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Abstract 
The extraction of chemical information from documents is a demanding task in 
cheminformatics due to the variety of text and image-based representations of 
chemistry. The present work describes the extraction of chemical compounds with 
unique chemical structures from the open access CORE (COnnecting REpositories) 
and Google Patents full text document repositories. The importance of structure 
normalization is demonstrated using three open access cheminformatics toolkits: 
CDK, RDKit and OpenChemLib. Each toolkit was used for structure parsing, 
normalization and subsequent substructure searching, using SMILES as structure 
representations of chemical molecules. Per- and polyfluoroalkyl substances (PFAS) 
were chosen as a case study to perform the substructure search, due to their high 
environmental relevance, their presence in both literature and patent corpuses, and 
the current lack of community consensus on their definition. Three different structural 
definitions of PFAS were chosen to highlight the implications of various definitions from 
a cheminformatics perspective. Since CDK, RDKit and OpenChemLib implement 
different criteria and methods for SMILES parsing and normalization, different 
numbers of parsed compounds were extracted, which were then evaluated using the 
three PFAS definitions. A comparison of these toolkits and definitions is provided, 
along with a discussion of the implications for PFAS screening and text mining efforts 
in cheminformatics. Finally, the extracted PFAS (~1.7 M PFAS from patents and ~27K 
from CORE) were compared against various existing PFAS lists and are provided in 
various formats for further community research efforts. 
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Introduction 
Per- and polyfluoroalkyl substances (PFAS) are compounds of high public interest as 
there is increasing evidence that exposure to PFAS can lead to adverse human and 
environmental health effects1,2. These concerns are accompanied by their 
documented accumulation in the environment (as so-called “forever chemicals”) due 
to their widespread use and stability3. Well-known PFAS include older PFAS such as 
PFOA (perfluorooctanoic acid) and PFOS (perfluorooctane sulfonic acid), as well as 
newer PFAS such as GenX (a replacement product for the older PFAS). There is 
strong regulatory debate about PFAS, including calls to regulate them as a class4 and 
for better approaches to detect PFAS in humans and in the environment. Since PFAS 
and replacement PFAS products are a fast-moving business, cheminformatics tools 
are gaining importance in identifying candidate PFAS compounds from within scientific 
and other text sources such as patent repositories, including in-house confidential 
business documentation. 

Past efforts to identify and collect chemical structures of existing PFAS have resulted 
in several so-called “suspect” lists. The Organisation for Economic Co-operation and 
Development (OECD) released a PFAS list containing 4,729 PFAS entities in 20175,6 
(hereafter “OECDPFAS”). The United States Environmental Protection Agency (EPA) 
“PFASMASTER” list currently (December 2021) contains 12,048 PFAS entries7, 
merged from several PFAS lists on the EPA CompTox Chemicals Dashboard8. Of 
these two lists, PFASMASTER contains 10,785 entries that can be represented by an 
InChI (International Chemical Identifier), while the OECDPFAS list contains 3,741 
entries with an InChI, using versions downloaded from the EPA website on 2021-12-
117,9 and available in the supplementary material10. The other entities in the lists are 
substances without a clear composition, or with known composition that cannot be 
represented fully with an InChI. Of the 3,741 OECD compounds with an InChI, 3,731 
are also contained in the PFASMASTER list (by matching InChI). 

These lists and more are used in environmental assessments to gauge the extent of 
the “PFAS knowledge gap”. Such lists serve additional purposes, e.g.,  to search for 
the respective compounds in analytical data of environmental samples11. The majority 
of PFAS suspect lists are hand curated, painstakingly compiled by experts and thus 
limited both by access to relevant information and by the manual nature of the efforts. 
Since various definitions of PFAS exist with varying degrees of complexities, three 
different structural definitions of PFAS have been considered in the current work, 
clarified below and shown in Figure 1: 

Definition A: Each compound that contains a CF2 group is considered a PFAS. This 
definition has been proposed recently by the OECD12,13. This definition will lead to a 
large amount of chemicals that are considered to be PFAS. 

Definition B: Each compound that contains a (AH)(AH)(F)C-C(AH)F2 group is 
considered a PFAS, where the AH groups could be hydrogen or any other atom and 
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the bond between both aliphatic carbon atoms is a single bond. This definition is used 
in this present work as a straightforward structural definition as a compromise between 
definitions A and C. 

Definition C: Each compound that contains a (R1)(R2)(F)C-C(R3)F2 group is 
considered a PFAS, where the R groups are any atom except hydrogen and the bond 
between both aliphatic carbon atoms is a single bond. This is a new, very recent EPA 
definition14,15. This definition will lead to the least amount of PFAS molecules. 

 

Figure 1: Schematic representation of the PFAS definitions A, B and C considered in 
this work. “AH” = hydrogen or any other atom; R1, R2, R3 represent any atom other 

than hydrogen.   

Extracting chemical information from text documents is a challenging task. Unlike 
other natural language terms, chemistry-related terms pose additional challenges, as 
the number of known chemical compounds with unique structures is not only very high 
(e.g. PubChem16 currently contains 110M unique compounds, which is only a tiny 
fraction of the estimated chemical space) but they may appear in text documents with 
a multiplicity of trivial names.  Examples include perfluorooctanesulfonic acid, (PFOS), 
International Union of Pure and Applied Chemistry (IUPAC) names (e.g. 
1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonic acid), mixtures of 
trivial and IUPAC naming, enumerations of Markush17 structures, trade names and 
half formulas (e.g. Krytox oils, F−(CF(CF3)−CF2−O)n−CF2CF3 where n=10-60), 
database identifiers such as Chemical Abstract Service (CAS) registry numbers (e.g. 
1763-23-1), PubChem Compound Identifiers (CIDs, e.g. 74483), and even images that 
are referenced in the text with simple numeric labels. Advanced and flexible methods 
are required to capture all types of chemical information, with subsequent 
cheminformatic manipulation to ensure correct mapping to detailed structural 
information. 

The automated analysis of the increasing number of accessible scientific documents 
may provide input to fuel scientific studies to identify novel molecules with potentially 
desired or undesired properties. OC|processor18 is a modular semantic annotation 
toolkit, based on Apache UIMA19. It is designed to annotate different document types 
such as PDF, images, HTML, XML, MS Office and plain text documents. It uses a 
range of established dictionaries and ontologies as well as rule-based algorithms to 

https://pubchem.ncbi.nlm.nih.gov/compound/74483
https://pubchem.ncbi.nlm.nih.gov/compound/74483
https://pubchem.ncbi.nlm.nih.gov/compound/74483
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annotate and index scientific named entities such as diseases, genes, species and 
chemistry. The properties of concept synonyms as well as the hierarchy of ontological 
concepts are taken into account to provide more accurate context sensitive annotation. 
For example, the term “sting” could be annotated as a known musician, a species, a 
disease or a protein. OC|processor disambiguates based on the term environment and 
the presence of related concepts, assigning the annotation / knowledge domain with 
the highest confidence value. For this study, the growing bodies of open access 
document repository CORE20,21 (COnnecting REpositories) and patent full text 
documents in Google Patents22 were selected to demonstrate the automated 
capability of identifying and analyzing scientific entities, applied to the case study of 
potential PFAS in documents. OC|processor18 was used to automatically identify and 
extract mentions of chemical compounds from patents and other open access 
scientific documents such as scientific articles and university documents in CORE. 
The resulting collection of diverse chemical compounds was subsequently filtered for 
small molecule compounds for which a unique InChI23 could be generated, thus 
removing incompletely-defined structures such as substances, polymers as well as 
mentions of chemical class terms and Markush-like17 structures. Of the three 
definitions presented above, Definition B was used for most of the detailed 
investigations in this study. The final PFAS lists are available for all 3 definition 
versions described above and have been made public, together with additional results, 
in various formats10,24 (see also data availability) for general assessment and as input 
for future studies.  

Experimental 

Semantic annotation and extraction of chemical compounds 

OC|processor18 comprises various modules that take the different modalities of 
chemistry into account, aiming at a comprehensive annotation of chemistry terms in 
documents. This allows the identification of novel concepts and compounds that were 
not yet known at the time before annotating a given document. If new compounds are 
identified, these are registered in Google BigQuery25 tables in the open access 
SciWalker-Open-Data project, giving access to >150 million small molecules with a 
unique standard InChI (version 1.3)23. These unique InChIs were generated from 
connection tables generated from the SMILES26–28 representations of chemical 
structures. SMILES containing a wildcard entry (i.e. “*”) were considered as 
representing a scaffold containing an undefined substituent and were not registered. 
Thus, the current approach is limited by the expressivity of SMILES as well as the 
InChI rules. For example, standard InChI will represent different tautomers of a 
molecule as one unique structure, while neither SMILES nor InChI consider coordinate 
(dative) or hydrogen bonds. Since valence isomerism is not handled by either system, 
this would result in different structures for molecules exhibiting valence isomerism29. 
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Hereafter, the use of “unique InChI” or InChI in this manuscript refers to a unique 
standard InChI (version 1.3). 

Document sets 

CORE Documents: A total of 71,963,421 de-duplicated documents were selected and 
downloaded from the CORE document set of open access documents21. These 
documents, when annotated with OC|processor, resulted in the annotation of 818,280 
compounds with an unique InChI30. The SMILES extracted from CORE are from the 
text only, images were not extracted. 

Patent Documents: Google Patents contains over 120 million patent publications 
from 100+ patent offices worldwide, available for open access searching22. For the 
current work, a set of 111,730,728 Google Patent documents was semantically 
annotated with OC|processor using both the text and images found in these patents - 
the resulting annotations are made available in a BigQuery table31 dated May 13, 2021 
(see Big Query31 patents-public-data in the google_patents_research dataset and 
table annotations_202105). In total, 51,928,230,588 annotations were found. Of those, 
4,533,988,229 were compound annotations with associated SMILES and InChI. Of 
these 4.5 billion annotations, 18,032,261 had an unique InChI32 and respective 
Ontology Concept IDentifier (OCID)33 in the SciWalker-Open-Data project34. As a next 
(pre-filtering) step, the 18,032,261 unique compounds from the chemistry annotations 
of patents were reduced to a dataset of 4,182,712 SMILES that contained an “F” 
character, resulting from a fluorine, iron or francium atom. 

The quality of the chemistry-related annotations from the combined text and image 
patent data is lower than from the CORE set.  Optical structure recognition and 
extraction from images often leads to erroneous structures such as compounds 
containing hypervalent atoms or wrong isotopes that arise from poor image quality. 

Compound structure normalization 

Normalization (or standardization) of compound structure representations is an 
important step in preparing compounds for further analysis, including reliable 
substructure searching. Thus, the various effects of parsing the SMILES strings from 
the steps above to create a molecule object, plus subsequent normalization, were 
investigated using three different open access chemistry toolkits: RDKit (version 
2020.03.2)35, the Chemistry Development Kit (CDK, version 2.4)36,37 and 
OpenChemLib (OCL, version 2021.11.3)38. The approaches used were: 

● RDKit: with the two available standardizers - molVS39,40 and rdMol. 
● CDK: via SMILES parsing, normalizing the SMILES with the kekulize option. 
● OCL: via SMILES parsing and MoleculeStandardizer, writing the SMILES in a 

kekulized form. 
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After parsing the input SMILES, the resulting molecule object was again represented 
as SMILES as an intermediate step before parsing it again and performing the 
substructure search to classify it as a PFAS or non-PFAS. This procedure has an 
effect on the parsing results as described below; in a production environment this 
additional SMILES generation step would probably not be performed. 

PFAS substructure search with graph-based atom-by-atom-search 
(ABAS) 

In-house Java code calling the respective CDK and OCL libraries and python scripts 
based on RDKit were used for the substructure calculations41. To ensure that the 
substructure atom-by-atom-search (ABAS) graph based subroutines were 
implemented correctly, the code was tested using the query and SMILES set 
mentioned in the RDKit manual. The SMILES structure used to test the 
implementation was “C1CC12C3(C24CC4)CC3” (PubChem CID 141640; see Figure 
2A). A correct implementation of the SMILES substructure search should return 4 for 
the SMARTS query “*1**1”. 

 

Figure 2: A: The structure to test the validity of substructure search algorithms. B: 
Erroneous SMILES, i.e. an incorrect representation of 1,2-dichlorotetrafluoroethane 
caught by RDKit. C: Invalid SMILES representations of ferrocene-like compounds, 
caught by CDK. D: “Correct” SMILES representation of ferrocene-like compounds, still 
demonstrating the limitation of SMILES in representing such compounds. E: The 
structure captured by CDK with ABAS only, but not FP+ABAS.  

The PFAS SMARTS definitions [#6](F)(F), [#6](F)(F)[#6](F) and 
[#6H0](F)(F)[#6H0](F) corresponding to PFAS Definitions A, B and C were used 
for RDKit and CDK, while the corresponding SMILES query definitions C(F)(F), 
C(F)(F)C(F) and C(*)(F)(F)C(F)(*)(*) were used for OCL to perform the 
substructure search to define the number of unique PFAS compounds.  

https://pubchem.ncbi.nlm.nih.gov/compound/141640
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PFAS substructure search with fingerprint selection and ABAS 

As a first step, molecular fingerprints were calculated for the extracted molecular 
structures to create a Lucene search index using Apache Lucene in the following 
manner. Fingerprints were calculated by the respective toolkit libraries as shown in 
Table 1. These fingerprints were then stored for each molecule as a “document” in a 
Lucene index, providing the necessary fingerprint index of the molecules. The 
fingerprint of the substructure query was then calculated in the same way, followed by 
searching the Lucene index for candidates. In a second step, the resulting candidate 
compounds were filtered by ABAS graph-based substructure search from above. 
Molecules passing both steps were considered as hits. This approach has recently 
been implemented in Sachem42 storing fingerprint data in an experimental Lucene 
implementation ported to C. In this study, a standard Lucene implementation in Java 
1.8 was used with fingerprint libraries pattern fingerprinter (RDKit), 
DescriptorHandlerLongFFP512 (OCL) and CDKFingerprinter (CDK). The pattern 
fingerprint of RDKit uses SMARTS pattern to generate topological fingerprints of 
molecules. The DescriptorHandlerLongFFP512 of OCL is a substructure fragment 
dictionary-based binary fingerprint similar to the Molecular Design Limited (MDL) keys. 
It relies on a dictionary of 512 predefined structure fragments. The CDKFingerprinter 
generates one-dimensional bit arrays, where bits are set according to the occurrence 
of a particular structural feature. The molecules were normalized using the options 
available in OCL and CDK, and the molVS standardizer for RDKit.   

Results and Discussion 

Compound structure normalization 

Several instances of different cheminformatics toolkits producing different normalized 
SMILES expressions were found. These inconsistencies influence later results and 
are described below with specific examples.  
 
Invalid SMILES Expressions: A particular SMILES may contain expressions that are 
not compliant with the official SMILES definitions, which should either be rejected or 
elicit a warning from a SMILES parser. For example, while C[N@@@H]C is not a 
syntactically proper SMILES, it is nevertheless accepted by the commercial toolkit 
ChemAxon43 as well as CDK, which transform it to [#6;A][#7;AH1;@@@][#6;A] 
or C*C, respectively, which is likely something entirely different than what was 
originally intended. However, C[N@@@H]C is rejected by the RDKit and OCL parsers, 
which is likely a more reasonable behaviour. 

Valence Rule Violations: While an extracted and parsed SMILES may be formally 
correct when generated by chemistry-recognizing annotation modules, such as the 
optical structure recognition software OSRA44 for image-to-structure conversion, the 
resulting molecular structure may violate obvious valence bond order rules. For 
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example, the OSRA input SMILES (see Figure 3A) “CCc-1=n-c#c-n-
1CC1OC(=O)C(C=2C=CC=CC=2)(C=2C=CC=CC=2)C1” is parsed by ChemAxon, 
OCL and RDKit, giving a parsed SMILES output shown in Figure 3B (ChemAxon, 
OCL) and Figure 3C (RDKit) below. The output SMILES are 
CCc1nccn1CC1CC(C(=O)O1)(c1ccccc1)c1ccccc1 (ChemAxon, OCL) and 
CCc1nc#cn1CC1CC(c2ccccc2)(c2ccccc2)C(=O)O1 (RDKit), respectively. 
However, it is rejected by CDK, as it can not assign a valid Kekulé structure to a 5-
membered aromatic ring containing a triple bond - representing an abnormal valence. 
While this behaviour may be intended (or even desired), the end result is that it 
changes the input SMILES to a different output SMILES, which results in a different 
chemical structure and thus different InChI. In other words, it changes the meaning of 
the input to an assumed desired output. Ideally, such changes/corrections should be 
separated out into an optional module that can be switched on or off by the user of 
that toolkit, to enable better control over such behaviour depending on the use case. 

 

Figure 3: Interpretation of an input SMILES by different toolkits. A: The OSRA input:  
“CCc-1=n-c#c-n-1CC1OC(=O)C(C=2C=CC=CC=2)(C=2C=CC=CC=2)C1”. B: The 
interpretation by ChemAxon and OCL, with output SMILES 
“CCc1nccn1CC1CC(C(=O)O1)(c1ccccc1)c1ccccc1”. C: The RDKit 
interpretation, output: “CCc1nc#cn1CC1CC(c2ccccc2)(c2ccccc2)C(=O)O1”. 
CDK rejects the input SMILES.   

The number of molecules rejected by parsing the SMILES with the different toolkits is 
quite different. A rejected SMILES cannot be used for subsequent substructure 
search, potentially reducing the number of identified PFAS molecules. Thus, the 
quality of the different SMILES parsers was checked by first parsing the input SMILES, 
then generating the corresponding InChI from the molecule object. In a second step, 
a normalized SMILES was written from the molecule object, parsed again and the 
InChI of these “reparsed” SMILES was calculated. Discrepancies between the InChIs 
from step one and step two in this procedure reveal issues in the quality of the parsing.  

Normalization: For the purposes of further comparison, normalization or 
standardization of the SMILES input is needed, as the same molecule can be 
represented by different SMILES. While the terms “normalization” and 
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“standardization” can refer to different concepts in different contexts, they are used 
synonymously in this work. During normalization of SMILES, atomic charges and bond 
types may be changed. For example, a nitro group can be represented as either the 
charged form -[N+](=O)[O-] or the neutral form -N(=O)(=O), both yielding 
different but valid SMILES strings with the same InChI, i.e., InChI=1S/NO2/c2-1-
3. Normalizing these two SMILES representations into a consensus SMILES facilitates 
further processing, e.g. for identity, similarity or substructure searching. Normalization 
of SMILES may flag alkali metals that are incorrectly connected to O or N, incorrect 
amide tautomers, and elements rendered as hypervalent or  with abnormal valencies. 
For example, OCL flags and returns an error message when alkali metals are 
incorrectly covalently bonded to oxygen or nitrogen (e.g NaO). The consensus 
representation is [Na+][O-]. Also, OCL flags and returns an error message when 
incorrect amide tautomers are parsed without a square bracket for the NH group. (e.g., 
N=COH or HNC(=O) are incorrect representations of [NH]C(=O)). Since each 
chemistry toolkit uses somewhat different rules to normalize SMILES, this has an 
effect on the outcomes on the PFAS substructure search described below. Some 
normalization tasks may also be performed by specific “standardizer” modules of the 
toolkits that use rules (with varying degrees of available documentation) to transform 
SMILES into a normalized form. 

PFAS substructure search (Definition B) and effect of prior normalization 

The effect of normalization on the PFAS substructure search using Definition B (Figure 
1B) on the CORE dataset is given in Table 1. The maximum number of unique PFAS 
compounds found by CDK and OCL using normalization is the same, i.e. 4,192 PFAS 
(according to Definition B). RDKit finds one structure less, which has a SMILES 
ClFC(F)C(F)(F)Cl (OCID190000011511). This compound structure  is actually an 
incorrect representation of 1,2-dichlorotetrafluoroethane, containing a hypervalent 
fluorine (see Figure 2B). This structure was integrated into the OntoChem database 
of registered compounds when it was found in an early version of the Wikipedia 
Chemical infobox45. Meanwhile, this entry has been corrected in Wikipedia Chemistry 
but still remains as a legacy in the OntoChem compound registry system, waiting for 
relinking to the correct structure and respective OCID190005899464. 

In general, the number of SMILES that are not accepted by the different toolkits as 
valid SMILES are quite different (see “Invalid” entries in Table 1) and also depend on 
whether or not normalization is used.  CDK seems to be more “forgiving” than RDKit 
and OCL, but only if normalization is used.  
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Table 1: Effect of normalization and toolkit selection on substructure search 
corresponding to PFAS Definition B in the 818,280 compound CORE dataset. 

Toolkit Normalizer PFAS Definition B:  
No normalization 

PFAS Definition B: 
With normalization 

  True False Invalid True False Invalid 

CDK built-in 4,163 801,624 12,493 4,192 814,081 7 

OCL standardizer 4,192 813,829 259 4,192 813,834 254 

RDKit molVS 4,191 813,463 626 4,191 813,462 627 

RDKit rdMol 4,191 813,463 626 4,191 813,090 999 

 
Of the 7 SMILES in CDK that are characterized as invalid SMILES representations 
with normalization, 6 are ferrocenes with coordinative bonds, such as 
[Fe].Cc1ccc(C)c1.Cc1ccc(C)c1 (OCID190071023137, see Figure 2C). A 
meaningful ferrocene SMILES should have an iron with 2 positive charges and two 
cyclopentadienes with a negative charge like for example 
[Fe++].CC1=CC=C(C)[C-]1.CC2=CC=C(C)[C-]2 (see Figure 2D), however this 
“correct” SMILES does not truly reflect the aromatic structure with a distributed 
negative charge and its coordinative bonding nature. This problem will be seen for all 
coordinative compounds, as the current SMILES syntax does not allow for 
coordinative or hydrogen bonds like they are available in the MDL MOL file version 
V3000 definitions46. This is a serious deficiency of the current SMILES notation, 
excluding most metal complexes from the universe of SMILES and InChI descriptions, 
and is a topic under discussion within the InChI committee and IUPAC. The 7th invalid 
SMILES was generated by OSRA, with the hypervalent carbon atoms as shown and 
discussed in Figure 3A above (OCID190014261931).  
 
For the 254 SMILES that were found to be invalid SMILES representations by OCL 
with normalization, all 254 contained an aromatic selenium atom “[se]” in a kekulized, 
non-aromatic SMILES string. In our opinion, this behaviour is correct, as there is no 
such thing as a single aromatic atom in a non-aromatic environment. However, this 
[se] is corrected to [Se] by the other toolkits at the normalization stage. In addition, 
the non-normalized OCL version finds 259 invalid SMILES - the 254 are as for the 
normalized OCL, while these 5 additional SMILES include atoms with excessive 
charges such as [As+8], [As+9], [O+8], [O+9], [I+9], which are corrected to 
their uncharged forms by the normalizer - a behaviour which likely undesirable. The 
invalid SMILES for CDK (7) and OCL (254) with normalization are the result of the 
initial SMILES parsing. The invalid SMILES from RDKit were not investigated further, 
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however, these are available in the supplementary material10 for further inspection. It 
is interesting to note that the number of PFAS compounds does not change when 
using OCL or RDKit, irrespective of whether normalization is applied or not. However, 
CDK clearly needs a structure normalization before performing substructure 
searching.  

Mixed Toolkit Normalization and Substructure Searching on the CORE 
Dataset 

Table 2 presents the results of using different combinations of toolkits for the 
normalization and subsequent substructure search engines. The first line per toolkit 
(two lines in the case of RDKit) repeats the results from Table 1, where the 
normalization and substructure search is performed by the same toolkit. As for Table 
1, Definition B was used for parsing the PFAS query against the 818,280 CORE 
compound dataset. 

Table 2: Effect of different normalization procedures prior to substructure search 
(SSS) with various combinations of CDK, OCL and RDKit normalizers and subsequent 
substructure searches using PFAS definition B. Kekulization in CDK is turned off for 
non-CDK standardizers. The top row for each toolkit (shaded in light yellow; two rows 
for RDKit) are as given in Table 1.  

SSS Standardizer True  False Invalid 

CDK CDK Normalizer 4,192 814,081 7  

CDK  OCL Standardizer 4,192 813,834 256 

CDK RDKit Standardizer molVS 3,018 266,657 548,605 

CDK RDKit Standardizer rdMol 3,018 266,862 548,400 

OCL  OCL Standardizer 4,192 813,834 254  

OCL CDK Normalizer 4,192 814,072 16  

OCL RDKit Standardizer molVS 4,191 813,220 869  

OCL RDKit Standardizer rdMol 4,191 813,220 869  

RDKit RDKit Standardizer molVS 4,191 813,462 627  

RDKit RDKit Standardizer rdMol 4,191 813,090 999  

RDKit OCL Standardizer 4,191 813,051 1038  

RDKit CDK Normalizer 4,191 813,453 636  
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For the CDK, while the combination of RDKit normalization and CDK substructure 
search does not appear to work well together, the CDK substructure search works well 
with its own CDK as well as with OCL normalization. For the OCL results, it is 
interesting to note that the syntactically wrong SMILES with aromatic selenium 
mentioned above are corrected to non-aromatic by CDK, therefore reducing the 
number of invalid SMILES for the CDK+OCL combination. For the RDKit results, while 
the number of identified PFAS molecules was not influenced by the normalization 
used, the least invalid SMILES were found when using RDKit for both normalization 
and substructure search. Since the molVS model from RDKit returned fewer invalid 
entries but the same number of PFAS, this was used subsequently. Not surprisingly, 
Table 2 shows that it seems to be meaningful to take normalization and substructure 
search from the same toolkit. 

PFAS substructure search (Definition B) on the Patent Dataset 

Using the insights gained from Table 2, the larger, more heterogeneous SMILES data 
set of 4,182,712 SMILES from the patent extraction was investigated. The results of 
normalization and PFAS substructure search using the CDK, OCL and RDKit toolkits 
are shown in Table 3.  

Inspecting the invalid 36 SMILES obtained for the CDK results revealed that all 
structures are ferrocene type compounds as already observed with the CORE dataset. 
Of the 263 invalid OCL SMILES, 237 were the already known problematic aromatic 
selenium compounds within a non-aromatic SMILES, 25 had problems with the 
assignment of aromatic bonds, while one SMILES contained an incorrect nitrogen 
notation “[N-13]”. Again, it is interesting to note that the results from OCL and CDK 
are very close to each other. The invalid RDKit SMILES were too numerous for 
(detailed) further inspection, but are available in the supplementary material10.  

Table 3: Extracted PFAS from the 4,182,712 patent compound dataset using CDK, 
OCK and RDKit with PFAS Definition B. 

SSS Standardizer True False Invalid 

CDK CDK Normalizer 78,412 4,104,264 36 

OCL OCL Standardizer 78,411 4,104,038 263 

RDKit molVS 75,762 3,988,584 118,366 
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PFAS substructure search and effect of prior fingerprint selection 

Tools that implement substructure searching for large chemical databases perform 
this task typically in two steps - first, fingerprints are generated and searched for a list 
of candidate molecules for step two, a full graph-based search also known as atom-
by-atom search (ABAS). The reason for this is that ABAS is a NP complete problem 
and such searches can take quite some time, depending on the query structure. Thus, 
to achieve reasonable search results in a short time, the number of ABAS searches 
needs to be reduced to a minimum, which is achieved by a fast fingerprint compound 
pre-selection step. Thus, fingerprints should deliver a superset of compound 
candidates, which are then narrowed down by ABAS to the set of compounds that truly 
contain that substructure. The smaller the difference between this initial fingerprint list 
and the number of final compounds, the better and thus the more efficient the applied 
fingerprint algorithm. As a consequence, many fingerprint algorithms have been 
developed and optimized for pre-selection.  

It is not the goal of this work to qualify and compare different fingerprint algorithms, 
since the described substructure search results were obtained with an ABAS on all 
compounds of interest (not only on a subset), as accurate results were the prime 
interest and search time was not an issue. However, a combined compound 
normalization + fingerprinting + substructure search process was also used to identify 
PFAS compounds from the extracted structures, as this method would probably be 
used in the future by typical chemistry database users to identify PFAS compounds. 
Table 4 shows the effect of fingerprint screening in substructure search for PFAS 
Definitions A, B and C across the two compound datasets (CORE and Patents). It is 
interesting to note that the combined use of fingerprint selection and subsequent 
substructure search on the selected list resulted in quite comparable results for all the 
chemistry toolkits when using the higher quality CORE dataset. The number of 
identified PFAS is the same for CDK and OCL, slightly lower for RDKit. The CDK 
fingerprint selection appears to be more efficient than using the OCL or RDKit 
fingerprints for PFAS Definition A and B. For the more strict Definition C, OCL 
fingerprints are most selective. Not surprising is the lower number of identified PFAS 
for the more heterogeneous patent SMILES dataset, since more molecules are sorted 
out by the RDKit parser as shown in Table 4. 

The results of PFAS selection with the combined use of fingerprints and subsequent 
ABAS selection correspond exactly to the results when using ABAS on all input 
molecules - with one exception of CDK for Definition A where the direct ABAS search 
finds one structure in addition to the fingerprint+ABAS process, which is 
OCID190080191030 (PubChem CID 117959248) with a very extensive polycyclic 
aromatic structure, shown in Figure 2E.  

 

 

https://pubchem.ncbi.nlm.nih.gov/compound/117959248
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Table 4: Efficacy of different fingerprints in pre-selection for substructure searching.  

 PFAS hits from the 818,280 
compound (CORE) dataset 

PFAS hits from the 4,182,712 
compound (patent) dataset 

Definition A FP FP + ABAS FP FP + ABAS 

OCL 58,132 27,287 4,044,452 1,844,193 

CDK 45,632 27,287 2,658,045 1,844,254 

RDKit  300,848 27,282 4,047,047 1,792,598 

Definition B     

OCL 23,830 4,192 2,225,142 78,411 

CDK 16,922 4,192 1,335,409 78,412  

RDKit 299,969 4,191 4,041,432 75,762 

Definition C     

OCL 9,043 3,507 4,72,731 62,553 

CDK 16,922 3,507 1,335,409 62,561 

RDKit 215,514 3,502 3,502,138 60,426 
 

Finalized PFAS CORE and Patent Lists via OCL 

Since compound structures may be described by syntactically correct SMILES strings 
but these may represent non-existing compounds, for example if they contain 
hypervalent atoms or non-existing isotopes (as discussed above), a final cleaning step 
was implemented based on the results above. Both input sets from CORE and patents 
from above were used, along with the following procedure to derive a dataset of both 
valid normalized and standardized SMILES of PFAS classified molecules according 
to the three definitions using the OCL toolkit: 

● Parsing the input SMILES and eliminating erroneous wrong compound 
structures with hypervalent atoms or wrong isotopes  

● Calculating the standard InChI of the input SMILES (“InChI-1”) 
● Standardizing the parsed SMILES molecule object, writing a standardized 

SMILES and calculating the standard InChI of the standardized SMILES 
(“InChI-2”) 

● De-duplicating structures based on “InChI-2” 
● Running a ABAS substructure query on the standardized SMILES for PFAS 

Definition A, B and C. 
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In the CORE set 974 structures were found with a wrong SMILES and 25,627 
structures with a changed InChI after normalization using OCL - these were removed 
from the datasets. In the patent set, 108,492 structures had incorrect SMILES and 
81,272 structures had a changed InChI after normalization with OCL.  

The results of the normalized structures classified as PFAS are shown in Table 5 and 
compared with the existing PFASMASTER and OECDPFAS lists (mentioned in the 
introduction) by InChIKey. The number of entries missing from PubChem was 
determined by matching InChIKeys in each PFAS dataset and the OCID-PubChem 
dataset in sciwalker: sciwalker-open-data.chemistry_compounds.ocid_pubchem_cid. 

 

Table 5: Finalized PFAS compound lists for the CORE and Patent datasets according 
to Definitions A, B and C, compared with the PFASMASTER and OECDPFAS (2021-
12-11 versions). IKFB=InChIKey first block (structural skeleton). 
 

 Total Not found in 
PFASMASTER 
(10,782 InChI)  

Found in 
PFASMASTER 
(10,782 InChI) 

Found in 
OECDPFAS 
(3,741 InChI) 

Not found 
in 

PubChem 

CORE 
Definition A 

27,058 25,446 1,612 
(1686 IKFB) 

944 
(988 IKFB) 

7,119 

CORE 
Definition B 

4,139 2,652 1,487 939 1,175 

CORE 
Definition C 

3,457 2,095 1,362 931 915 

Patents 
Definition A 

1,783,651 1,780,041 3,610 1,529 216,777 

Patents 
Definition B 

75,108 71,818 3,290 1,520 10,809 

Patents 
Definition C 

34,197 32,564 1,633 847 4,882 

 
The overlaps between the lists extracted here and the existing PFAS lists were much 
less than expected. Likewise more entries were missing from PubChem than originally 
expected, especially for the CORE database. The results were reality checked - here 
documented with an example for the CORE set using the stringent definition C (915 
compounds not in PubChem). One of these 915 compounds includes 
OCID190080091261 (InChIKey LZICQIXBOVBGMV-UHFFFAOYSA-N), shown in 
Figure 4. This was published in a PhD thesis47 in Chemistry and extracted from the 
document section IV. Experimental Part 240 16.8.2 via name to structure from 
“Trimethyl({4’-[(7,7,8,8,9,9,10,10,11,11,12,12,12-tridecafluorododecyl)oxy]-1,1’- 
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biphenyl-4-yl}ethynyl)silane”, which has been interpreted correctly. This shows the 
potential for literature mining to capture structures that are real and worthy of further 
investigation, but not yet known to PFAS researchers or to large open databases such 
as PubChem.  
 

 
Figure 4: A PFAS classified compound (all definitions) that was indexed in a CORE 
publication but is not in PubChem (OCID190080091261). 

To enhance the discovery of these PFAS in environmental samples, both datasets 
have been made available as CSV files24 for use in mass spectrometry-based 
screening approaches, such as MetFrag48 and patRoon49. Two separate files have 
been created, for the CORE and Patent datasets respectively - with each entry tagged 
according to the PFAS definition that the given structure satisfies. The CORE dataset 
additionally includes the number of references in which the structure was found, which 
can be used for prioritization of candidate matches. The files were formatted as a 
MetFrag localCSV, where all entries that cause MetFrag to fail (formulas with digits 
preceding the carbon; certain unusual elements as removed in PubChemLite50) were 
removed. Where available, names and CIDs were filled in via PubChem, otherwise 
the OCID was assigned as a name. The resulting files contained 26,695 entries for 
CORE (of which 5903 entries are without CIDs and 363 entries were removed from 
the original CORE list) and 1,778,470 entries for Patents (of which 85,277 are without 
CIDs and 5,181 entries were removed). The number of PubChem CIDs is higher than 
above due to the different style of querying; here a combination of FTP files (InChIKey 
to CID mapping) and REST API (SMILES to CID mapping for remaining entries without 
CIDs) was used, as the REST API offers the SMILES standardization to match with 
the final version in PubChem. For the original lists, 5937 CIDs were missing in the 
CORE set of 27,058 SMILES (21.9 %), while 85,472 CIDs were missing in the Patents 
set of 1,783,651 SMILES (4.8 %). The ratio of missing CIDs was very similar in the 
final MetFrag files. Both datasets were deposited to PubChem (Feb. 12, 2022, 
submissions 112615 and 112624) to fill these gaps. The MetFrag CSV files are 
available on Zenodo24 for use in all mass spectrometry workflows, and are also 
available in the dropdown menu of the MetFrag Web interface (https://msbi.ipb-
halle.de/MetFrag/).  

https://msbi.ipb-halle.de/MetFrag/
https://msbi.ipb-halle.de/MetFrag/
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Comparison of CORE with OECDPFAS Classification 
Finally, the PFAS structures extracted from the CORE database were investigated 
using the OECDPFAS classification system via the PubChem Classification Browser51 
to determine whether particular PFAS classes were under or over-represented in the 
extracted data sets compared with the entire OECDPFAS list. The CORE set of 27,058 
InChIKeys was uploaded to the PubChem ID Exchange52, which returned 20,907 
matches via Entrez History. This was then used to browse the NORMAN SLE 
Classification tree in PubChem51. Since the influence of searching via InChIKey first 
block (structural skeleton) versus full InChIKey was not dramatic (only an additional 
44 entries found, see row 1 of Table 5), this analysis was kept at the InChIKey level 
for consistency with the rest of this article. The OECDPFAS list is split into many 
categories; of primary interest for data extraction is the “Structure Category”, which 
covers 8 major PFAS categories (denoted 100 through 800), with several 
subcategories in each. The major categories and the number of matches in CORE are 
shown in Table 6.  
 
Table 6: OECDPFAS list overlap with CORE according to Structure Category via the 
S25 OECDPFAS6 list in the PubChem Classification Broswer51.  

OECD Structure Category Total In CORE Ratio 

S25 | OECDPFAS | List of PFAS from the OECD 3677 940 26% 

100 Perfluoroalkyl carbonyl compounds 490 126 26% 

200 Perfluoroalkane sulfonyl compounds  458 193 42% 

300 Perfluoroalkyl phosphate compounds 16 7 44% 

400 Fluorotelomer-related compounds 1392 350 25% 

500 Per- and polyfluoroalkyl ether-based compounds 322 52 16% 

600 Other PFAA precursors or related - perfluoroalkyl 282 129 46% 

700 Other PFAA precursors or related - semifluorinated 716 83 12% 

800 Fluoropolymers*  1 0 0% 
*neither mapping captures polymers, due to use of InChIKeys. PFAA = perfluoroalkyl acids. 
 
Table 6 shows that PFAS in the categories 200, 300 and 600 are found quite well in 
the CORE documents (approx 40 % coverage). In contrast, categories 500 (per- and 
polyfluoroalkyl ether-based compounds) and 700 (semifluorinated perfluoroalkyl acid 
(PFAA) precursors), are underrepresented (16 and 12%, respectively). Even within 
categories, different subcategories were underrepresented, for instance very few 
entries were found from subcategory 103 “other perfluoroalkyl carbonyl-based 
nonpolymers” (only 13 of 168 entries in OECDPFAS, i.e. 8%). Likewise, only 3 of 127 
(2%) of subcategory 701.2 “Semi-fluorinated alkanes (SFAs) and derivatives (n>=4)” 
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were found, and only 26 of 405 (6%) of 705 “side-chain fluorinated aromatics”. It would 
be interesting future work to investigate whether the CORE and Patent datasets could 
capture additional knowledge to add more PFAS to these categories, for instance by 
expanding the “splitPFAS” work at categorizing PFAS53 (prototyped so far on only 4 of 
the OECDPFAS categories) for this context.   

Conclusions 
This article details methods to extract mentions of potential PFAS compounds and 
their structures as SMILES strings from scientific documents and patents, along with 
the use of three open access chemistry toolkits to identify PFAS structures in these 
compound lists by parsing, removing wrong structures, normalizing, standardizing and 
substructure searching these SMILES. The resulting PFAS lists have been compiled, 
together with their references and chemical structures using three different structural 
definitions of PFAS (A, B and C). While A is a very broad definition, B is a narrower 
definition and a subset of A, while C is a subset of B. Of the extracted mentions, 
FCC(F)(F)F [1,1,1,2-tetrafluoroethane] was the most frequently detected compound 
- overall 6323 times in the CORE dataset. 

The resulting PFAS lists have been compared with two of the largest publicly available 
lists of PFAS molecules, PFASMASTER from the US EPA and the OECDPFAS list, 
released by the OECD. The overlap between the lists and the data extracted from 
scientific documents and patents is lower than expected, showing that many 
molecules on these lists are not found in the scientific documents and patents 
investigated, while also many molecules from the document extraction are not found 
in the published PFAS lists. Several thousand were also not in PubChem, but have 
since been deposited. The CORE and Patents datasets have been provided as CSV 
files on Zenodo24 for mass spectral screening. This information will add to the number 
of known potential PFAS substances and hopefully help contribute to alleviating the 
“PFAS knowledge gap”. The provision of public datasets will allow the integration of 
this information into various non-target mass spectrometry workflows, such as the 
open workflows MetFrag48 and patRoon49, thus enabling other researchers to 
investigate the potential occurrence of the identified PFAS compounds in humans and 
the environment in future studies.  
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