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Abstract. Glycosylation reactions are essential but challenging from a conventional chemistry 7 

standpoint. Conversely, they are biotechnologically feasible as glycosyltransferases can transfer a 8 

sugar to an acceptor with perfect regio- and stereo- selectivity, quantitative yields, in a single reaction 9 

and under mild conditions. Low stability is often alleged to be a limitation to the biotechnological 10 

application of glycosyltransferases. Here we show that these enzymes are not necessarily intrinsically 11 

unstable, but that they present both dilution-induced inactivation and low chemostability towards their 12 

own acceptor substrates, and that these two phenomena are synergistic. We assessed 18 distinct GT1 13 

enzymes against three unrelated acceptors (apigenin, resveratrol and scopoletin – respectively a 14 

flavone, a stilbene and a coumarin), resulting in a total of 54 enzyme:substrate pairs. For each pair, we 15 

varied catalyst and acceptor concentrations to obtain 16 different reactions conditions. Fifteen of the 16 

assayed enzymes (83 %) displayed both low chemostability against at least one of the assayed acceptors 17 

at submillimolar concentrations, and dilution-induced inactivation. Further, there is a likely correlation 18 

between sensitivity to reaction conditions and thermal stability of the enzymes, the three unaffected 19 

enzymes having melting temperatures above 55 °C, whereas the full enzyme panel ranged from 37.4 20 

to 61.7 °C. These results are important for GT1 understanding and engineering, as well as for discovery 21 

efforts and biotechnological use. 22 
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Introduction 23 

Glycosylation is one of the most common reactions in the biosphere, yet a particularly challenging one 24 

for conventional synthetic chemistry. Indeed, the need to control both regio- and stereo-selectivity 25 

leads to a succession of reactions, including protecting group manipulations and bond activations, 26 

resulting in low chemical yields, poor atom economy and large amounts of waste. Conversely, 27 

enzymatic glycosylation occurs in a single reaction with unprotected sugars and acceptors, and lends 28 

perfect control over stereoselectivity. Provided with the appropriate enzyme, full control over 29 

regioselectivity, as well as quantitative chemical yields are also feasible. In Nature, glycosylation is 30 

primarily catalyzed by glycosyltransferases, enzymes that transfer a saccharide from an activated sugar 31 

donor to an acceptor molecule. These enzymes are organized in >100 distinct glycosyltransferase 32 

families in the CAZy database (Coutinho et al., 2003; Lombard et al., 2014), with all enzymes within 33 

a family sharing phylogeny, structural fold, and mechanism. The -glycosylation of natural products 34 

is mainly achieved by enzymes from glycosyltransferase family 1 (GT1) (Louveau and Osbourn, 35 

2019). These GT1s are inverting enzymes using -nucleotide sugars as donors, most commonly UDP-36 

sugars, and are thus also termed UGTs, for UDP-dependent glycosyltransferases (Ross et al., 2001). 37 

They catalyze the formation of O-, N-, S- or C-glycosidic bonds. O-glycosylations are the most 38 

common reactions, and are usually promoted by a His-Asp catalytic dyad sharing a proton abstracted 39 

from the acceptor (Scheme 1) (Brazier-Hicks et al., 2007; Teze et al., 2021). The N- and S- mechanisms 40 

are slightly different (Teze et al., 2021), and the C-glycosylation mechanism is related but yet to be 41 

firmly established (Gutmann and Nidetzky, 2013; Putkaradze et al., 2021). GT1  enzymes are relatively 42 

promiscuous, being able to act on a variety of natural products (Offen et al., 2006; Chen et al., 2015; 43 

Zhang et al., 2022), and most GT1s are active against polyphenols (Yang et al., 2018). 44 
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 45 

Scheme 1. Scopoletin glucosylation by GT1s. Amino acids numbers from PtUGT1 (Teze et al., 46 
2021). The enzyme residues are represented in blue, the acceptor in grey and the donor in black. A His 47 
activated by an Asp acts as a general base, increasing the nucleophilicity of the acceptor. The 48 
predominant reaction is the reversible glycosylation of scopoletin, which is the reaction depicted by 49 
the arrows. The enzyme can also catalyze the irreversible hydrolysis of the donor uridine diphosphate 50 
glucose (UDP-Glc). 51 

GT1s have received considerable interest as tools for biotechnological glucosylation (Nidetzky, 52 

Gutmann and Zhong, 2018; Vasudevan and Lee, 2020). Indeed, the possibility to use sucrose synthase 53 

for forming UDP-Glc from UDP and sucrose, and to use lysates from the enzyme’s production as UDP 54 

provider, makes -glucosylation an economically feasible process (Wang et al., 2012; Schmölzer et 55 

al., 2016; Liu and Nidetzky, 2021). However, their stability – a crucial industrial property – has only 56 

been scarcely characterized (Fujiwara et al., 2009; Gao et al., 2020). In a few recent cases (Petermeier 57 

et al., 2021; Bidart et al., 2022), we observed instability, seemingly not intrinsic but dependent on 58 

experimental conditions, and particularly enzyme and acceptors concentrations. Indeed, a non-linear 59 

behavior was observed upon enzyme dilution, particularly at acceptor substrate concentrations in the 60 

millimolar range (Petermeier et al., 2021; Bidart et al., 2022). In order to investigate how widespread 61 

this peculiar behavior is within GT1-catalyzed reactions, we analyzed the effect of 16 reaction 62 

conditions on end-point reaction yields from 18 distinct GT1 enzymes, each against three different 63 

polyphenol acceptors.  64 

  65 
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Materials and Methods 66 

Protein production, purification and storage. Proteins are expressed in One Shot™ BL21 Star™ 67 

(DE3) E. coli cells (ThermoFisher Scientific, USA) cells transformed with pET28a+ plasmids 68 

encoding the various enzymes with a hexahistidine tag and a TEV cleavage site in N-term (plasmids 69 

purchased from Genscript, USA). Protein expression is induced by the addition of 200 μM of 70 

isopropyl--D-galactopyranoside to cultures that had reach an optical density at 600 nm of 0.6 and 71 

continued for 16 h at 293 K. The cultures are then centrifuged, and the pellet is resuspended in 50 mM 72 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 7, 300 mM NaCl, and 20 mM 73 

imidazole. The cell suspension is lysed in a homogenizer (French Press) Avestin Emulsiflex C5 (ATA 74 

Scientific Pty Ltd., Canada), centrifuged and the pellet is discarded. The supernatant is purified by 75 

nickel affinity chromatography on an ÄKTA pure (GE Healthcare, U.S.). The fractions containing the 76 

purified GT1 are pooled, concentrated, buffer exchanged against 25 mM HEPES pH 7, 50 mM NaCl, 77 

and 1 mM dithiothreitol (DTT), then stored at 193 K after flash-freezing in 25 μL aliquots. 78 

 79 

Enzymatic reactions and yield determination. All reactions were performed in flat-bottom, low 80 

sorption 96-well microtiter plates, in the following conditions: 100 μL volume, no stirring, 20 h at 293 81 

K. The reaction components were 10, 20, 40 or 80 mg/L (circa 0.15‒1.2 μM) protein; UDP-Glc 82 

500 μM; 50, 100, 200 or 400 μM aglycon; 25 mM HEPES pH 7. After 20 h, reactions were diluted 83 

25-fold in milli-Q water (10+240 μL), and analyzed by reverse-phase chromatography. Acceptor 84 

consumption was monitored using an Ultimate 3000 Series apparatus (Thermo Scientific) and an 85 

Eclipse Plus C18 3.5 µm 100x4.6 mm analytical column (Agilent). Milli-Q water containing 0.1% 86 

formic acid and acetonitrile were used as mobile phases A and B, respectively. Monitoring and data 87 

handling was operated using the Chromeleon software (Thermo Scientific). A combinations of 88 

isocratic, immediate ramp and gradients at a flow rate of 1 mL/min was used for the analytes separation: 89 
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0–0.5 min, 2% B; 0.5–1.5 min, 35% B; 1.5–3 min, 35–80% B; 3–4.2 min, 98% B; 4.2–5 min, 2% B. 90 

Apigenin and scopoletin were monitored at 340 nm, resveratrol at 300 nm. Data points for which 91 

acceptor consumption did not match products appearance were discarded.  92 

Differential scanning fluorimetry (DSF). Melting temperatures (Tm) of the different UGTs were 93 

measured by DSF using the Protein Thermal Shift Dye Kit (ThermoFisher Scientific) and a qPCR 94 

QuantStudio5 machine. Dye solution (1000x) and acceptors (resveratrol, scopoletin, apigenin, 95 

quercetin, pinoresinol, silibinin, xanthotoxol, genistein and 3,4-dichlorophenol) were diluted in 0.8 96 

equivalents NaOH in H2O milliQ (e.g. 1 mM acceptor in 800 μM NaOH). 10 μL of dye/acceptor 97 

solution 2x was mixed with 10 μL of protein samples at 0.8 mg/mL in Buffer 2x (100 mM HEPES 98 

pH7) and pipetted in a qPCR 96-wells plate. Final conditions are thus HEPES pH7 50 mM, protein 0.4 99 

mg/mL, acceptor either 0, 400 μM (polyphenols) or 750 μM (3,4-dichlorophenol). The plate was 100 

centrifuged 30 seconds at 1000 rpm and transferred to the qPCR machine. The protocol initiates with 101 

2 minutes incubation at 298 K, followed by a temperature increase of 0.05 K.s–1 up to 372 K, and a 102 

final incubation of 2 minutes at 372 K. Measurements were carried out in triplicate. Raw data was 103 

analyzed with Protein Thermal Shift™ Software v1.x. 104 

Results 105 

The 18 GT1 enzymes have 24‒40% pairwise identity after multiple sequence alignment via clustal 106 

omega (Sievers and Higgins, 2014). Nine of these enzymes have been previously described in the 107 

literature: PtUGT1 (Teze et al., 2021), ZmUGT708A6 (Ferreyra et al., 2013), ZmUGT706F8 (Bidart 108 

et al., 2022), the GT1s from Arabidopsis thaliana (AtUGT72E2, At71C1, At71D1) (Yang et al., 2018), 109 

RhGT1 (Wang et al., 2013), Gm88E3 (Liu and Nidetzky, 2021) and MtUGT78G1 (Modolo et al., 110 

2007). Among the 9 GT1 enzymes that were not previously described, five already had designated 111 

names (Zm71B1, Os88C1, Lc72B10, Fi88A10, Fe88J1), and the remaining four are named according 112 

to the UGT naming convention (Mackenzie et al., 2005) preceded by two letters referring to genus and 113 
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species (e.g. ZmUGT88C10). Uniprot accession numbers and melting temperatures (Tm) of the 18 GT1 114 

enzymes are provided in Table S1.  115 

These 18 GT1 enzymes are described here for their activity against three acceptors (Scheme 2) 116 

representing different classes of polyphenols of biotechnological interest, i.e. flavones (apigenin), 117 

stilbenes (trans-resveratrol), and coumarins (scopoletin). Interestingly, we found that each of the 18 118 

enzymes are active against each of the chosen acceptors, and in most cases (44/54), analytical yields 119 

of glycosylation >50% are reached. >90% yield is obtained for at least one condition in about half the 120 

enzyme-acceptor pairs (Figures 1 & 2).  121 

 122 

Scheme 2. Acceptors assessed in this study. The position most commonly glucosylated is indicated 123 
in red. 124 

Note that while only a single glucosylation product is possible for scopoletin, several could be – and 125 

are – formed by GT1 enzymes for resveratrol and apigenin. Given that different products or product 126 

mixtures are observed for the various enzymatic:substrate pairs, the displayed analytical yields relate 127 

to acceptor consumption, and are cross-validated by analyzing the sum of the peak areas observed for 128 

products.   129 
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Figure 1: Effect of reaction conditions on glycosylation yields from low-Tm enzymes. 
Analytic yields of acceptor conversion are plotted against enzyme concentration, from 10 to 80 mg/L 
(circa 0.15‒1.2 𝜇M). HEPES pH 7, aglycon concentration range 50‒400 μM, UDP-Glc 500 μM, 20 h at 
293 K, without stirring in 100 μL volume. The 9 GT1s with the lowest Tm or no measured Tm are 
displayed. NA = Not Available. 
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Figure 2: Effect of reaction conditions on glycosylation yields from high-Tm enzymes. 
Analytic yields of acceptor conversion are plotted against enzyme concentration, from 10 to 80 mg/L 
(circa 0.15‒1.2 𝜇M). HEPES pH 7, aglycon concentration range 50‒400 μM, UDP-Glc 500 μM, 20 h at 
293 K, without stirring in 100 μL volume.  

 130 
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While most of the curves display the classical dependency on enzyme concentration of a reaction 131 

catalyzed by enzymes with low total turnover numbers – i.e. a linear or sublinear increase in product 132 

as a function of enzyme concentration – half of the enzyme:substrate pairs (27/54) display dilution-133 

induced inactivation behavior with a superlinear dependency on enzyme concentration (Fig. 1 & 2). At 134 

low enzyme concentrations (e.g. 10 mg/L, circa 150 nM), no-to-little reaction is observed, yet doubling 135 

the enzyme concentration far more than double the observed yields. The full dataset of yields as a 136 

function of enzyme and acceptor concentrations is available in the supplementary material (Table S2). 137 

  138 

Importantly, this behavior is also related to acceptor concentration, being more prevalent at 400 𝜇M 139 

than at 50 𝜇M. It is particularly pronounced with apigenin, e.g. for Fe88J1, PtUGT1, ZmUGT88C10, 140 

AtUGT72E2, At71C1, RhGT1 and ZmUGT708A6 (Figures 1 & 2). It is also observed with resveratrol 141 

(e.g. ZmUGT708A6 or ZmUGT706F8) and scopoletin (e.g. ZmUGT88C10 or AtUGT72E2). 142 

Interestingly, while glycosylation of apigenin and resveratrol regularly (19/36) reaches full conversion 143 

of the acceptors, the glucosylation of scopoletin results in an equilibrium (Scheme 1), with a maximum 144 

yield depending of the acceptor concentration. At the highest acceptor concentration, nearing donor 145 

and acceptor equimolarity (500 and 400 μM, respectively), the maximal yields observed are around 146 

50% (Figures 1 & 2). This allows for the observation of hydrolysis in 5/18 GT1 enzymes in our dataset, 147 

being particularly pronounced for SlUGT72B68. Indeed, while the formation of scopoletin-glucoside 148 

from UDP-Glc and the formation of UDP-Glc from scopoletin are in equilibrium, the hydrolysis of 149 

UDP-Glc by the enzyme is irreversible (Scheme 1). There seems to be a weak correlation between 150 

intrinsic stability of the enzyme, represented by its melting temperature (Tm), as the three enzymes 151 

seemingly unaffected by the conditions were the relative stable ZmUGT72G3 (Tm=56.4±0.1⁰C), 152 

ZmUGT72G4 (Tm=61.2±0.4⁰C), and At71D1 (ND). Conversely, ZmUGT708A6 (Tm=37.4±0.1⁰C) and 153 

ZmUGT88C10 (Tm=42±0.3⁰C) were most affected by conditions. Considering ∼0.008 kJ/mole/residue 154 
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(Rees and Robertson, 2001), and an average length of GT1 enzymes of c. 500 residues, a ΔTm of 1 K 155 

roughly equates a stabilization of 1 kcal/mol, thus between the most and least stable enzymes in our 156 

dataset a difference as large as 25 kcal/mol is observed. Enzyme-substrate interactions are generally 157 

thought to be stabilizing, which is the rationale behind the use of differential scanning fluorimetry as a 158 

basis for identifying enzyme-substrate pairs (Niesen, Berglund and Vedadi, 2007). We assessed 159 

whether polyphenol acceptors modified the Tm of our proteins, and did not observe a significant change 160 

in either direction (Fig. S1). ZmUGT708A6, which displays chemostability issues in presence of all 161 

three acceptors, would even appear to present slightly higher Tm in presence of resveratrol and apigenin 162 

(Fig. S1).  163 

Discussion 164 

In this article, we demonstrate the widespread yet not widely reported phenomena of dilution-induced 165 

inactivation and low chemostability towards their own acceptors of GT1 enzymes. These effects are 166 

important and can introduce biases in both the kinetic study and discovery efforts for GT1 enzymes. 167 

The latter is of particular importance, since one of the major obstacles to a wider biotechnological 168 

application of glycosyltransferases is the characterization of their acceptor scope. While one might be 169 

enticed to assess acceptors at high concentration to detect catalysts with low affinity (high Km), or at 170 

low enzyme concentrations to be cost-efficient, our results demonstrate that this would result in a 171 

significant number of false negatives. While we report the effect, we do not offer a mechanistic 172 

explanation. Molecular crowding, occasionally invoked to rationalize dilution-induced inactivation, 173 

occurs at much higher concentrations (Miklos et al., 2011; Wang et al., 2012; Cohen and Pielak, 2017). 174 

Conversely, the enzyme’s adsorption unto equipment (vessel, glassware, tips, etc.) is a concern for 175 

trace concentrations or up to the nanomolar range, several orders of magnitude lower than our data and 176 

therefore not likely to account for our observations. Further, GT1 enzymes are monomeric, clearly 177 

demonstrated by size exclusion chromatography and several crystallographic structures (Wetterhorn et 178 
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al., 2016), ruling out dilution-induced oligomerization disruption as explanation. Here, the synergistic 179 

effect with the chemostability at moderately high acceptor concentrations, together with the fact that 180 

each enzyme presents various behaviors depending on the acceptor, indicates that specific phenomena 181 

related to GT1 enzymes are behind our observations. Conceivably, their relatively large, solvent-182 

exposed hydrophobic acceptor site (Brazier-Hicks et al., 2007; Teze et al., 2021) could be involved.      183 
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