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Abstract 

Transformation of C-H to C-F bonds in organic compounds can be used in drug design to easily diversify molecular 
series under exploration. A particularly attractive fluorination reaction is the recently discovered aliphatic C-H 
bonds fluorination catalyzed by manganese(Mn)-containing porphyrins, which proceeds under mild conditions 
and with high yields1-2. However, this fluorination technique has been applied so far only to a narrow range of 
carbon rich organic substrates. In this preliminary study, based on quantum chemical modeling of several key 
stages in the presumed mechanism of this reaction, we put forward a hypothesis to explain difficulties of extending 
the Mn-porphyrin-catalyzed fluorination to nitrogen rich drug-like molecules, namely, a significant growth of the 
height of the activation barrier for drug-like substrates. Specifically, we demonstrate that reaction energies are 
comparable for various substrates, including those for which Mn-porphyrin-catalyzed fluorination occurs and 
those for which it does not occur, and hence, thermodynamic factors are unlikely to control the observed 
differences in the reactivity. Next, we carry out a first-pass modeling of fluorination reaction paths for two 
substrates, cyclohexane versus piperidine, as a representative of the type of nitrogen rich compound that can and 
cannot be fluorinated under recommended conditions, and found a significant difference in activation energies (~7 
kcal/mol vs ~40 kcal/mol), which might point at the reason for the difference in the reactivity. Further 
computational modeling is required to reveal the limitations of the Mn-porphyrin-catalyzed fluorination, and, if 
possible, possible ways to overcome such limitations. 
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1. Introduction 

Selective C–H functionalization plays an important role3 in the 
synthesis of bioactive natural products4-14, drug metabolism15-16, 
pharmaceutical industry17-23, DNA repair24-27, and transcription28-

30. C–H bonds can be functionalized in various ways, including but 
not limited to cyanation31-38, oxidation39, hydroxylation40, 
epoxidation41-42, and halogenation43-45.  Activation of unreactive 
C–H bonds typically requires harsh conditions46 due to the high 
C–H bond dissociation energy15 and its inert nature47. While C–H 
halogenation is widely used, C–H fluorination is a difficult 
process, oftentimes requiring special safety equipment and highly 
reactive reagents48-54. Despite the difficulties, several studies were 
carried out to understand C–H fluorination since it might play a 
crucial role in drug development23, 55-59. 

Transition metal catalysts are widely used for direct and selective 
C–H functionalization60. While late transition metals like 
palladium have been frequently used in experimental studies in the 
past60-67, recent studies are shifting towards the use of catalysts 
containing manganese, iron, cobalt, nickel68, etc. as they show 
comparable or even better reactivity than the late transition metal 
catalysts60, 69-71. Of the mid-row 3d metal catalysts, manganese 
catalysts for C–H fluorination look particularly attractive due to 
the non-toxicity of manganese, its relatively low cost, and 
environment friendly characteristics60, 67, 72-74. Manganese 
enzymes75 found in nature can activate C–H bonds with high 
dissociation energy, which led to development of bioinspired 
molecular catalysts60.    

Several experimental studies and few computational studies 
considered Mn-porphyrin catalysts and Mn-salen catalysts to carry 
out C–H halogenation, in particular, C–H fluorination1-2, 76-77. 
Manganese-catalyzed oxidative benzylic C–H fluorination was 
shown to be accomplished with better yields using Mn-salen 
catalysts2. Mn-porphyrin complexes were found to catalyze 
selective aliphatic C–H bond halogenations with remarkable 
yields for a certain range of organic substrates1, 76. However, our 
attempts to fluorinate drug-like molecules (e.g., containing 
heterocycles with N or O atoms) under the same experimental 
conditions were excluded. The reasons for this inapplicability of 
the published procedures of synthesis to drug-like molecules, as 
far as we know, are unclear. 

Manganese exists in different oxidation states in the intermediates 
formed during a catalytic cycle1-2, 76, 78-81. The presence of unpaired 
d electrons indicates a possibility of multiple spin states for each 
intermediate. While most experimental studies agree upon the 
coarse details of the mechanism, these studies disagree in terms of 
the oxidation state of manganese and the charge of the 
intermediates1-2, 76, 78-81.  Additionally, the literature on identifying 
the ground spin states of each of these intermediates in the 

catalytic cycle is sparse. A few computational studies considered 
some but not all the possible spin states for these intermediates82. 
The role of ground spin state is crucial because the reactivity of 
transition metal catalysts is known to be strongly spin-state 
dependent83-93 with several molecular catalysts as well as enzymes 
preferring high-spin (HS) intermediates during the reaction94-102.  

While prior studies demonstrate successful fluorination of some 
substrates, typically without heteroatoms76-81, pharmacologically-
active drugs often involve the presence of fluorine in heterocycle 
rings, steroids (and their derivatives), etc., including N and/or O 
heteroatoms103. In this study, we first aim to understand the ground 
spin state of the Mn-porphyrin intermediates as predicted by 
hybrid density functional theory (DFT) and its sensitivity to the 
functional. We then compute reaction energies along the catalytic 
cycle for substrates used in prior experimental studies76 to estimate 
a possible role of thermodynamic factors in the control of 
reactivity and regioselectivity of Mn-porphyrin-catalyzed 
fluorination. Lastly, we obtain potential energy curves along the 
reaction coordinate for C–H fluorination, for the simplest cases of 
cyclohexane and piperidine (representatives of active and non-
active substrates, respectively, for Mn-porphyrin-catalyzed 
fluorination) to understand why fluorination of drug-like 
compounds with heteroatoms does not occur as simply as 
fluorination of hydrocarbons.  

2. Reaction Mechanism 

We accept in this work the reaction mechanism suggested in prior 
studies1-2, 78-79 for aliphatic C-H fluorination with Mn complexes. 
In the resting state (1), the catalyst consists of Mn(III) coordinated 
to tetramesitylporphyrin (TMP) in the equatorial plane and 
fluoride in an axial position, with the other axial position being 
vacant (Figure 1). Oxidation of this resting state intermediate 
results in a highly reactive oxomanganese species (2), 
Mn(V)=O(TMP)F (Figure 1). This reactive Mn(V)-oxo 
intermediate abstracts a hydrogen atom from the substrate to form 
Mn(IV)-hydroxo intermediate (3), Mn(IV)(OH)(TMP)F, and a 
radical located on a carbon atom of the substrate (Figure 1). The 
next step involves the formation of a difluoro intermediate (4), 
Mn(IV)(TMP)F2, by replacing OH with F in the catalyst in the 
reaction with AgF (Figure 1). The fluoride in the axial position of 
the Mn(IV)(TMP)F2 intermediate then combines with the 
substrate radical to form the fluorinated product. This step is 
believed to be rate-limiting in the mechanism of the fluorination 
reaction. After this stage, the catalyst returns to its resting state 
(Figure 1). Manganese exhibits different oxidation states in the 
intermediates formed during the catalytic cycle which gives rise to 
the possibility of multiple spin states for each intermediate. In this 
work, we modeled all the intermediates in all possible spin states 
to identify the ground spin state for each intermediate.
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Figure 1. Proposed1-2, 78-79 reaction mechanism for C-H fluorination with Mn(TMP)F catalyst (clockwise, top to bottom): resting state intermediate, 
Mn(III)(TMP)F (1), oxomanganese intermediate, Mn(V)=O(TMP)F (2), hydroxo bound to metal, Mn(IV)(OH)(TMP)F (3), and difluoro intermediate, 
Mn(IV)(TMP)F2 (4). As an example, the substrate cyclohexane (C6H12), the substrate radical cyclohexyl radical (·C6H11), and fluorinated product, 
fluorocyclohexane (C6H11F) are also shown. Ball and stick structures are colored by element as: hydrogen in white, carbon in gray, nitrogen in blue, 
oxygen in red, fluorine in cyan, manganese in purple, and iodine in dark purple. 

 

3. Computational Details 

Initial structures for substrates, intermediate radicals, fluorinated 
products, and the Mn(TMP) catalyst used in prior experimental 
studies1 were built in Avogadro v1.2.0104. These structures were 
then force-field optimized in Avogadro using UFF force field105. 
Besides isolated complexes, geometries were also built for 
intermediates formed during the catalytic cycle1 (see Section 2). 
Unconstrained geometry optimizations were carried out with 
TeraChem106 using hybrid B3LYP107-109 density functional theory 
(DFT) where semi-empirical D3110 dispersion with Becke-
Johnson111 damping was incorporated. The multibasis feature of 
TeraChem was employed, with the LANL2DZ112-113 effective core 
potential (ECP) used for Mn and Cl, and 6-31G*114 basis set for 
all other atoms. All optimization calculations were carried out in 
Cartesian coordinates using L-BFGS algorithm implemented in 
DL-FIND115 with the default thresholds of 4.5 x 10-4 hartree per 

bohr for the maximum gradient and 1 x 10-6 hartree for self-
consistent field (SCF) convergence. Level-shifting116 values of 
0.25 hartree were applied for both occupied and virtual orbitals for 
open-shell calculations which were carried out in a spin-
unrestricted formalism. Closed-shell singlet calculations were 
carried out in a spin-restricted formalism.  

All calculations were performed in the presence of an implicit 
solvent with a dielectric constant, ε, of 30.4 which was computed 
as a weighted average of dielectric constants of one part of 
dichloromethane (ε = 8.9) and three parts of acetonitrile (ε  = 37.5), 
consistent with prior experimental studies1. A conductor-like 
polarizable continuum implicit solvent model117-118 implemented 
in TeraChem119 was employed in these calculations. The solute 
cavity for non-metals was constructed with default parameters of 
1.2 x Bondi’s van der Waals radii120 available in TeraChem. 
Additionally, for Mn, we adopted the procedure employed in prior 
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studies121 where the standard van der Waals radius122 of Mn was 
scaled by 1.2. 

Optimization calculations of the Mn(TMP) catalyst were carried 
out in all possible spin states for each intermediate formed during 
the catalyst cycle. Specifically, the resting state intermediate, 
Mn(III)(TMP)F with a d4 electronic configuration for Mn, was 
studied in three spin states: high-spin (HS) quintet, intermediate-
spin (IS) triplet, and low-spin (LS) singlet. The oxomanganese 
intermediate, Mn(V)=O(TMP)F with a d2 electronic configuration 
for Mn, was studied in two possible spin states: IS triplet and LS 
singlet. The metal-hydroxo and difluoro intermediates, 
Mn(IV)(OH)(TMP)F and Mn(IV)(TMP)F2, both with a d3 
electronic configuration for Mn were studied in the two possible 
spin states: IS quartet and LS doublet. All calculations of the 
catalyst intermediates were carried out at the B3LYP-
D3/LACVP* level of theory where we varied the amount of 
Hartree-Fock exchange (aHF) incorporated in the density 
functional from 0.00 to 0.30 in increments of 0.10, while holding 
the LDA/GGA exchange ratio fixed, in order to study the 
sensitivity of the predicted ground state to the density functional 
used123-124. All the calculations were found to be free of significant 
spin contamination, evaluated as the difference between the 

computed expectation of 𝑆2 operator and the expected value, i.e., 
S(S+1).  

One dimensional (1D) potential energy curves (PECs) to identify 
energetic changes during fluorination of the substrate radical and 
the corresponding putative transition state were also carried out in 
TeraChem. The structures along the reaction coordinate, which 
was chosen to be the distance between the carbon radical of the 
substrate and the fluoride of catalyst (C···F), were generated by 
molSimplify125, which uses OpenBabel126-127 as a backend, in 
intervals of 1.50 Å. Constrained optimizations in the presence of 
an implicit solvent (ε = 30.4) at B3LYP-D3/LACVP* level of 
theory were carried out for these structures where the heavy atoms 
of the catalyst and the carbon radical of the substrate were 
constrained, while the rest of the system was allowed to relax. 

4. Results and Discussion 

4.a. Ground spin states of intermediates 

We compute energies of intermediates using B3LYP hybrid 
density functional theory to predict the ground spin state of various 
intermediates along the catalytic cycle. We then vary the amount 
of Hartree-Fock exchange (aHF) in the functional to understand the 
dependence of energetics on the functional. For each intermediate, 
we compute the difference of energies between various spin states, 
and thereby identify the ground spin state.  

For the resting state intermediate (1), we find that high-spin (HS) 
quintet is the preferred ground-state irrespective of the amount of 
Hartree-Fock exchange in the functional (Table 1). However, 
closer inspection reveals that the difference in energetics between 
the HS and intermediate-spin (IS) states is high at higher aHF, 
while at aHF = 0.00, both HS and IS states are comparable in energy 
(differ by ca. 1 kcal/mol, Table 1).  

For the manganese-oxo intermediate (2), we could not identify the 
ground spin state at lower aHF values due to convergence issues. 
At higher aHF values, we see that IS triplet state is preferred (Table 
1). However, we see that the difference in energetics becomes 
more and more negative with increasing aHF, i.e., the difference in 
energies ranges from ca. -7 kcal/mol at aHF = 0.20 to -23 kcal/mol 
at aHF = 0.30. This may indicate that at lower aHF values (0.00 and 
0.10), the preferred ground state could be the low-spin (LS) singlet 
state (Table 1). For both the resting state intermediate and the 
manganese-oxo intermediate, we find an increasing preference of 
higher spin states at higher aHF values (Table 1). 

In contrast to these observations, for manganese-hydroxo and 
manganese-difluoro intermediates, we find a strong preference for 
lower spin states with increasing aHF in the functional (Table 1).  

Overall, we observe that the predicted ground state is strongly 
dependent on the amount of Hartree-Fock exchange in a 
functional. One would hardly be able to identify the ground spin 
states of various intermediates formed along the catalytic cycle 
only with DFT. Calculations with more accurate wavefunction 
theory methods might identify the ground spin state of these 
intermediates with more certainty, but such computations would 
also be much more – if not prohibitively – expensive for such large 
molecular systems. Also, relatively small energy gaps between 
different spin states predicted with some versions of the density 
functional, comparable to the scale of thermal fluctuations (~kT), 
might imply that different spin states may coexist at equilibrium, 
and that ratio of different spin forms may be highly sensitive to 
various conditions, such as temperature, as well as modifications 
of the structure of the ligand. To the best of our knowledge, no 
experimental studies have addressed these issues of relative 
stability and possible coexistence of various spin forms of the Mn-
porphyrin catalytic complexes. 

Given the preference of higher spin state of the Mn(V)-oxo 
intermediate from other literature studies98, 101-102, we move 
forward in this work assuming a mechanism where the higher-spin 
states are the preferred ground states for all the intermediates, i.e., 
HS quintet and IS triplet for the resting state intermediate and the 
manganese-oxo intermediate, respectively, and IS quartet for 
manganese-hydroxo and manganese-difluoro intermediates. 
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Table 1. Difference in energies between various spin states of the four intermediates along the catalytic cycle at various Hartree-Fock exchange 

fractions aHF. EH-I, EH-L, and EI-L correspond to differences in energies between HS and IS, HS and LS, and IS and LS states, respectively. 
Calculations could not be converged for intermediates indicated by **. 

aHF = 0.00 
Intermediate EH-I (kcal/mol) EH-L (kcal/mol) EI-L (kcal/mol) Ground state 

Mn(III)(TMP)F -1.01 -28.34 -27.33 HS quintet 
Mn(V)=O(TMP)F** --- --- --- --- 

Mn(IV)-OH(TMP)F --- --- -12.29 IS quartet 
Mn(IV)-OH(TMP)F2 --- --- -11.27 IS quartet 

aHF = 0.10 

Intermediate EH-I (kcal/mol) EH-L (kcal/mol) EI-L (kcal/mol) Ground state 

Mn(III)(TMP)F -4.63 -35.64 -31.01 HS quintet 

Mn(V)=O(TMP)F** --- --- --- --- 
Mn(IV)-OH(TMP)F --- --- -10.88 IS quartet 
Mn(IV)-OH(TMP)F2 --- --- -7.55 IS quartet 

aHF = 0.20 
Intermediate EH-I (kcal/mol) EH-L (kcal/mol) EI-L (kcal/mol) Ground state 

Mn(III)(TMP)F -8.32 -41.77 -33.55 HS quintet 
Mn(V)=O(TMP)F --- --- -6.82 IS triplet 
Mn(IV)-OH(TMP)F --- --- -6.97 IS quartet 

Mn(IV)-OH(TMP)F2 --- --- -2.71 IS quartet 
aHF = 0.30 

Intermediate EH-I (kcal/mol) EH-L (kcal/mol) EI-L (kcal/mol) Ground state 

Mn(III)(TMP)F -12.01 -47.30 -35.30 HS quintet 
Mn(V)=O(TMP)F --- --- -22.78 IS triplet 

Mn(IV)-OH(TMP)F --- --- 0.68 LS doublet 
Mn(IV)-OH(TMP)F2 --- --- 2.22 LS doublet 

  

 

4.b. Reaction energies along the catalytic cycle 

Next, we computed reaction energies of a set of substrates studied 
in prior experimental work (including diastereomers where 
applicable),76 supplemented with piperidine. Hydrogen atom 
transfer (HAT) reaction energy, radical rebound energy, and the 
fluorinated product release energy were calculated (Figure 2, 
Table 2). We observe that for almost all the substrates, the HAT 
energies are comparable (Figure 2, Table 2). For the substrates 1, 
2, and 3, which are cyclohexane, cycloheptane, and cyclooctane, 
the HAT energy becomes slightly more exothermic in moving 
from the six-membered ring to the eight-membered ring (Figure 2, 
Table 2). Comparison to rebound energies reveals that HAT 
energies are ten times less exothermic than rebound energies 
(Figure 2, Table 2). However, for all substrates, HAT energies are 

more favorable compared to release energies which are strongly 
endothermic (Figure 2, Table 2). 

Across almost all the substrates, rebound energies are also 
comparable, as well as release energies (Figure 2, Table 2). Closer 
examination of rebound energies for cyclohexane and piperidine, 
which is obtained by replacing a carbon atom of cyclohexane with 
a nitrogen heteroatom, reveals that rebound energy is slightly more 
favorable for cyclohexane compared to piperidine (Figure 2, Table 
2). A similar comparison of release energies shows that release of 
fluorinated cyclohexane is slightly more favorable than 
fluorinated piperidine (Figure 2, Table 2). Therefore, the reaction 
energies are comparable across different substrates, both capable 
and incapable of Mn-porphyrin-catalyzed fluorination, and cannot 
explain this difference in the reactivity. 
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Figure 2. Substrates for Mn-porphyrin-catalyzed fluorination from prior experimental work (1-10) and piperidne. Ball and stick structures are colored 
by element as: hydrogen in white, carbon in gray, nitrogen in blue, oxygen in red, and fluorine in cyan. 

 

Table 2. Various reaction energies, namely, hydrogen atom transfer (HAT) energy (column 2), radical rebound energy (column 3), and product release 
energy (column 4) in kcal/mol for substrates studied in prior experimental work76 and piperidine. ‘a’ and ‘b’ correspond to diastereomers of the 
corresponding substrate. HAT energy is not available for piperidine. 

Substrates HAT energy (kcal/mol) Rebound energy (kcal/mol) Release energy (kcal/mol) 

1 -5.14 -57.26 17.14 

2 -8.72 -57.17 20.61 

3 -10.30 -57.01 21.17 

4a -5.58 -67.05 23.62 

4b -3.98 -64.83 22.82 

7a -5.23 -64.39 24.96 

7b -5.21 -67.14 27.23 

8a -5.65 -58.01 19.13 

8b -5.23 -59.34 19.25 

9a -6.63 -58.11 20.06 

9b -7.54 -56.61 20.72 

10a -7.64 -54.37 19.26 

10b -8.29 -54.47 19.73 

piperidine --- -54.94 20.06 

1 2 3

4 7 8

9 10 piperidine
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4.c. Potential energy curves for C-H fluorination 

In our search for reasons explaining the difference between 
fluorination of hydrocarbons and drug-like molecules, we 
hypothesized that they may stem from the kinetic control of this 
reactions. Based on this hypothesis, we obtain 1D potential energy 
scans across the fluorination reaction coordinate (Figure 3). We 
observe that for cyclohexane, the fluorination reaction barrier is 
ca. 7 kcal/mol and the C-F distance in the putative transition state 
structure is 2.50 Å (Figure 3). However, for piperidine, we observe 
that the putative transition state occurs at a shorter C-F distance of 
2.35 Å and with almost six times higher energy barrier than that 

of cyclohexane, ca. 40 kcal/mol (Figure 3), which greatly exceeds 
the range of thermal fluctuations (~kT). We see that while the 
rebound and release reaction energies are comparable and slightly 
more favorable for cyclohexane, the reaction barrier for 
fluorination clearly suggests that fluorination of cyclohexane is 
strongly preferred whereas the fluorination of piperidine is 
prohibited (Figure 3). The higher energy barrier could be a result 
of stabilization of the radical through the lone pair of nitrogen 
heteroatom. It could also be possible that fluorine forms a more 
stable complex with this substrate. Further computational studies 
are necessary to understand why the energy barrier for fluorination 
of piperidine – and, presumably, drug-like molecules – is so high. 

 

Figure 3. 1D potential energy scans for piperidine and cyclohexane. The relative energetics (Erel) in kcal/mol are shown as a function of Mn-F···C 
distance (in Å). Besides the depicted degree of freedom, positions of the heavy atoms of the catalyst and the carbon radical of the substrate were 
constrained in the interests of computational efficiency, while the other degrees of freedom in the system was allowed to relax. Ball and stick structures 
for the putative transition states are colored by element as: hydrogen in white, carbon in gray, nitrogen in blue, oxygen in red, fluorine in cyan, and 
manganese in purple. C···F distance is indicated in the insets.  

 

5. Conclusions 

Modeling transformation of C-H bonds to C-F bonds is of high 
practical importance because such reactions may extend our 
abilities to optimize potency; absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) and physico-chemical 
properties of drug candidates. Prediction of the rate and 
stereoselectivity of fluorination of various substrates in such 
reactions under various conditions could significantly speed up 
rational drug design and manufacturing optimization. 
Unfortunately, the current understanding of such reactions leave 
multiple questions unanswered, including the reasons why the 
recently discovered and very promising aliphatic C-H bonds 
fluorination catalyzed by Mn-containing porphyrins may be not 
applicable to drug-like molecules. In this work, we attempt to start 
filling out this gap in the knowledge. 

In this study, firstly, we looked at the ground spin states of various 
intermediates observed along the C-H fluorination catalytic cycle. 
We observed that the energies of various spin states are close to 
each other (differences comparable to kT), and the identification 
of the ground state is highly sensitive to the used density 
functional. We hypothesize that the Mn complex may enter the 
rate-limiting step of the catalytic cycle most likely in an 
intermediate-spin quartet state, though the low-spin doublet state 
may also be reachable in terms of energy. More accurate and much 
more expensive wavefunction theory methods might help further 
clarify the ground state of these intermediates with more certainty. 
On the other hand, relatively small differences in the predicted 
energies of various spin states may imply that the ground states are 
sensitive to experimental conditions under which fluorination is 
performed, and transitions between different spin states might be 
a real phenomenon rather than a computational artifact. If so, this 
observation may suggest an additional potential direction to 
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control the regioselectivity and yield of the reaction via factors that 
affect the spin states, e.g., by modifications of the peripheral parts 
of the porphyrin ligand, which would fine tune the strength of the 
ligand field. Secondly, we looked at the reaction energies for 
various substrates and found that the reaction energies of active 
and inactive substrates are mostly comparable, indicating that 
thermodynamic factors may not play the central role in 
determining whether a certain substrate molecule can undergo 
catalyzed fluorination. Thirdly, based on these results, we 
hypothesized that the determining factor might be the reaction 
barrier and the properties of the corresponding transition state. For 
a preliminary estimation of plausibility of such an explanation, we 
carried out 1D potential energy scans for reaction pathways for 
piperdine and cyclohexane, and found that the energy barrier for 
fluorination of piperidine is almost six times higher than that of 
cyclohexane, and significantly exceeds the energies reachable by 
thermal fluctuations, in agreement with the assignment of these 
two substrates to non-reactive and reactive classes, respectively. 
We speculate that the high energy barrier in case of piperidine 
could be due to the formation of a more stable substrate system 
due to the lone pair of nitrogen stabilizing the carbon radical or the 
formation of a more stable complex with fluorine. This 
interpretation, however, requires further computational 
investigation. While we modeled Mn-porphyrin complexes in this 
work, some of our results may be relevant for understanding other 
fluorination reactions, for example, benzylic C–H fluorination 
using Mn-salen catalysts.  

Limitations of this study include the use of inexpensive (and 
therefore, not the most accurate) DFT functionals, modeling a 
limited set of substrates (especially in the third part of the work), 
inexhaustive sampling of the configuration space in transition state 
modeling, and, most importantly, the absence of experimental 
verification of the key conclusions. However, we believe that 
given the current state of the knowledge on Mn-porphyrin-
catalyzed fluorination, our paper will contribute to the progress in 
understanding such reactions by identifying promising directions 
of further research. 

We expect that future work on computational modeling of Mn-
porphyrin-catalyzed fluorination, based on intelligent 
reconstruction of transition states for the limiting stage of the 
catalytic cycle, and quantum chemical simulations of properties of 
these transition states, will be able to guide substrate-specific 
optimization of the reaction conditions, including the catalyst 
optimization, and predict regioselectivity of functionalization of a 
given substrate under given conditions. The ab initio character of 
such models would allow for better extrapolations to new 
substrates. A combination of computational modeling and 
experimental studies is also highly desirable. Overall, Mn-
porphyrin-catalyzed fluorination of organic substrates is a 
promising, but still problematic technique, and its improvements 

may be guided by computational modeling of transitions states in 
these reactions. 
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