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Abstract: The transition metal catalyzed hydrogenation of alkenes is a well-developed technology used 

on a lab scale as well as on large scales in the chemical industry. Site- and chemoselective mono-

hydrogenations of polarized conjugated dienes remain challenging. Instead, stoichiometric main-group 

hydrides are used rather than H2. As part of an effort to develop a scalable route to prepare 

geranylacetone, we discovered that Rh(CO)2acac/xantphos based catalysts enable the selective 

monohydrogenation of electron-poor 1,3-dienes, enones, and other polyunsaturated substrates. D-

labeling and DFT studies support a mechanism where a nucleophilic Rh(I)-hydride selectively adds to 

electron-poor alkenes and the resulting Rh-enolate undergoes subsequent inner-sphere protonation by 

alcohol solvent. The finding that (Ln)Rh(H)(CO) type catalysts can enable selective mono-hydrogenation 

of electron-poor (poly)enes provides a valuable tool in the design of related chemoselective reduction 

processes of unsaturated substrates. 

 
Introduction 
 The chemoselective reduction of a,b-unsaturated carbonyl compounds is a common 

transformation in synthetic chemistry that is usually achieved by the use of stoichiometric main-group 

element hydride donors in the presence of transition metal catalysts.[1] Catalytic hydrogenations using 

H2, however, are preferred for large-scale industrial production processes.[2] Known homogeneous 

systems that can promote the chemoselective (and enantioselective) alkene hydrogenation of 

conjugated enones include Pd-, Ru-, or Rh-bisphosphine based systems,[3] Cp*Rh(ppy)H,[4] and Ir-

based catalysts of the Crabtree/Pfaltz-type with P,N-ligands.[5] The site-selective mono-hydrogenation 

of polarized conjugated dienes is more challenging as compared to alkenes or simple enones and 

remains largely unaddressed for acyclic substrates. In these cases, the difficulty in controlling the 

positional selectivity of the initial metal-hydride addition is further complicated by the potential for the 

target products to undergo further hydrogenation or isomerization in the presence of metal-hydride 
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catalysts (Fig 1A).[6] Most reported diene reduction processes, including those using Cr-, Ru-, or Rh-

catalysts, result in the net C2,C5-hydrogenation of the substrate to generate b,g-unsaturated carbonyl 

products.[7] Existing techniques for the C2,C3-reduction of electron-poor conjugated dienes to generate 

g,d-unsaturated products using H2 are limited to a specific substrate class of C2-disubstituted a,d-

dienamide esters.[8] The C2,C3-reduction of acyclic dienones with H2 is not established and instead 

requires the use of stoichiometric silane reductant.[9, 10] 

 

 
Figure 1. A Challenges in selective diene hydrogenation. B Pseudoionone hydrogenation as a route to 
geranylacetone catalyzed by Rh/xantphos.  
 

 We became interested in developing a homogeneous catalyst system for the site-selective 

C2,C3-hydrogenation of conjugated dienones as an approach to prepare the intermediate 

geranylacetone (2) directly from pseudoionone (1) (Fig 1B), a readily available precursor involved in the 

industrial synthesis of Vitamin A.[11] A hydrogenation route to geranylactone via pseudoionone would be 

shorter compared to classical synthetic routes that proceed through linalool, with both routes starting 

from citral.[12] While investigating this challenge, we discovered that a classic hydroformylation catalyst 

combination of Rh(CO)2acac and xantphos[13] enables the selective mono-hydrogenation of electron-
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poor (poly)enes. The use of H2 in alcohol solvents results in the formation of a nucleophilic Rh-hydride 

which adds to the b-position of electron-poor alkenes and undergoes subsequent protonation by solvent. 

This mechanistic pathway enables chemoselective hydrogenation at the a,b-positions of dienones, like 

pseudoionone, at low metal loadings (0.02 mol%) without product over-hydrogenation or isomerization 

that plagues more typical metal dihydride hydrogenation catalysts. The process allows for the 

hydrogenation of other classes of electron-poor alkenes (a,b-unsaturated esters, amides, nitriles, and 

nitroalkenes). We interpret more generally that catalysts of the type (Ln)Rh(H)(CO), where Ln is a wide 

bite angle bisphosphine or two phosphites, enable chemoselective diene mono-hydrogenation dictated 

by alkene polarization and steric effects akin to nucleophilic metal hydride catalysts generated by using 

stoichiometric main-group element reductants.[14] 

 

Results and Discussion 
 The hydrogenation of pseudoionone (1) was examined with a wide array of common metal 

catalysts and reaction conditions. It was found that combinations of 1 mol% Rh(CO)2acac and xantphos 

in MeOH using 1000 psi H2 enabled selective mono-hydrogenation to give geranylacetone (2) in 95% 

yield. The use of a Rh-carbonyl catalyst precursor was essential as other Rh-sources or metals gave 

hydrogenation products with poor selectivity and over-reduction (Fig 2A). Alcohol solvents provided 

better selectivity for C2,C3-hydrogenation compared to other solvents, where >15% side product 

formation was observed (Fig 2B, EtOAc, THF, CH2Cl2). Using 200 psi of H2 provided similar results to 

reaction conducted at higher pressure, however at ~1 atm H2 reduced conversion and poor yields were 

observed and Rh precipitated from solution. Use of formic acid as an H2 surrogate was not productive.[7e] 

 The use of phosphorous ligands with wide bite-angles[15] or ligands with relatively weak s-

donating properties generated the most active and selective catalysts. For example, combinations of 

Rh(CO)2acac and dppm or dppe led to hydrogenation without detectable geranylacetone, while dppp 

and dppb gave improved results (64% and 78% yield respectively). Along with xantphos, DPEphos, 

spanphos, and dppf gave >85% selectivity for C2,C3-hydrogenation. Use of P(OPh)3 as the ligand with 

Rh:L = 1:2  led to a selective hydrogenation and geranylacetone was obtained 91% yield. At lower 

catalyst loadings (0.02 mol% [Rh]), xantphos was far superior, giving 94% yield at full conversion vs 

21% yield at 58% conversion with P(OPh)3 (Fig 2C, inset). Cp*Rh(PhPy)H has been recently reported 

to be an effective catalyst for the hydrogenation of enones;[4] however its use for the reduction of 

pseudoionone led to poor conversion with multiple products generated (34% conv., 17% yield). The 

optimized conditions allow for high yield because undesirable hydrogenation of the remaining alkenes 

in geranylacetone (2) is avoided. When subjecting 2 directly to the standard reaction conditions with 

Rh(CO)2acac as the catalyst, <10% hydrogenation is observed. This contrasts otherwise identical 

reactions using [Rh(COD)Cl]2 where complete consumption is observed (Fig 2D). 
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Figure 2. Impact of metal precursor, reaction conditions, and ligand on the hydrogenation of 
pseudoionone, ligand natural bite angle in brackets. [a] 70 ºC; [b] no additional ligand added; [c] 2 equiv. 
of HCO2H/NEt3 (5:2). For monodentate ligands [Rh]:L = 1:2. In all cases 1 and 2 are a 72:28 5E/5Z 
mixture. Conversion and yields determined by calibrated GC. 
 
 Rh(CO)2acac/xantphos catalyzed hydrogenation in MeOH enables the reduction of an array of 

electron-poor alkenes and dienes (Fig 3A). g-Disubstituted dienones and dienoates undergo selective 

C2,C3-hydrogenation without E/Z isomerization of the unreduced alkene unit (1–6), as do aryl 

substituted dienones (7, 8), a- and b-ionone (9, 10), b-damascone (11), and the trisubstituted enone 12. 

Cyclohexenones (13, 14) are readily hydrogenated without competing ketone reduction. Various 

electron-poor alkenes, including a,b-unsaturated ketones, esters, amides, nitriles and nitroalkenes are 

hydrogenated with nearly quantitative yields (15–19). Enals undergo hydrogenation selectively at the 

alkene position (20, 21). In these cases, toluene is the optimal solvent. Arylalkenes substituted at the a- 

or b-position undergo hydrogenation (22, 23), but typically at rates slower than dienones (see substrates 

7, 8). Electron-rich alkenes are generally unreactive to hydrogenation when using 
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Rh(CO)2acac/xantphos, with the exception of terminally unsubstituted substrate (24). Complex 

substrates dexamethasone (25) and parthenolide (26) that bear potentially reducible carbonyl, epoxide, 

and electron-rich alkenes also undergo selective C2,C3-reduction.  

 Rh(CO)2acac/xantphos catalyst mixtures under H2 in MeOH give rise to a highly active catalyst 

for the hydrogenation of di- or trisubstituted electron-poor alkenes and dienes but do not reduce most 

1,2-disubstituted or trisubstituted electron-rich alkenes. For example, geranylacetone (2) does not 

undergo significant hydrogenation at the trisubstituted alkene positions. The less polarized substrates 

1,4-diphenylbutadiene, 1,5-cyclooctadiene, or cyclooctene (27–29) are effectively inert to hydrogenation 

under the standard conditions and do not impede the reduction of electron-poor dienes in a competition 

study (Fig 3B). Less successful substrate examples include the tetrasubstituted enone 30 which is 

unreactive and g-monosubstituted dienoate 31 which undergoes non-selective hydrogenation. Carvone 

(32) is hydrogenated exclusive at the exocyclic alkene and allyl-substituted enone 33 is reduced at both 

unsaturated positions. Collectively, with a few exceptions, the reactivity profile of Rh(CO)2acac/xantphos 

under hydrogen in MeOH resembles that of nucleophilic metal hydrides generated from stoichiometric 

hydride transfer processes.[1b]  
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Figure 3. A Reaction scope and limitations for the Rh(CO)2acac/xantphos catalyzed hydrogenation of 
alkenes and dienes. B Competition study between electron poor diene 3 and other dienes and alkenes. 
C Unreactive or poorly selective substrates. [a] Yield determined by calibrated 1H NMR spectroscopy. 
[b] Toluene solvent instead of MeOH, 1 atm H2 instead of 1000 psi H2. [c] 60 ºC instead of r.t. [d] 50 ºC 
instead of r.t. [e] 40 ºC instead of r.t. [f] 1:1 MeOH:THF instead of MeOH. 
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surprising) deuterium-labeling pattern consistent with a hydride/protonolysis mechanism. When the 

hydrogenation of diene 1 is conducted with D2 in MeOH, exclusive D-incorporation is observed at the b-

position (C4) with no detectable D-incorporation at the a-position (C3, Fig 4B, 50% is 1 equivalent, see 

the SI for details and NMR traces). When reactions are conducted with H2 and d4-MeOD, quantitative 

D-incorporation is found at C3 with no detectable D observed at C4 (Fig 4B). Under the standard 

conditions, no H/D exchange in 2 at the enolizable a-position in d4-MeOD is observed, indicating that 

D-incorporation arises only from the hydrogenation. Conversely, when aprotic solvents like THF, EtOAc 

or CH2Cl2 are used in combination with D2, approximately one equivalent of D is incorporated at both 

C3 and C4, suggesting that in the absence of a proton-source a dihydride mechanism with Rh-mediated 

C–H bond forming reductive elimination is involved (Fig 4B). This change in mechanism explains the 

lower observed selectivity and tendency for over-hydrogenation when using non-alcohol solvents in the 

hydrogenation of 1 and related substrates. Norton and co-workers recently suggested a similar 

mechanism for hydrogenations occurring in MeOH using Cp*Rh(PhPy)H.[4] Here, labeling studies 

showed only partial D-incorporation when using D2 or d4-MeOD (~80%), which indicates multiple 

mechanistic pathways for reduction and could explain the relatively poor performance in the 

hydrogenation of 1. 

 

 
Figure 4. A General mechanistic hypothesis. B Labeling studies in the hydrogenation of 1. C 
Stereoselectivity of labeling using isophorone (14). 
 
 A (xantphos)Rh(H)(CO) species is likely the active hydrogenation catalyst that can be transiently 

generated from more stable (xantphos)Rh(H)(CO)L (L = CO, solvent, or substrate) or carbonyl bridging 

dimers, as is known for hydroformylation with Rh/xantphos and related bisphosphine systems.[19] Either 

(xantphos)Rh(H)(CO)PPh3 or (xantphos)Rh(H)(CO)2 generated in-situ under syngas (as observed by 

Rh(CO)2acac
xantphos

[Rh]–H
O

R’

R

O

R’

R

H

H

nucleophilic 
Rh(I) hydride

[Rh]–OMe

H2

MeOH

R

H

[Rh]
O

R’

MeOH

conjugate addition

enolate protonation

net
hydrogenolysis

– acac–H, COH2

[Rh] = Rh(xantphos)(CO)

Me

O

Me

MeMe

Me

O

Me

MeMe
1 2

[Rh]
xantphos

with D2/MeOH: 
50% D@C4, <5% D@C3

with H2/d4-MeOD
<10% D@C4, 55% D@C3

with D2/CH2Cl2 
50% D@C4, 55% D@C3

C3

C4

C3

C4

A B

C O

Me
Me Me

[Rh]
xantphos

H2, MeOH
anti-addition

[Rh]

H

Me H

Me
Me

O

H

H

Me H

Me
Me

O

H

Me H

Me
Me O

[Rh]

MeOH[Rh]–H

isomerization

14 14-H



 

 8 

31P NMR at 21 ppm) could be used to hydrogenate 1, suggesting that the monocarbonyl 

(xantphos)Rh(H)(CO) is a plausible and short-lived active catalyst. 

 The general hydride/proton addition mechanistic picture is further supported by quantum 

chemical calculations on the level of density functional theory using dienone 3 as the model substrate 

(see the SI for details). Coordination of the substrate to the catalyst (xantphos)Rh(H)(CO) (Rh-A) and 

subsequent hydride transfer to the b-position leads to the h3-coordinated enolate complex Rh-B (Fig 5). 

At this stage Rh-B can either oxidatively add H2 to form the Rh(III)-dihydrido complex Rh-C with a 

calculated reaction energy of DE = -24.9 kJ/mol, or it can coordinate methanol to form complex Rh-D 

with DE = -30.9 kJ/mol. The latter reaction step is slightly more exothermic and given the vast excess of 

solvent molecules, the coordination of methanol should be strongly preferred over H2 addition. In Rh-D, 

the enolate has changed to a η1-coordination, but is stabilized by a hydrogen-bond from the coordinated 

methanol. The transfer of this proton requires only a small activation energy of 8.8 kJ/mol (TS-1), yielding 

the enol complex Rh-E. After liberation of the enol product, which can undergo tautomerization in the 

methanol solution, the oxidative addition of H2 and reductive elimination of methanol regenerates the 

catalyst Rh-A. In the absence of protic solvent, the reaction can only proceed via C–H bond forming 

reductive elimination from dihydrido enolate complex Rh-C with a calculated activation energy of 59.9 

kJ/mol (TS-2). The 3,4-hydrogenated ketone is directly formed in this pathway, regenerating the catalyst 

Rh-A. The high barrier to direct Rh-enolate hydrogenolysis is consistent with observed reactivity of 

Rh(PPh3)2(CO)(enolate) intermediates reported by van Leeuwen.[20] Overall, the calculations confirm 

and explain the experimental observation that, in the presence of d4-methanol or D2, the added H/D 

atom in the 3-position of the reduced product exclusively originates from the methanol OH, whereas 

without alcohol it comes from H2 in a less selective, higher barrier pathway. 

 A hydride/proton addition pathway appears common for other substrates. For example, in 

labeling experiments using isophorone (14) as the substrate similar results were observed, with the net 

hydrogenation proceeding as anti-addition (Fig 4C). We postulate that the stereochemical outcome 

arises from the protonation of an h3-Rh-enolate from the less hindered cyclohexanone face which can 

be generated by transient formation of an h1-O bound Rh enolate.[14d] 
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Figure 5. Computed energy profiles of selected key steps in the Rh/xantphos catalyzed hydrogenation 
of dienone 3. 
 

Conclusion 
 In summary, Rh(CO)2acac/xantphos is an efficient catalyst system for the site-selective 

hydrogenation of electron-poor alkenes and dienes. This allows for an improved synthetic route to 

geranylacetone directly from pseudoionone at low catalyst loading with minimal undesired over-

hydrogenation. The observed selectivity can be rationalized by a mono-hydride addition/protonolysis 

mechanism where a nucleophilic Rh-hydride enables the positional selectivity of addition to form a Rh-

enolate intermediate. Suppression of mechanisms that proceed by Rh-catalyzed C–H reductive 

elimination prevent over-hydrogenation and isomerization reactions. We interpret more generally that 

hydrogenation catalysts of the type (Ln)Rh(H)(CO) can enable selective mono-hydrogenation of 

electron-poor (poly)enes based on predictable electronic and steric factors which will have value in the 

design of improved catalysts and processes for the selective hydrogenation of related substrates. 
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