
template
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Template

Accelerating AutoDock Vina with GPUs
Shidi Tang 1,2, Ruiqi Chen 3, Mengru Lin 3, Qingde Lin 4, Yanxiang Zhu 2, Ji
Ding 1,2, Jiansheng Wu 1,2,∗, Haifeng Hu 5, and Ming Ling 4

1School of Geographic and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China,
2Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, Nanjing University of Posts
and Telecommunications, Nanjing, 210023, China,
3VeriMake Research, Nanjing Renmian Integrated Circuit Technology Co., Ltd., Nanjing, 210088, China,
4National ASIC System Engineering Technology Research Center, Southeast University, Ltd., Nanjing, 210096, China,
5School of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023,
China

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: AutoDock Vina is one of the most popular molecular docking tools. In the latest benchmark
CASF-2016 for comparative assessment of scoring functions, AutoDock Vina won the best docking power
among all the docking tools. Modern drug discovery is facing the most common scenario on large virtual
screening of drug hits from huge compound databases. Due to the seriality characteristic of the AutoDock
Vina algorithm, there is no successful report on its parallel acceleration with GPUs. Current acceleration
of AutoDock Vina typically relies on the stack of computing power as well as the allocation of resource
and tasks, such as the VirtualFlow platform. The vast resource expenditure and the high access threshold
of users will greatly limit the popularity of AutoDock Vina and the flexibility of usage in modern drug
discovery.
Results: We proposed a new method Vina-GPU for accelerating AutoDock Vina with GPUs, which is
greatly needed for reducing the investment for large virtual screens, and also for a wide application in
large-scale virtual screening on personal computers, station servers or cloud computing etc. Our proposed
method Vina-GPU greatly raises the number of initial random conformations and reduces the search depth
of each thread, and then a heterogeneous OpenCL implementation was developed to realize its parallel
acceleration leveraging thousands of GPU cores. Large benchmark tests show that Vina-GPU reaches
an average of 21-fold and a maximum of 50-fold docking acceleration against the original AutoDock Vina
while ensuring their comparable docking accuracy, indicating its potential of pushing the popularization of
AutoDock Vina in large virtual screens.
Availability: The source code and tools of Vina-GPU are freely available at
http://www.noveldelta.com/Vina_GPU.
Contact: jansen@njupt.edu.cn
Supplementary information: Supplementary data are available at another file

1 Introduction
Molecular docking studies how two or more molecular structures (e.g., drug and target)
fit together. Molecular docking analysis has become one of the most common ways for
modern drug discovery (Meng et al., 2011). It allows to predict molecular interactions
where a protein and a ligand inducted fit together in the bound state. Also, molecular
docking tools provide an efficient and cheap way in the early stage of drug design
for the identification of leading compounds and their binding affinities (Lengauer and
Rarey, 1996; Cherkasov et al., 2014; Golbraikh et al., 2003). Among all molecule
docking tools, the AutoDock suite is the most popular, which consists of various

tools including AutoDock4 (Morris et al., 2009), AutoDock Vina (Trott and Olson,
2010), AutoDock Vina 1.2.0 (Eberhardt et al., 2021), AutoDock FR (Ravindranath
et al., 2015), AutoDock Crank Pep (Zhang and Sanner, 2019a,b), AutoDock-GPU
(Santos-Martins et al., 2019, 2021) etc. AutoDock Vina is usually recommended as
the first-line tool in the implementation of molecular docking due to its docking speed
and accuracy (Goodsell et al., 2021). Moreover, it wins the best docking power in the
last benchmark CASF-2016 for comparative assessment of scoring functions (Su et al.,
2018) and the best scoring power under the comparison with ten docking programs
on a diverse protein–ligand complex sets (Wang et al., 2016). AutoDock Vina uses
a Monte-Carlo iterated local search method, which comprises iterations of sampling,
scoring and optimization. First, an initial random conformation is sampled for a given
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ligand, which is represented by its position, orientation and torsion (POT). Then,
its position, orientation or torsion is randomly mutated with a disturbance. Finally,
the affinity is evaluated for the binding pose of a ligand and a protein. In AutoDock
Vina, the binding affinity is calculated by a scoring function which describes the
sum of the intermolecular energy (ligand-receptor) and the intramolecular energy
(ligand-ligand). Moreover, the conformation is optimized with a Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method (Fletcher, 2013) that considers the gradients of the
scoring function. These gradients can guide the ligand to achieve a better conformation
with a lower docking score. In addition, a metropolis acceptance rule, which relies on
the difference between the docking score of the initial conformation and that of the
optimized conformation, is arranged to decide whether the optimized conformation
can be accepted or not. The accepted conformation will be recorded as the initial
conformation and further optimized in the next iterations. As all we know, the Monte-
Carlo based iterated local search method in AutoDock Vina is highly serialized
because the ongoing iteration depends on the previous outputs.

Preceding virtual screens pipeline typically operates only on a scale of 106 ∼ 107

compound molecules. Such scale of compounds will heavily descend the capability
and increase the failure risk of modern drug discovery. Fortunately, the whole chemical
space of drug-like molecules has been estimated to reach more than 1060 (Bohacek
et al., 1996). The scale of compounds in virtual screens is vital since the more
candidate compounds to be screened, the lower rate of failure and the more favorable
quality of leading compounds can be reached. Hence, the virtual screens on huge
compound databases are urgent for identifying excellent drug candidates in modern
drug discovery. However, original virtual screening with AutoDock Vina on huge
databases is very slow, which cannot meet the need for modern drug discovery.
Therefore, an acceleration of AutoDock Vina has become a central problem in current
virtual screens of drug hits from huge compound databases. Till now, there are several
attempts for the acceleration of AutoDock Vina in large virtual screens (Gorgulla
et al., 2020; Li et al., 2012; Jaghoori et al., 2016). For instance, VirtualFlow provides
a drug discovery platform that speeds up AutoDock Vina in virtual screening of an
ultra-large database with more than 1.4 billion molecules by leveraging over 16,0000
CPUs (Gorgulla et al., 2020). Such huge resource investment and expenditure, as
well as the high entry threshold for users seriously weaken the popularization of
AutoDock Vina and the flexibility of customer’s usage (such as a self-defined target
and small molecule dataset). Due to the overall serial design of the AutoDock Vina
algorithm, its parallelization mostly depends on the stacking of computing powers as
well as the allocation of resources and tasks under such a common scenario that facing
large virtual screens in modern drug discovery. A reduction of computational resource
investment and user access threshold will advance the broad spread of AutoDock Vina
in large virtual screening for modern drug discovery.

Graphic processing unit (GPU) is a powerful parallel programmable processor
with thousands of computing cores that provide a tremendous computational
performance. GPU has become an integral part of mainstream computing systems due
to the high price-performance ratio and the ease of developing an implementation with
well-established standards such as Compute Unified Device Architecture (CUDA) and
Open Computing Language (OpenCL). GPU has been applied to accelerate molecular
docking in several tools (Santos-Martins et al., 2019, 2021; Mermelstein et al., 2018;
Hwu, 2011; Stone et al., 2016; LeGrand et al., 2020; Fan et al., 2021; Ding et al.,
2020; Imbernón et al., 2021; Shin et al., 2020; Solis-Vasquez et al., 2020; Kannan
and Ganji, 2010). For example, AutoDock-GPU provides an OpenCL implementation
of AutoDock4 to exploit both GPU and CPU parallel architectures. By exploring
three levels of parallelism (runs, individual, fine-grained tasks) on the Lamarckian
Genetic Algorithm (LGA) algorithm, AutoDock-GPU achieves the maximum of 350-
fold acceleration on total runtime against the single-threaded CPU implementation
(Santos-Martins et al., 2019). Recently, an attempt has been put into the GPU
parallel acceleration of AutoDock Vina where the Viking method tried to rewrite
the pose search stage of AutoDock Vina on GPU (Shin et al., 2020). Till now, no
positive acceleration result has been reported. The reasons for its deficiency probably
involve the following three points. Firstly, the Monte-Carlo based optimization
process in AutoDock Vina is the most time-consuming (typically more than 90%)
and highly dependent whose next iteration relies on the previous outputs. Secondly,
each ligand file was presented as a heterogeneous tree structure whose nodes are
traversed recursively. Thirdly, the CUDA architecture on NVIDIA GPU cards limits
its cross-platform portability.

In this work, we proposed an efficient parallel method, namely Vina-
GPU, to accelerate AutoDock Vina with GPUs. First, Vina-GPU applies a
large-scale parallelism on the Monte-Carlo based iterated docking threads and
significantly reduces the search depth in each thread. Second, a heterogeneous
OpenCL implementation was efficiently deployed on Vina-GPU by converting
the heterogeneous tree structure into a list structure whose nodes are stored in
the traversed order. The two implementations ensure that Vina-GPU can leverage
thousands of computational cores on GPU and achieve a large-scale parallelization
and acceleration, and realizes the cross-platform portability on both CPUs and GPUs.
Large benchmark tests show that Vina-GPU reaches an average of 21.66X and a
maximum of 50.80X speed-up on NVIDIA Geforce RTX 3090 against the original
AutoDock Vina on a 20-threaded CPU while ensuring their comparable docking
accuracy. To further enlarge its potential of pushing the popularity of AutoDock Vina
in large virtual screening, more efforts have been taken as follows. First, we fitted a
heuristic function for automatically determining the most important hyperparameter
(search_depth) on the basis of large testing experiments in order to lower the
usage threshold. Second, we developed a user-friendly graphical user interface (GUI)
for a convenient operation of Vina-GPU. Third, we enable the implementation of
Vina-GPU to be built on Windows, Linux and macOS, ensuring their usability on
personal computers, station servers and cloud computations etc. The code and tool of
Vina-GPU are freely available at https://github.com/DeltaGroupNJUPT/Vina-GPU or
http://www.noveldelta.com/Vina_GPU.

2 Methodology
The heterogeneous OpenCL implementation of Vina-GPU is depicted in Figure 1,
which consists of a host part (on CPU) and a device part (on GPU). The host part is
mainly in charge of the preparation and post-refinement of the conformations. The
device part focuses on the acceleration of the most time-consuming Monte-Carlo
iterated local search method by enlarging the scale of parallelism as well as reducing
the number of iterations.

2.1 Host part

The host part consists of two sections (see Figure 1). The first section includes four
operations, which are the file reading, the OpenCL setup, the data preparation and
the device memory allocation, and all operations are implemented for the input to
the device part. Specifically, the file reading operation is to read the ligand and
protein files in .pdbqt format, and the OpenCL setup operation is to setup the OpenCL
environment (platform, device, context, queue, program and kernels). Furthermore,
the host part prepares all the required data, including grid cache (for calculating
the energy of a conformation), random maps (for generating probability random
numbers) and random initial conformations (for Monte-Carlo based method to start
from). The data is then re-organized to load in the device memory according to how
it is accessed (read-only or read-write). The read-only grid cache, random maps and
random conformations are allocated in the constant device memory while the read-
write of best conformations returned by the device part is allocated in the global
device memory. Such kind of memory management could efficiently boost the speed
of reading and writing on GPU. The second section includes multiple operations after
the device part. All the best conformations returned from the device part are clustered
and sorted in the container by their docking scores. The best 20 conformations will
be concretely refined and optimized before generating the final output ligand files.

In the data preparation operation, AutoDock Vina treats each conformation as a
heterogeneous tree structure whose nodes are stored with its frame information and
a pointer to its children node. Each node is traversed by a depth-first search policy
to calculates the conformation energy in a recursive process. However, in Vina-GPU,
the OpenCL standard cannot support any recursion in kernels because the allocation
of stack space for thousands of threads is too expensive. Besides, various ligands
would generate different heterogeneous trees that are not suitable for the OpenCL
implementation. Therefore, we transformed the heterogeneous tree structure into a
list type (see Figure 2), each of whose node is stored in line with its traversed order.
These nodes can be traversed simply by the order of the node list. In addition, a
children map was created to denote the relationship among these nodes. For example,
the node 0 has two children-nodes (the node 1 and the node 4) and so the row 0 has two
“T”s (indicating “True”) in the 1st and 4th column (Figure 2). Thus, the recursive
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Fig. 1. The OpenCL architecture for implementing Vina-GPU, which consists of a host (CPU) and a device (GPU) part of execution. The device part implements thousands of docking threads, each of which is
assigned with an OpenCL work item to perform a Monte-Carlo based local search method with largely reduced search iterations.

Fig. 2. Transformation the original node tree structure into the node-list format. The heterogeneous node
tree was reconstructed in its traversed order(depth-first) into the node list where an additional children
map was built to reflect the relationship among the nodes.

traverse of the heterogeneous tree can be converted into an iterative traverse of the
node list and children map which fits the OpenCL standard.

2.2 Device part

On the device part, the allocated constant memory (highlighted in orange in Figure 1)
is assigned for the initialization and the calculation during the reduced-step Monte-
Carlo iterated local search processes (highlighted in green in Figure 1) and the final
best conformations are stored in global memory (highlighted in gold in Figure 1).

Vina-GPU enables thousands of reduced-steps iterated local search processes
running concurrently within the GPU computational cores. We denote each reduced-
step iterated local search process as a docking thread. Within each thread, an OpenCL
work item is assigned to a randomly initialized conformation C , which can be
represented by its position, orientation and torsion (POT):

C = {x, y, z, a, b, c, d, ψ1, ψ2, ..., ψNrot} (1)

where x, y, z correspond to the position of the conformation in a pre-determined
searching space; a, b, c, d denote its orientation as a rigid body in the quaternion
form; ψ1, ψ2, ..., ψNrot represent torsions of Nrot rotatable bonds. Then, each
conformation C is to be randomly mutated in one of its POT with the uniform
distribution. The conformation will be continuously evaluated with a scoring function
that quantifies the free energy of the binding pose. Generally, the free energy e is

calculated with the sum of intermolecular energy and intramolecular energy:

e = einter + eintra (2)

where einter represents the interaction energy between the ligand and the receptor,
and it is calculated using trilinear interpolation that approximates the energy of each
atom pair by looking up the grid cache; and eintra indicates the interaction energy
of the pairwise atoms within the ligand. Considering that both einter and eintra are
related to the binding pose, the scoring function SF can be denoted as a function of
POT variables:

SF = f(x, y, z, a, b, c, d, ψ1, ψ2, ..., ψNrot ) (3)

After the energy evaluation, a Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Fletcher,
2013) optimization is applied to update the ligand conformation by minimizing
of the scoring function SF. Essentially, the BFGS method is to substitute the
hessian matrix H ∈ R(7+Nrot)×(7+Nrot) with an approximate matrix B ∈
R(7+Nrot)×(7+Nrot) whose inverse matrix B−1 is iteratively updated by the first-
order derivatives ∇SF(C) ∈ R(7+Nrot). B−1

k+1 in the (k + 1)th iteration can be
calculated by
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where

sk = −αkB
−1
k ∇SF (Ck)

(5)

αk = argmin SF (Ck + αpk)
(6)

yk = ∇SF (Ck + αkpk)−∇SF (Ck) (7)

where B0 is initiated with identity matrix E and the detailed calculation of ∇SF(C)

is described in (Trott and Olson, 2010). Next, a metropolis acceptance criterion is
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adopted to decide whether to accept the optimized conformation or not, by comparing
the energy e0 before the mutation and the energy eopt after the optimization. Here,
the accept probability P is represented by:

P =

{
1 e0 > eopt
exp(e0−eopt)

1.2
e0 ≤ eopt

(8)

It indicates that the accepted conformation is more likely to have a lower energy. Once
accepted, the conformation will be further evaluated and optimized by BFGS. Then,
the next iteration continues to update the previous optimized conformations until
convergence. Finally, all the best conformations found by work items are returned
to the host part. The pseudocode of our proposed algorithm Vina-GPU is shown in
Supplementary Algorithm S1.

3 Results and Discussion

3.1 Experimental Settings

All 140 complexes in the AutoDock-GPU study ( Santos-Martins et al., 2021) are
assigned as our experimental dataset, which is comprised of 85 complexes from
the Astex Diversity Set ( Hartshorn et al., 2007), 35 complexes from CASF-2013
( Li et al., 2014), and 20 complexes from the Protein Data Bank ( Berman et al.,
2000). They cover a wide range of ligand complexities and targets properties. Each
complex file includes an X-ray structure, an initial random pose of its ligand and
the corresponding receptor (in .pdbqt format). Besides, we created a config.txt file
for each complex (see the example in Supplementary Table S1), which involves the
center (indicated by centerx, centery , centerz) and the recommended volume of
the docking box (indicated by sizex, sizey , sizez). We classified the 140 complexes
into three subsets by their atom sizes Natom (small: 5-23 atoms, medium: 24-36
atoms, large: 37-108 atoms). The details of our experimental data can be seen in
Supplementary Table S2.

AutoDock Vina was executed on Intel (R) Core (TM) i9-10900K CPU @ 3.7
GHz using Windows 10 Operating System with 64 GB RAM. AutoDock Vina was
customized by several configurable arguments, including the center and the volume of
searching spaces, the number of CPU cores (cpu) to be utilized and the docking runs
(exhaustiveness) etc. The argument exhaustiveness was set to 128 (Handoko
et al., 2012) , and the argument cpu was set to the maximum value of 20 for taking a
full use of the CPU computational power.

Vina-GPU was developed with OpenCL v.3.0 and executed on three different
GPUs (Nvidia Geforce GTX 1080Ti, Nvidia Geforce RTX 2080Ti, Nvidia Geforce
RTX 3090) under single-precision floating-point format (FP32). Details are included
in Supplementary Table S3. In our Vina-GPU, we replaced cpu and exhaustiveness
with the number of threads (thread) and the size of searching iterations in each thread
(search_depth). These two hyperparameters are of the most importance, and their
values are vital to the docking performance of Vina-GPU. For a convenient usage
of Vina-GPU, as in AutoDock Vina (Trott and Olson, 2010), a heuristic formula
was fitted to automatically determine the proper size of search_depth for a given
complex. Specifically, a large number of tests were executed on all 140 complexes
to examine their docking performance under various sizes of search_depth, where
the proper search_depth that guarantees a comparable docking performance was
selected. Then, the least squares method was used to fit an empirical formula of the
proper search_depth with respect to the Natom (the number of atoms) and Nrot

(the number of rotatable bonds) in a ligand. The heuristic formula is given as follows,

search_depth = max(1, f loor(0.24 ∗Natom

+ 0.29 ∗Nrot − 3.41))
(9)

where the function floor(∗) gives the largest integer less than or equal to ∗.

3.2 Influence of hyperparameters

We evaluated the influence of the hyperparameters thread (from 100 to 15000) and
search_depth (from 1 to 50) on the docking accuracy (evaluated by docking score
and RMSD) as well as the docking runtime of Vina-GPU. The docking score represents
the binding affinity between a ligand and a receptor (the lower the score is better) and
the RMSD measures the atom distance difference between an output conformation and

the ground truth X-ray structure (also the lower the better) (Trott and Olson, 2010). An
acceptable docking is defined if the least RMSD among all output conformations of
Vina-GPU is smaller than 2 Å(Goodsell et al., 2021). Three complexes (5tim, 2bm2
and 1jyq) were randomly selected, which represent various levels of complexities
(small, medium and large). The influence of thread and search_depth on the
docking score, RMSD and docking runtime are shown in Figure 3 and Supplementary
Figure S1, respectively. All experiments were executed under NVIDIA Geforce RTX
3090 GPU card.

With the increase of thread, the docking score gets better and it becomes
convergence when the size of thread reaches around 6000 for 2bm2 and 1jyq, and
about 1000 for 5tim (Figure 3a). The same trend is also observed on the RMSD
performance (Figure 3b), where 2bm2 and 1jyq converges at around 8000, and 5tim
fluctuates slightly nearby 2 Å. In Figure 3c, with the raise of thread, the docking
runtimes of all three complexes increase slowly. Although it is enough for the small
complex 5tim to obtain the best docking accuracy with 1000 thread, the size of
thread needs to be set around 8000 for the medium complex 2bm2 and large complex
1jyq. Thus, the size of thread was set to be 8000 for all 140 complexes in this paper.

For the small complex 5tim, with the increase of search_depth, its docking
score, RMSD and docking runtime keep steady. The size of search_depth does not
influence the docking results, because Vina-GPU can achieve the best performance
with a few search_depth for such a small complex (Supplementary Figure S1).
For the medium complex 2bm2, the docking score and RMSD converge quickly
with the raise of search_depth, and the docking runtime increases slowly. This
is because a medium complex needs more search_depth to reach the convergence
(Supplementary Figure S1). For the large complex 1jyq, the docking score and RMSD
converges slowly with search_depth. The docking runtime for 1jyq increases rapidly
with search_depth, because the device runtime for such a large complex 1jyq takes
the major part of the total (host + device) docking runtime, increasing search_depth
leads to a great expense on the total docking runtime.

3.3 Docking Accuracy

We compare the overall docking accuracy of Vina-GPU with AutoDock Vina in terms
of the docking score and RMSD performances on all 140 complexes (Figure 4). The
color bar encodes the number of atoms in a ligand. For the docking score, most
complexes distribute around the diagonal line and fall into the lavender margin of 0.5
kcal/mol difference and their Pearson correlation coefficient of the scores is 0.965
(Figure 4a), which denotes a significant positive correlation. The results show that
our Vina-GPU achieves the comparable docking scores with AutoDock Vina.

A docking conformation is typically acceptable when its RMSD difference with
the ground truth structure is smaller than 2 Å(Santos-Martins et al., 2021). In Figure
4b, the red dashed line distinguishes whether a docking conformation is acceptable
or not from the RMSD aspect. Figure 4b demonstrates that most complexes fall into
the lower left region where both Vina-GPU and AutoDock Vina succeed to obtain the
acceptable docking. The results show that our Vina-GPU achieves the comparable
docking RMSD with AutoDock Vina. Thus, these findings indicate that Vina-GPU
exhibits the comparable docking accuracy with respect to AutoDock Vina on both
docking score and RMSD.

3.4 Runtime Comparison

The runtime acceleration (Acc) of Vina-GPU against AutoDock Vina is defined by

Acc =
tvina

tvina−gpu
(10)

where tvina and tvina−gpu is the runtime of AutoDock Vina and Vina-GPU,
respectively. Figure 5 shows the runtime acceleration (Acc) on various scales of
complexity (small: 5-23 atoms, medium: 24-36 atoms, large: 37-108 atoms) and
different GPU cards (Nvidia Geforce GTX 1080Ti, Nvidia Geforce RTX 2080Ti,
Nvidia Geforce RTX 3090). The average acceleration is highlighted by a white dot in
the center.

As indicated in Figure 5, Vina-GPU achieves the maximal acceleration of 50.80X,
as well as the average of 8.84X, 12.70X and 21.66X on the 1080ti, 2080ti and 3090
GPU cards, respectively. The results show that the average acceleration increases
along with the complexity of the complex (from small to large) and also raises with
higher end GPU cards (from NVIDIA Geforce GTX 1080ti to NVIDIA Geforce GTX
3090). Figure 6 shows theAcc performance of all 140 complexes along with different
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Fig. 3. Influence of the size of thread on docking accuracy (score and RMSD) and docking runtime of Vina-GPU. Three typical PDB complexes are randomly selected from all 140 complexes which represent small,
medium and large ones, respectively (5tim: small, 5 atoms; 2bm2: medium, 33 atoms; 1jyq: large, 60 atoms). All experiments were executed on NVIDIA RTX 3090 GPU card.

Fig. 4. Comparable docking accuracy between AutoDock Vina and our Vina-GPU on all 140 complexes. The color bar encodes the number of atoms in a ligand. A margin of 0.5 kcal/mol difference on the docking
score between Vina-GPU and AutoDock is highlighted with lavender in Figure 4a. The Pearson correlation coefficient of their docking scores is 0.965 (indicated by “pearson”). The RMSD value that indicates an
acceptable binding pose (< 2 Å) are separated by a red dashed line in Figure 4b.

Fig. 5. Acceleration of docking time (Acc) of our Vina-GPU against AutoDock Vina on three different GPUs and various scales of complexity (small: 5-23 atoms, medium: 24-36 atoms, large: 37-108 atoms). 1080ti:
NVIDIA Geforce GTX 1080ti; 2080ti: Nvidia Geforce RTX 2080Ti; 3090: Nvidia Geforce RTX 3090.
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Fig. 6. Details for the acceleration of docking time (Acc) of our Vina-GPU against AutoDock Vina on all 140 complexes. The complexity is depicted with their number of atoms (Natom) and rotatable bonds
(Nrot). The vertical axis ranges from 0 to 60, and each bar represents a complex coupling with its corresponding acceleration (Acc). Vina-GPU 1080ti, Vina-GPU 2080ti and Vina-GPU 3090 mean that Vina-GPU
was executed on Nvidia Geforce GTX 1080ti, Nvidia Geforce RTX 2080Ti and Nvidia Geforce RTX 3090, respectively.

Natom and Nrot. Each bar represents a complex coupling with its corresponding
acceleration. As shown in Figure 6, the acceleration varies from 1.03X to 50.80X.
The maximal acceleration 50.80X is achieved on the 1xm6 (PDBid) complex under
Nvidia Geforce RTX 3090 GPU card.

Among the whole Vina-GPU program, the Monte-Carlo based optimization
process is the most time-consuming part (typically more than 90%), which is
performed in the “device” part utilizing GPU computational cores. For a better
exhibition of the acceleration in the most time-consuming part, we defined the device
runtime acceleration Accd as

Accd =
tmc

td
(11)

where tmc is the Monte-Carlo based optimization part runtime of AutoDock Vina and
td is the device part runtime of Vina-GPU. As shown in Supplementary Figure S2
and Supplementary Figure S3, Vina-GPU achieves the maximum of 191.68X and the
average of 18.94X, 43.58X and 48.48X acceleration on Nvidia Geforce GTX 1080ti,
Nvidia Geforce RTX 2080Ti and Nvidia Geforce RTX 3090 GPU cards, respectively.

3.5 Conformation Spaces Analysis

To verify their equivalence in molecular docking, we intend to analyze the full
conformation spaces explored by AutoDock Vina and our Vina-GPU. Firstly, we
discussed the searching strategy of Vina-GPU and explain why Vina-GPU can achieve
a great acceleration on the premise of comparable docking accuracy. Then, we
visualized and compared their whole searching of conformation spaces.

Vina-GPU enables thousands of docking threads to run concurrently. These
docking threads divide the whole search space into thousands of subspaces, and
in each subspace an initial conformation is being optimized. We define the search
space that covers all possible conformations as a high-dimensional space S =

{C0,C1,C2, . . .}. By dividing S into n sub-spaces, we have

S =
{
Ssub0 ,Ssub1 , . . . ,Ssubn

}
(12)

and each initial conformation belongs to a sub-space

Ci ∈ Ssubi (i = 0, 1, 2, . . .) (13)

For each initial conformation Ci, the corresponding searching space Ssubi is much
smaller than the whole searching space S. Therefore, we can greatly reduce the
searching iterations of each initial conformation in each Ssubi . By clustering and
sorting all the best conformations, Vina-GPU ensures a comparable docking accuracy
with original AutoDock Vina.

Then, we detailed a case (PDBid: 2bm2,Natom = 33, Nrot = 7) and visualized
their full searching of conformation spaces in Supplementary Figure S4. AutoDock
Vina was executed with the configuration of “cpu = 1, exhaustiveness = 1 and
search_depth = 22365 (default value)”. Vina-GPU was executed under various
strategies, where different sizes of thread and search_depthwere used. The whole

searching spaces (lanes× search_depth) keep almost the same as that of original
AutoDock Vina. All conformations searched by AutoDock Vina or our Vina-GPU are
indicated as orange or blue dots, respectively. Each conformation is represented by its
POT in cartesian coordinates, where a principal component analysis (PCA) method
was used to reduce the dimensionality of orientation and torsion into three. The best
conformation is shown in red star (indicated by an arrow).

As shown in Supplementary Figure S4a and Supplementary Figure S4b, the whole
conformation space reached by Vina-GPU or AutoDock Vina is almost the same in
their position, orientation or torsion. With the increase of Vina-GPU on its parallel
threads and the reduce of search_depth in each thread, these observations keep
unchanged (Supplementary Figure S4c and Supplementary Figure S4d). Moreover,
the best conformations found by AutoDock Vina or our Vina-GPU are very close to
each other. These results demonstrate that our Vina-GPU can achieve comparable
docking accuracy with original AutoDock Vina.

3.6 Comparison with the Implementation of Vina-GPU on CPUs

Due to the inherently serial characteristic of the AutoDock Vina algorithm, our
Vina-GPU proposed an improved algorithm and then accelerated it with GPUs.
For evaluating the contributions of the algorithm improvement and the GPU
hardware acceleration separately, we gave out the performance comparison with the
implementation of Vina-GPU on CPUs (Supplementary Figure S5 and Supplementary
Figure S6). The implementation of Vina-GPU on CPUs was executed on Intel (R) Core
(TM) i9-10900K CPU @ 3.7 GHz. Both these implementations were executed on all
140 complexes with the same settings of thread (8000) and search_depth. The
results of our Vina-GPU on GPUs are identical to those in Figure 5.

For the docking score, most complexes lie around the diagonal line and fall
into the lavender margin of a 0.5 kcal/mol difference, only with a few exceptions
due to the randomness of Vina-GPU algorithm (Supplementary Figure S5a). The
Pearson correlation coefficient of their docking scores is 0.963 (Supplementary Figure
S5a). The results show that the implementation of Vina-GPU on CPU achieves
the comparable docking scores. For the docking RMSD, most complexes gather in
the bottom left region, which indicates that they are acceptable dockings for the
implementations of Vina-GPU on CPUs and our Vina-GPUs (Supplementary Figure
S5b). The comparable docking scores and RMSD mean that the implementation
of Vina-GPU on CPU obtains the almost same docking accuracy. For the docking
runtime, the acceleration of the implementation of Vina-GPU on GPUs is higher than
that on CPUs, and the latter one only achieves the maximal acceleration of 26.19X and
the average of 3.49X, 8,81X and 18.76X on the small, medium and large complexes
against the original AutoDock Vina, respectively (Supplementary Figure S6). These
results indicate that our improved algorithm with the implementation on both the
CPUs and GPUs gains the comparable docking accuracy, and it is more suitable for
the implementation on GPU hardware to achieve higher accelerations.
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3.7 A Case for Large Virtual Screening

To show the acceleration effect of our Vina-GPU in implementing real virtual screens
of large compound databases, a case was detailed on the receptor 1xm6 (PDBid)
with the docking of DrugBank (Wishart et al., 2018). The receptor 1xm6 is the
catalytic domain of human phosphodiesterase 4B in complex with (R)-mesopram,
and DrugBank is one of the most popular drug databases that contains comprehensive
information on drugs and drug targets. A total of 9125 molecules were downloaded
from the DrugBank database at https://go.drugbank.com/releases/latest#structures.
Both Vina-GPU and AutoDock Vina were executed on the same computer with Intel
(R) Core (TM) i9-10900K CPU @ 3.7 GHz and NVIDIA Geforce RTX 3090 GPU
card. The exhaustiveness and cpu of AutoDock Vina were set to 128 and 20,
respectively. The thread and search_depth of Vina-GPU were set to 8000 and
the heuristic value, respectively. Only ~9.44 hours were taken to execute the whole
docking process by Vina-GPU while ~133.90 hours by AutoDock Vina, indicating that
the acceleration of 14.18X are achieved by our Vina-GPU. The docking scores of all
9125 molecules on Vina-GPU and AutoDock Vina are shown in Supplementary Data
S1. We evaluated the similarity of top i compounds with the lowest docking scores
on AutoDock Vina or our Vina-GPU by Jaccard index (Jaccard, 1912) as defined by

Ji =

∣∣∣T i
vina ∩ T i

vina−GPU

∣∣∣∣∣∣T i
vina ∪ T i

vina−GPU

∣∣∣ (14)

where i = 15, 50, 100, 200, 300, and T i
vina and T i

vina−GPU represents subset
of top i compounds of AutoDock Vina and Vina-GPU, respectively. Supplementary
Table S4 shows that all the Jacard indexes are larger than 0.8, indicating a high
similarity of the docking results of Vina-GPU and AutoDock Vina.

Supplementary Figure S7 shows the comparison of docking scores between Vina-
GPU and AutoDock Vina, where most compounds lie around the diagonal line and
within the margin (in lavender) of 0.5 kcal/mol difference on the docking score. The
Pearson correlation coefficient of their docking scores is 0.981. The results show
that our Vina-GPU achieves the highly similar docking scores with AutoDock Vina.
In addition, Supplementary Figure S8 visualizes the binding poses of 3 molecules
(DrugBank accession number: DB08418, DB07700, DB07270) with the best docking
scores (-13.7, -13, -12.8) using Pymol for a better exhibition of real docking results
by our Vina-GPU.

3.8 Usage of Vina-GPU

We developed a user-friendly graphic user interface (GUI) instead of the
original terminal form. Our GUI can be utilized without installation and
is described in Supplementary Figure S9. In addition, we provided a
detailed guideline on how to build and run Vina-GPU on mainstream
operating systems (Windows, Linux and MacOS), and it can also ensure
the usability of Vina-GPU on personal computers, station servers and cloud
computations etc (see Supplementary Text S1). All source codes and tools of
Vina-GPU can be freely available at http://www.noveldelta.com/Vina_GPU or
https://github.com/DeltaGroupNJUPT/Vina-GPU.

4 Conclusion
In modern drug discovery, huge resource investment and high entry threshold seriously
weaken the popularity of AutoDock Vina in large virtual screening from compound
databases. To advance the wide spread of AutoDock Vina in large virtual screens,
we proposed a novel method Vina-GPU to speedup AutoDock Vina with GPUs.
Vina-GPU obtains a large-scale of parallelism on the Monte-Carlo based iterations
and greatly reduces the search depth in each iteration. Besides, a heterogeneous
OpenCL implementation of Vina-GPU was efficiently assigned by transforming the
heterogeneous tree structure into a list structure whose nodes are visited in the
traversed line. Vina-GPU can fully utilize abundant computational GPU cores to
reach a large-scale of parallelization and acceleration. Also, Vina-GPU can realize
the cross-platform operation on both CPUs and GPUs. Large benchmarks demonstrate
that Vina-GPU achieves an average of 21 folds and a maximal speed-up of 50 folds
on NVIDIA Geforce RTX 3090 over the original AutoDock Vina when keeping their
comparable docking accuracy. To further enlarge its popularity of AutoDock Vina in
large virtual screens, more efforts had been taken as the follows. A heuristic function

was automatically fitted the most important hyperparameter (search_depth) based
on large testing experiments. Moreover, a graphical user interface (GUI) was designed
for a convenient usage of Vina-GPU. In addition, an extension of Vina-GPU was
provided on Windows, Linux and macOS, and also ensure its usage on personal
computers, station servers and cloud computations etc. The source codes of Vina-
GPU can be freely accessible at https://github.com/DeltaGroupNJUPT/Vina-GPU or
http://www.noveldelta.com/Vina_GPU. In future studies, the following aspects would
be taken into consideration for pushing the popularization of AutoDock Vina in large
virtual screens. We will further analyze and mend the AutoDock Vina algorithm
so that it can obtain a higher acceleration with GPUs. In addition, we will study
other mainstream tools in the AutoDock Vina suites and accelerate them with GPUs.
Besides, we will rewrite the AutoDock Vina algorithm to realize its acceleration on
FPGA with higher price-performance ratio and more flexibility.
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