew, K. Burke and M. Ernzerhof, Physical Review Letters, 1996, 77, 3865-3868.
- 58. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J Chem Phys, 2010, 132, 154104.
- 59. P. E. Blöchl, *Physical Review B*, 1994, **50**, 17953-17979.
- 60. G. Kresse and D. Joubert, Physical Review B, 1999, 59, 1758-1775.
- 61. J. Paier, R. Hirschl, M. Marsman and G. Kresse, J Chem Phys, 2005, 122, 234102.
- 62. X. Krokidis, P. Raybaud, A.-E. Gobichon, B. Rebours, P. Euzen and H. Toulhoat, *The Journal of Physical Chemistry B*, 2001, **105**, 5121-5130.
- 63. L. Martínez, P. Merino, G. Santoro, J. I. Martínez, S. Katsanoulis, J. Ault, Á. Mayoral, L. Vázquez,
- M. Accolla, A. Dazzi, J. Mathurin, F. Borondics, E. Blázquez-Blázquez, N. Shauloff, R. Lebrón-Aguilar,
- J. E. Quintanilla-López, R. Jelinek, J. Cernicharo, H. A. Stone, V. A. de la Peña O'Shea, P. L. de Andres, G. Haller, G. J. Ellis and J. A. Martín-Gago, *Nature Communications*, 2021, **12**, 5937.
- 64. M. Digne, Journal of Catalysis, 2004, 226, 54-68.
- 65. A. J. Medford, A. Vojvodic, J. S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson and J. K. Nørskov, *Journal of Catalysis*, 2015, **328**, 36-42.
- 66. M. C. Cholewinski, M. Dixit and G. Mpourmpakis, ACS Omega, 2018, 3, 18242-18250.
- 67. W. Grünert, Journal, 2012.
- 68. W. Zhu, A. Börjesson and K. Bolton, Carbon, 2010, 48, 470-478.
- 69. Z. Xie, Z. Li, P. Tang, Y. Song, Z. Zhao, L. Kong, X. Fan and X. Xiao, *Journal of Catalysis*, 2021, **397**, 172-182.