
Can Organic Chemistry Literature Enable Machine
Learning Yield Prediction ?

J. Schleinitz∗,1, 2, a) M. Langevin∗,2, 3, b) Y. Smail,4 B. Wehnert,4 L. Grimaud,1, c) and
R. Vuilleumier2, d)
1)LBM, Département de chimie, École Normale Supérieure,
PSL University, Sorbonne Université, CNRS, 75005, Paris,
France
2)PASTEUR, Département de chimie, École Normale Supérieure,
PSL University, Sorbonne Université, CNRS, 75005, Paris,
France
3)Molecular Design Sciences - Integrated Drug Discovery, Sanofi R%D, 94400,
Vitry-Sur-Seine, France
4)UPMC, PSL University, Sorbonne Université, CNRS, 75005, Paris,
France

(Dated: 23 March 2022)

Synthetic yield prediction using machine learning is intensively studied. While
previous work focused on an ideal use case, High-Throughput Experiment datasets,
predicting yields using literature data remains elusive. We built a large literature-
based dataset of more than a thousand reactions, focusing on the activation of
carbon-oxygen bonds of phenol derivatives under nickel catalysis. Detailed reaction
conditions and associated yields were manually curated and stored in an open-
access database. We assessed the performances of state-of-the-art machine learning
models on this dataset, and explored their ability to realize predictions on novel
publications, coupling partners and substrates. Our work shows that on well-
designed yield prediction tasks, machine learning can have practical applications,
and provides a unique public database for further improvements of these methods
adapted to literature chemical data.
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Machine learning (ML) algorithms learn complex functions from data. As it can leverage

existing data to perform in silico approximations of costly experimental processes, ML

applications have sparked strong interest in chemical sciences. While ML has already made a

significant impact in drug development1,2, synthetizability assessment of small molecules3 or

Computer Aided Synthesis Planning4, the ability of ML to predict a reaction yield from its

experimental conditions remains a major challenge5 that is intensively studied6,7. Advances

on reaction yield prediction would have a major impact on organic synthesis by significantly

reducing cost, time and resources necessary to synthesize novel chemicals.

Progress in ML is markedly driven by the increasing access to data. Thus, currently

available datasets shape the evolution of ML for reaction yield prediction. Despite this,

there are very few publicly available and easily operable datasets of chemical reactions with

associated yields (Table S1). One of those few public datasets is the United State Patent

and Trademark Office (USPTO) dataset8 that covers a wide range of chemical reactions

extracted from patents. USPTO data is extremely diverse and suffers from a selection bias

as only successful reactions tend to be reported in patents. ML has shown poor performance

predicting yields on this dataset (R2 < 0.27). In addition, two High Throughput Experiment

(HTE) datasets, one of a Suzuki-Miyaura coupling,9 and one of a palladium-catalyzed

Buchwald-Hartwig cross-coupling,10 are available in the literature. State-of-the-art modeling

performs extremely well on those high-quality datasets (R2 > 0.87,10), but the extremely

focused chemical reaction space covered by HTE limits the predictions to a narrow scope of

experimental conditions and reactants.

While those datasets have enabled rapid progress of ML for yield prediction, there is

a need of publicly available datasets11,12 more representative of chemical reaction data

available in the literature or used by chemists in their everyday work. To address this, we

built a literature-mined reaction dataset that focuses on a specific reaction class, the NiCOlit

dataset,13 with more than one thousand reactions with detailed experimental conditions. We

release this realistic dataset to foster the development of ML methods adapted to chemical

data found in the literature. This dataset also allows us to probe meaningful questions in

regard to the applications of machine learning to yield prediction. First, we compared yield

prediction performances to models trained on HTE datasets. Then, we analyzed how yield

prediction performs when extrapolating on new substrates, publications or coupling partners

using the data structure of the NiCOlit dataset. Eventually, we selected the most relevant

prediction task and derived chemical data selection rules to build an efficient training set
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from literature data.

FIG. 1: Proportion of accessible chemical space observed and reaction diversities for the
HTE and NiCOlit datasets. (A): Multi-Dimensional Scaling (MDS) projection of the three
datasets. The NiCOlit dataset is more spread out, indicating higher chemical diversity. (B):
Distribution of Jaccard distances between reactions. Distances are on average higher for the
NiCOlit than the HTE datasets. Both the MDS and Jaccard distances were computed on
the RXNFP representation of the reactions. (C): Proportion of accessible chemical space for
the HTE and NiCOlit datasets. Numbers indicated next to each parameter corresponds to
the number of different choices appearing in the dataset for this parameter. The accessible

chemical space is orders of magnitude larger in the NiCOlit dataset, while the explored
spaces lay in a similar range.

The NiCOlit dataset was manually extracted from literature tables and schemes cited by

the review of Diao and co-workers14. This review focuses on the activation of carbon-oxygen

bonds of phenol derivatives with nickel catalysts for coupling reactions. In order to reduce

the size and the diversity of the dataset we arbitrarily restrained the study to challenging
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electrophiles towards the oxidative addition: sulfonates15 and phenols were left aside. For

each reaction, the Simplified Molecular-Input Line-Entry System (SMILES)16 chains of

substrates, coupling partners, precursors, ligands, bases, additives, solvents, and products

were gathered as well as experimental parameters: reaction time, temperature and molar ratio

of the different partners (section II of Supplementary Materials). This highlighted current

issues when harmonizing different data sources, such as disparity in yield measurement

techniques, or information being reported in prose rather than machine-readable format.

The inherent differences in terms of chemical diversity and yield distributions between the

NiCOlit and HTE datasets were laid out. This allows to understand how prior performances

displayed by ML on the HTE data could translate to the NiCOlit data. The three datasets

were projected on a common 2-dimensional space (Fig. 1A) using Multi-Dimensional

Scaling17 (see Section II of Supplementary Material). The distributions of the pairwise

Jaccard distances between the reactions of each dataset (Fig. 1B) were also computed. This

analysis highlights that NiCOlit reactions are much more chemically diverse than HTE

reactions. Most strikingly, we calculated the accessible chemical space as the number of all

possible combinations of discrete parameters used for each category (e.g. reactants, catalysts,

etc.). Despite having roughly similar number of reactions in the three datasets, the accessible

chemical space of NiCOlit covers almost a trillion of accessible reactions versus less than 20k

for both HTE datasets (Fig. 1C). The proportion of accessible space explored18, an intensive

metric that measures the ratio between the number of chemical reactions experimentally

performed and the size of the accessible chemical space, indicates a more difficult yield

prediction task for the NiCOlit dataset than on HTE datasets. On the other hand, as

most of the accessible space has been explored in HTE datasets (99% and 36% against only

2x10−7% for the NiCOlit dataset), developing an accurate model for the NiCOlit dataset

allows to predict yields for a much larger set of unperformed reactions (almost a trillion

reactions for the NiCOlit dataset).

The presence of reactions with low yields within a dataset is expected to be key for accurate

predictions11,19. HTE datasets display relatively homogeneous yield distribution, with many

negative examples. Meanwhile, searching the commercial database Sci-Findern (Fig. 2) for

reactions matching the NiCOlit chemical reaction space returns 2,203 reactions with a clear

bias toward high yields : 60% of them have a yield above 70%. The NiCOlit dataset yield

distribution lays between HTEs and Sci-Findern data, with a significant amount of zero

yields experiments but few reactions in the 20 to 40% yield range. This suggests a reporting
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bias in commercial databases based on literature data.

Even though reported yield distribution for NiCOlit and HTE datasets are close, the

underlying structure of the reaction data drastically differ. In HTE, all possible combinations

of reactants and reaction conditions are explored (Fig. 2A). Due to time and cost constraints,

chemists tend to perform a sparser exploration of the chemical space to achieve a faster

convergence. Therefore, literature data is reported in two categories of tables: "optimization"

and "scope". Optimization refers to the reaction conditions meaning that most parameters

excepted substrate and coupling partner are modified in order to achieve an efficient reaction

(vertical dots arrays Fig. 2B). In a complementary fashion, scope refers to reactions with

various substrates and, or coupling partners under optimized conditions (horizontal cross

arrays Fig. 2B) in order to demonstrate the robustness of the reaction. In the case of the

NiCOlit dataset, we noticed that yield distribution of the optimization tables are similar

to the HTE yield distribution and that scope tables display a distribution reminding that

of Sci-Findern (Fig. 2C-D). This shows that our use of optimization tables during data

extraction allows to bypass the lack of low yields reactions in literature-extracted datasets,

and could afford improved predictive performances. In literature data, exploration iterates in

two orthogonal directions: first, optimization of the reaction conditions, and then exploration

of reactants in fixed conditions.

Then, we evaluated how existing methods for yield prediction perform on the NiCOlit

dataset. As representing chemical reactions is a crucial step in statistical modeling of reaction

yields20, we selected three approaches representative of the state-of-the-art (see Section III

of Supplementary Materials). The first approach, RDKit FingerPrint (RDKit FP), is based

on the RDKit’s (a cheminformatics tool) chemical reaction fingerprints21,22 and one-hot

encoding of the remaining variables. The second approach, referred to as Density Functional

Theory (DFT), follows the guidelines given by the Auto-QChem database23 to generate

DFT-based molecular descriptors adapted to the given reaction. For the third approach,

RXNFP, we featurized chemical reactions using the deep-learning RXNFP method24. Yield

prediction models were built for each featurization with Random Forest regression models25

that have shown state-of-the-art results on reaction yield prediction6. The DFT method

outperforms the two others, and reaches an R2 of 0.54, even though the difference with

the RDKit FP is modest (R2 of 0.49), while RXNFP showed the weakest performance (R2

of 0.37) (Fig. S6). The rest of the manuscript focuses on the results obtained with the

DFT model. As expected, the performance of the model trained on an optimization dataset
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FIG. 2: Analysis of scope/optimization dataset structures and yields distributions. (A):
Projection of the Buchwald-Hartwig dataset on the scope-optimization space, showing

homogeneous coverage. The second PC is displayed as the first PC is primarily driven by
the 3 bases present in the dataset. (B): Projection of the NiCOlit dataset on the

scope-optimization space, showing a biased exploration. (C): Yields distribution for the
NiCOlit, HTE, and Sci-Finder datasets. Bias towards high yields is observed on the NiCOlit

and especially the Sci-Finder datasets. (D): Yields distribution for the scope and
optimization data on the NiCOlit dataset.

performed better (R2 of 0.48) than when trained on scope dataset (R2 of 0.36) (Fig. S16).

The predictive performance on the NiCOlit dataset turns out to be far better than

reported on the highly heterogeneous USPTO dataset (R2 < 0.2)7 and on data extracted

from AstraZeneca’s Electronic Lab Notebooks (R2 < 0.3)17. This shows the potential of

machine learning applied to reaction data extracted from the literature. Performances

remain nonetheless lower than reported on the HTE datasets (R2 > 0.8). An explanation
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could be the highly biased structure of literature data described in Fig. 2B, while HTE

datasets cover a narrow and homogeneous chemical space (Fig. 2A and 1A-B) and are devoid

of experimental and reporting bias19,26,27. Unlike data published in the literature, HTE

data systematically reports yields for all reactions including low yields, and is comprised

of reactions performed in the same experimental setting. This makes them a perfect use

case for statistical learning compared to the NiCOlit dataset, but with a much narrower

applicability space.

Previous work on reaction yield prediction7,10 focused mainly on predictive yields on

random splits of the data. The nature of scientific discovery pushes chemists to constantly

explore novel reaction chemical space. Thus, the reactions for which we want to make yield

prediction are not sampled from a static distribution, but undergo continuous distribution

shift28. For instance, chemists are often interested in reactions including a novel substrate,

coupling partner or ligand (Fig. 3). Therefore, validation on a random split is not necessarily

informative of how a model would perform when used by chemists in a prospective fashion.

This problem was underlined in recent publications7,10,29, where machine learning algorithms

showed far worse predictive performance when applied on out-of-sample data (e.g. on

reactions with a novel additive not seen in the training set). While all algorithms performed

well on random splits (with an R2 above 0.9, see Table S1), those performances dropped

significantly on some out-of-samples test, with coefficient of correlations R2 at best of 0.54

(obtained with a DFT model6).

We investigated whether models can be used to predict yields on a novel substrate (Fig.

3). This task seems feasible, while being of relevant practical interest. We held-out all

reactions that feature a given substrate; after training on the rest of the dataset, the model

predicts the yields of the held-out reactions. Those results are aggregated over all substrates

in the dataset. While the DFT model showed encouraging results on the substrate split

task, the question of whether the reported predictive performance (R2 = 0.33) is of practical

interest is not clear. Therefore, we designed a realistic classification task, where the model

classifies reactions using a novel substrate in two classes, high yields (> 50) and low yields

(≤ 50). This use case corresponds to the situation where a chemist wants to explore reactions

with a new substrate, and relies on the model’s prediction to discard low yield substrates,

and to prioritize efficient ones. On this task, the DFT method reached high predictive

performance (with a ROC-AUC, a performance metric for classifiers, of 0.74, see Fig. S18).

This highlights a practical application of yield prediction models that can be achieved with
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FIG. 3: ML performances on different data splits. (A) t-distributed stochastic neighbor
embedding (t-SNE) of the NiCOlit dataset colored by coupling partner. (B) t-SNE of the
NiCOlit dataset colored by publication. (C): Examples of train-test splitting from left to
right : random splitting, splitting according to substrate (one substrate in the test set and

all others in the training set), splitting according to publication (one Digital Object
Identifier (DOI) is taken as the test set and all others as training set) and splitting

according to coupling partner class (all reactions of one coupling partner class are taken as
test set and all other coupling partners as training set). (D) DFT model performances for
the splittings displayed in C. The performances displayed represent an average result over

10 random splits for the random task and all the possible substrate/DOI or coupling
reagent class splits for the three remaining tasks.

existing methods.

Researchers’ have incentives to explore novel chemical space (Fig. 3A). Moreover, for each

publication, reaction yield is biased by the chemists skills and the way it is measured. This

leads to a high heterogeneity between reactions from different publications. We evaluated

how ML predict yields on data from a new publication. A train-test split of the data,
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where the test set is comprised of all reactions from one publication, and the train set of all

other reactions that do not appear in this publication, is used to assess the yield prediction

performance of a model on a new publication (Fig. 3C - DOI Hold-out). Our results showed

the inability (R2 of -0.01) of ML to generalize to data from new publications.

While the reactions in the NiCOlit dataset are all extracted from publications referenced

in the same review, they cover a wide range of possible mechanisms. As most of the

publications extracted do not provide detailed mechanistic study of the reaction performed,

a discrimination was made according to the nature of the coupling partner. We held-out

all reactions that share a similar coupling partner (e.g. Boronic derivatives, see Fig. 3A).

Models are trained on the rest of the dataset, and used to predict the yields of the held-out

reactions (Fig. 3C - Coupling Partner Hold-out). Predictive performance reported for this

experiment indicates whether the model is able to predict yields on coupling reactions using a

different partner than the reactions of the training set. Again, the models fail to extrapolate

to new coupling partners. This two experiments highlight remaining limitations for practical

applications of yield prediction models.

Based on those results, we hypothesize that a restricted dataset comprised of reactions

sharing similar coupling partners would lead to equivalent predictive performances than the

full NiCOlit dataset. If true, this would give a precious guideline when gathering data from

the literature in order to perform yield prediction.

To test this hypothesis, we trained the models on the NiCOlit dataset restricted to a given

class of coupling partner (e.g. all reactions with a Boronic coupling partner), and compared

the results with those obtained with a model trained on the full dataset. Indeed, for most of

the coupling partner, the model trained on the restricted dataset performs as well as the

model trained on the full data (table in Fig. 4).

Another observation is that the performance is highly variable according to the coupling

partner. The most straightforward explanation for this behavior is the disparity between the

number of reactions documented for each coupling partner class. The models exhibit poor

or modest performance for coupling partners with less than 60 reactions reported. Adequate

coverage of chemical space is crucial for building ML models30. Those results show that

a dataset of a much smaller size than NiCOlit can be used to build a predictive model,

provided that all reactions share the same coupling partner. They also shed light on the

approximate number of reactions needed to reach satisfying predictive performance (roughly

one hundred reactions). We compare the performances on the restricted sets with between



10

FIG. 4: ML performances when trained on restricted chemical space. (A): Example of
training a model on a subset of NiCOlit within a class of coupling partner (here Boronic

derivatives). (B): The results are comparable to those obtained using the full dataset. This
highlights that good results can be obtained in a low data regime if the reaction share a

similar coupling partner.

70-500 reactions and retrieve comparable performances (R2 ≈ 0.5) than what was obtained

on the Buchwald HTE dataset with a similar number of training points (R2 = 0.59 for 150

data points)10.

To reach its full potential, machine learning relies on high quality data. In the future, we

expect that initiatives such as the Open Reaction Database12 will provide the community

with the data needed. In the meantime, there is currently a lack of public unbiased datasets

of chemical reactions with detailed experimental conditions. By releasing the NiCOlit

dataset, we hope to foster the development of impacting data-driven approaches for yield

prediction. Our results highlight several key aspects of applying ML to predict reaction

yields. A major aspect, often overlooked in recent publications, is the importance of defining

tasks of real interest for chemists. Indeed, the choice of validation set in ML defines the

applicability of the model evaluated. Random splitting, the most common practice for model

evaluation in ML, does not give good insights on the predictive ability of the model for



11

tasks of practical interest. While predictive models cannot currently extrapolate to reactions

from new publications or coupling partner category, we showed that the model is able to

extrapolate on reactions with new substrates. This shows the practical interest of existing

yield prediction models. Noteworthy, only DFT descriptors showed promising results in this

context. This highlights the importance of the choice of descriptors, and paves the way for

future work to improve transferability of yield prediction models on novel reactions. Our

results also allowed to compare predictive performances on the widely studied HTE datasets

and the data extracted from the literature. In a first analysis, performances were lower

on the NiCOlit dataset. Nonetheless, with expert knowledge, high predictive performance

can be attained by collecting only a limited number of reaction data. This shows that ML

powered yield prediction is accessible even without access to large databases, and can have

a huge impact for practitioners. This shows that by leveraging expert knowledge, predictive

models can be built with small datasets including both scope and optimization tables (the

latter are omitted by commercial databases). Hence, ML for yield prediction is accessible

using scientific literature for data-mining, without requiring access to HTE or commercial

databases.

While our results showed that more work and new approaches are needed so that ML can

be applied to out-of-sample chemical reactions, they also highlight that practical applications

such as predicting yields on novel substrates, or building predictive models with a reasonable

amount of data, are already within reach. We hope that these findings and our open-access

database will foster the adoption of machine learning for yield prediction in the chemistry

community.
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