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Abstract 
 
Organic chemical structures encode information about a molecule’s atom and bond arrangement. The 
most established way to encode a molecular structure is through line drawing, although other 
representations based on graphs, strings, one-hot encoded labels, or fingerprint arrays are critical to the 
computational study of molecules. Here we show that music is a highly dimensional information storage 
medium that can be used to encode molecular structure. The resultant method allows a molecular 
structure to be heard as a musical composition, where the key of the music is based on the molecular 
properties and the melody is based on the atom and bond arrangement. This allows for a molecular 
generation approach that leverages modern artificial intelligence tactics for music generation. 
 
 
Introduction 
 
The representation of chemical structures is critical to the study and invention of functional molecules. 
Organic molecules are classically described as line drawings1, where all atoms and their corresponding 
bonds are drawn on paper or on a computer. Other simple molecular representations include molecular 
formulae, IUPAC names or CAS numbers, which require little memory and are machine readable, but 
carry minimal information. Molecules can also be represented as graphs, with atoms as nodes and bonds 
as edges. By encoding atomic coordinates and connectivities line by line, the topology of molecules can 
be embedded as a graph on a computer for rendering, editing and analysis. The transmission of 
molecular information into machine-readable formats has invited new molecular structure representations, 
such as SMILES2, SMARTS3, InChI keys4, DeepSMILES5, and SELFIES6. These representations are 
cheap to store in memory and provide valuable structural information for rapid lookup and comparison. 
While these aforementioned representations have been useful for inputting molecules into computers, 
and encoding structural and stereochemical information, they are one-dimensional string representations 
that are more difficult for human users to interpret and interact with than the classic line drawing 
representation of molecules. To adapt them for machine learning and data science algorithms, SMILES 
and other strings are typically converted to vector representations via molecular fingerprints such as 
Extended Connectivity Fingerprints7 (ECFP), Morgan Fingerprints8, atom-pair fingerprints9, and others. 
This dimensionality expansion is a core tactic in the analysis of virtual chemical libraries or predictions of 
molecular properties. Other high-dimensionality fingerprint representations, such as physics-based 
descriptors10 or physicochemical descriptors11,12, are also common. While computers can easily parse 
molecular information from these representations, interactivity with human users is difficult with the 
fingerprint-based information media. In addition, once converted to such a fingerprint, the molecule is 
typically no longer uniquely revertible to its atom-bond representation.13 

 
Music is a high-dimensional information storage medium that maximizes both human and computer 
interactivity, interpretability, and creativity. We considered that music could be used for storage of 
molecular information. The encoding of molecules as music is particularly intriguing since the multiple 
dimensions of music can allow encoding of many molecular properties.14 Music is also highly interactive 
both for humans and for computers. Musicians can control many parameters that can embed information 
about a molecule, such as tempo, rhythm, notes, key, instrument, effects, etc. If molecules could be 



encoded as music, opportunities would emerge for visual-to-audio sensory substitution, for instance 
providing blind chemists new ways to interact with molecules.15 Contemporary chemistry and drug 
discovery leverage artificial intelligence16 (AI) and there has meanwhile been an explosion of AI methods 
in the study and creation of music17, so we were excited by the prospects of merging modern chemistry 
machine learning (ML) techniques with recent ML techniques for music. Our initial impetus was to explore 
how music could be used as a creative medium to generate new molecules, but in the course of our 
studies we have learned that molecules likewise can provide an inspiration and creative outlet for the 
generation of new music.  
 
Sonification is the encoding of non-musical information as music and provides a means to encode 
information in many musical dimensions, while simultaneously providing a new means of interactivity.18 A 
variety of information sources have been sonified, such as visual art19, the architecture of spider webs20, 
infrared spectra of chemicals21, amino acid sequences22, air pollution23, fire24, and many more25-32. The 
SELFIES representation provided a viable input for molecular sonification, both for the encoding of 
molecules into a melody and the construction of new molecules via performance on a musical instrument 
such as the piano. We developed a workflow for transferring molecules into music, and vice versa, which 
we call Sonic Architecture for Molecule Production and Live-Input Encoding Software, or SAMPLES. A 
python script enables direct interactivity with a piano keyboard via the musical instrument digital interface 
(MIDI) format.  
 
 
Results 
 
Encoding: To create a melody based on a molecular structure, the key and the sequence of notes are 
derived from its physicochemical properties and its SELFIES sequence, respectively. To determine the 
key, the physicochemical properties of a molecule — such as logP, molecular weight, and number of 
hydrogen bond donors and acceptors — are summed, and the final number is projected into the integer 
space between 1 and 12, with each bin corresponding to a particular key. The sequence of notes is 
determined from a one-to-one mapping between the SELFIES token of the molecule and multi-octave 
steps in the major scale (see Supporting Information for the specific mappings and key distribution used 
in this study). By adding the MIDI value of the melody's key to the MIDI shifts that correspond to notes of 
the major scale (derived from the SELFIES tokens of the molecule), the final melody is produced. Every 
fourth note was converted to a major chord to increase the texture of the music.  



 
Figure 1. Workflow for SAMPLES. Molecules are first assigned a musical key based on aggregate chemical 
properties, then converted into a sequence of notes based on SELFIES encoding. MusicVAE is trained on a 
collection of sonified molecules to formulate the chemical/musical latent space. The latent embedding of molecular 
music can then be sampled, decoded by the MusicVAE decoder, then converted back into a molecular structure by 
SAMPLES  
 
Decoding: The MIDI shifts are reverse calculated for each key and converted into a molecular structure. 
As such, multiple structures are generated (one for each key) for the same MIDI sequence. Each 
structure is then hashed into a key using the original key encoding algorithm. If the hashed key matches 
the key used in the reverse calculation, the molecular structure is decoded. It is guaranteed that at least 
one decoding key will match a hashed key for any MIDI generated from SAMPLES.  
 
A demonstration of the SAMPLES encoding function is shown in Figure 2. Ammonia (1) appears as a 
single note while benzene (2) generates a slightly more complex musical composition. The unity of these 
two molecules produces aniline (3) whose musical sequence highly resembles the concatenation of the 
two musical sequences of 1 and 2. Expansion of 3 into indole (4) creates a slightly more complex melody 
owing to both the increased molecular size and the additional information content required to describe a 
ring fusion between the 5- and 6-membered rings. In the reverse direction, songs are readily translated to 



molecules, such as 5, which is produced from the song “Twinkle, twinkle little star” when played in the key 
of D flat.  

 
Figure 2. SAMPLES translates molecules into music. A. The generation of increasingly complex molecules from 1 
through 4 corresponds to increasing musical complexity. Each line shows the molecular structure, the corresponding 
musical score, and a waveform of the MIDI output. Audio recordings are available in the Supporting Information and 
can be quickly retrieved by scanning the QR code with a mobile device. B. In the reverse direction, the song “Twinkle, 
Twinkle Little Star” produces molecule 5. 
 
SAMPLES is readily scaled to more complex and drug-like molecules. Tolmetin (6) and ketolorac (7) 
create a rich and textured musical composition. Meanwhile, tabersonine (8) and vindoline (9) provide 
complex melodies. Scaling to large complex molecules, such as taxol, oxytocin or vincristine (see 
Supporting Information) required no modifications and generated nuanced euphonic melodies.  



 
Figure 3. SAMPLES is amenable to encoding complex molecules. The pair of similar molecules 6 and 7 have 
SAMPLES compositions that are distinct from another similar pair of molecules 8 and 9. 
 
 
Case Studies 
To showcase the utility of this novel algorithm, four experimental case studies are presented. Using our 
approach, molecular properties can be heard. For instance, the songs generated from molecules that 
pass the Lipinski rules33 can be auditorily distinguished from those that fail the Lipinski rules based on the 
musical key. This is largely because the molecule’s aggregate physicochemical properties were hashed 
to the musical key, with the most popular physicochemical property fingerprints from the pharmaceutical 
database DrugBank hashing to the most popular song keys from the music database Spotify.34 The 
concept of molecular similarity is of high importance to molecular invention, such as in selecting 
molecules with comparable functional properties for drug discovery. We were curious to explore if 



SAMPLES generated from molecules with high Tanimoto similarity35 (fingerprint based) would sound 
similar, appreciating that both molecular similarity and musical similarity are difficult to define.36 Indeed, 
we deemed the SAMPLES of codeine (10) and morphine (11) to sound similar to each other while the 
SAMPLES of sulfamethoxazole (12) and sulfadoxin (13) likewise sound similar, while the pair of 10 and 
11 sounded distinct from the pair of 12 and 13 (Figure 4).  

 



Figure 4. tSNE embedding of 11,159 drugs from DrugBank (2,048-bit Morgan Fingerprints of radius 2), colored by 
their SAMPLES musical key. Similar molecules 10 and 11 have SAMPLES outputs that are distinct from other similar 
molecules 12 and 13.  
 
Our second experiment investigates the generation of molecules via modification of the music domain. A 
key motivator for our research was the ability to generate new molecules through the interactivity of a 
piano keyboard, or other musical hardware or software. This was made possible in SAMPLES through 
the application of SELFIES, which enable editing of string bits while consistently producing valid 
molecular structures. Thus, starting from morphine (11), the musical score could be modified one note at 
a time (Figure 5) to generate new chemical structures 14–16 bearing a clear relationship to 11 but with 
noticeably modified bond and atom architecture. Note that SAMPLES may generate undefined 
stereocenters.  

 
Figure 5. Molecular editing in SAMPLES generates distinct but related molecules. The manual editing of single notes 
in the SAMPLES of 11 leads to 14, 15, or 16.  
 
Having demonstrated the feasibility of molecular generation using SAMPLES, we explored the ability of 
modern machine learning methods developed for music generation as tools for molecule generation. In 
this third case study, we applied the melody mixing function of MusicVAE37 using MIDI melodies derived 
from SAMPLES as inputs. Using MusicVAE, two melodies could be blended to generate an interpolated 
melody, and that new melody could be translated back to a molecular structure using SAMPLES, thus 
creating a new molecule that was a “blend” of the two input molecules (Figure 6). We call this function 
CROSSFADE. The blending of musical compositions is an established practice, with considerable 



hardware and software to support the musical blending process. While algorithms that generate new 
molecules by blending the structures or properties of input molecules are known38, we are intrigued by the 
interactivity offered by CROSSFADE. As an example, glutamic acid (17) and acetylcholine (18) were 
CROSSFADEd to produce 19, 20 and 21 CROSSFADE to 22 and similar results are obtained for 23–28. 
A four-step interpolation is shown in the Supporting Information.  

 
Figure 6. CROSSFADE merges SAMPLES with the melody mixing function of MusicVAE to create interpolated 
molecules based on two input molecules.  
 



As a final experiment, to take the editing of the molecules on the keyboard a step further, and to 
demonstrate the human-interactivity enabled by the SAMPLES algorithm, a human created a monophonic 
composition inspired by SAMPLES-generated music (Figure 7), which was decoded to molecule 29. It 
was necessary to exert some human bias into the musical composition, based on the composer’s 
knowledge of chemistry and SAMPLES, since generating a molecule that is as carboniferous as most 
drugs and natural products requires bias towards the key’s tonic note, in this case C, since that is 
mapped to the carbon atom.  

 
Figure 7. A human created music composition leading to 29.  
 
Visual-to-audio sensory substitution allows users to interpret information sonically using sources not 
traditionally stored as sound.15 To test SAMPLES in this context, a survey was given to 32 undergraduate 
students wherein they were presented with the SAMPLES song of a single survey molecule and then 
asked to listen to additional SAMPLES songs of four distinct test molecules and select the most similar 
sounding song in a multiple-choice quiz format. Among the four test molecules, one molecule had a 
higher Tanimoto similarity to the survey molecule. For three of the four surveyed pairs, the students 
selected the molecule with highest Tanimoto similarity based on their interpretation of the similarity 
between SAMPLES songs. No visual information was given. Thus, students listening to the song of 12 
selected 13 as having highest sonic similarity, instead of 33–35. Students listening to the song of 6 
selected 7 as having highest sonic similarity, instead of 36–38. In both cases, the molecular Tanimoto 
similarity, based on Morgan fingerprints, was highest for the most popular musical survey response. A 
similar result was observed comparing 8 to 9, versus 39–40. However, the songs for morphine (10) and 
codeine (11), were not determined to have the highest musical similarity despite the apparent molecular 
similarity between these molecules. Instead, the song for compound 30 was chosen most frequently (17 
out of 32 students) as being most similar to 10. Further studies are required to understand why 10’s 
SAMPLES sounds more like 30 than 11. Nonetheless, our collective results highlight that visual-to-audio 
sensory substitution may enable molecular interpretation when visual information cannot be used. 



 
Figure 8. A) Survey results from 32 participants. Each participant was given the SAMPLES encoded 
melody of four survey molecules. For each survey molecule, without knowledge of the name or structure 
of any molecule, each participant was asked to choose the most similar melody from a selection of four 
other SAMPLES encoded drugs. Survey responses are cross examined against the Tanimoto similarity 
between each test molecule and survey molecule for each question. B) Structures of survey and test 
molecules for each question. One structure for each set of test molecules was chosen to have high 
similarity to the respective question’s survey molecule to serve as the ‘correct answer’. 
 



Discussion  
 
We report an alternative means of encoding organic molecules through music. The resultant melodies 
allow a human to interact with molecular structures through musical hardware and software via note 
editing, insertion and deletion, as well as produce molecular structures through original compositions. 
One transfer learning application for which the current study may be used is music generation. The 
motivation for machine learning for content generation is its generality, that is no formal grammar or rules 
must be specified for such a model to generate content.17 Transforming molecules into music provides a 
rich collection of musical data that can be used to train music generation models, as seen with MusicVAE. 
Particularly, sequence to sequence (seq2seq) models, such as recurrent neural networks39, allow for the 
interconnection of domains containing data signals with variable lengths such as text, music, and 
machine-readable molecular representations based on structure. Seq2seq models can learn a fixed 
length embedding of variable length signals that can be used for classification tasks and direct 
mathematical comparison. For instance, word2vec40 and GloVe41 provide pretrained word embeddings 
that have been learned from massive text corpuses such as Wikipedia or Twitter. In a molecular context, 
variational autoencoders have been used to learn the distribution of molecular features, such as SELFIES 
tokens, to provide a continuous embedding of molecular space.42 SAMPLES provides an avenue to 
directly connect molecules to content-generating machine learning models in the music domain. 
Computational exploration and interpolation within the melodies described herein is possible, generating 
new molecules that sound and look similar to existing molecules. This highlights the possibility of 
leveraging music-based artificial intelligence for molecular design.  
 
 
Materials and Methods 
 
Sonification and visualization code was written in Python (version 3.7.12). All Python dependencies were 
installed using pip, version 21.1.3. SELFIES (version 1.0.0) was utilized to encode molecules into string 
format. RDKIT (version 2021.9.2.1) was utilized to calculate physicochemical properties of molecules for 
key hashing. Magenta (version 2.1.3) provided tools to manipulate MIDI files and train MusicVAE. 
Fluidsynth (version 2.2.3, installed via apt-get) was used to convert MIDI into wav format. Music21 
(version 5.5.0) was used to create and read MIDI files. Matplotlib (version 3.2.2) was used to create plots 
and graphs. Sklearn was used to calculate the tSNE dimensionality reduction. Drug structures were 
collected from DrugBank Release Version 5.1.8 (2021-01-03).  
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