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Abstract: Understanding crystalline structures based on their 

chemical bonding is growing in importance. In this context, chemical 

bonding can be studied with the Crystal Orbital Hamilton Population 

(COHP), allowing to quantify interatomic bond strength. Here we 

present a new set of tools to automate the calculation of COHP and 

analyze the results. We use the program packages VASP and 

LOBSTER and the Python packages atomate and pymatgen. The 

analysis produced by our tools includes plots, a textual description, 

and key data in machine-readable format. To illustrate those 

capabilities, we have selected simple test compounds (NaCl, GaN), 

the oxynitrides BaTaO2N, CaTaO2N, and SrTaO2N, and the 

thermoelectric material Yb14Mn1Sb11. We show correlations between 

bond strengths and stabilities in the oxynitrides, as well as the 

influence of the Mn-Sb bonds on the magnetism in Yb14Mn1Sb11. Our 

contribution enables high-throughput bonding analysis and will 

facilitate the use of bonding information for machine learning studies.  

Introduction 

The concept of chemical bonding plays a major role in 
understanding both molecules and crystals and their 
properties.[1,2] Chemical bonding in crystals can be studied using 
various techniques based on electronic structure theory methods. 
These techniques are usually divided into density-based and 
orbital-based methods. For example, a widely used  density-
based method is Bader analysis, which is based on electron 
density topology analysis.[3] Bader analysis has also been used in 
a high-throughput manner.[4–6] In this paper, however, we will 
focus on a more quantum-chemical orbital-based bonding 
analysis, which has  been shown to be successful in 
understanding crystal structures in the past,[2,7–9] and its 
automation. These methods have the advantage that bonding and 
antibonding contributions directly fall off from the orbital phases 
such that one arrives at  a picture that better relates to the 
chemist's orbital-based understanding of atoms and molecules.[8] 
An important technique in this context is Crystal Orbital Hamilton 
Population (COHP),[10] a bond-weighted density of states that 
provides information about bond energy and covalency in 
crystals.[7] There are other bond indicators not based on the 
Hamilton matrix but on the overlap matrix or bond order (Crystal 
Orbital Overlap Populations, COOP and Crystal Orbital Bond 
Index, COBI).[11] The first one relates to bond strengths, the 
second one to bond orders. In addition, there are also orbital-
based indicators for the ionicity of compounds.[11,12] 
 
COHP has been used for about three decades to study all kinds 
of compounds, for example, phase change materials,[13] 
intermetallics,[14] magnetic materials,[15] and many other classes 
of materials. Nowadays, these populations can also be derived 
according to electronic structure theory calculations using the 
projector augmented wave method. This is done by projecting the 
original delocalized basis based on plane waves onto atomic 
orbitals (e.g., Slater orbitals), as implemented,  for example, in the 
computer program  LOBSTER.[16–19] LOBSTER is also capable of 
computing COHPs, COOPs, COBIs, and many other similar 
properties based on the information resulting from the projection. 
In addition, Mulliken and Löwdin charges and corresponding 
Madelung energies can be calculated.[11,20] This procedure is 
illustrated in Figure 1. Here we use VASP as the code for our 
electronic structure theory calculations. 
 

To date, this type of projection has not been implemented in any 
of the standard codes for electronic structure theory based on 
plane waves (e.g., VASP,[21–23] Abinit,[24] or Quantum Espresso[25]). 
Therefore, this type of bonding analysis is a multi-step process 
involving at least two programs. New users not only have to use 

and learn non-standard settings for the electronic structure theory 
codes, they must also learn to use LOBSTER. Naturally, the users 
should also be aware of fundamental quantum-chemical concepts 
not necessarily taught in courses of quantum mechanics or 
computational materials science. Hence, this usually involves a 
lot of training for first-time users of the programs, a lot of manual 
work, possible errors and problems in interpretation. This limits 
the use of this bonding analysis tool for high-throughput 
calculations, although there have been some studies where 
LOBSTER has been used for a larger number of compounds.[26] 
Workflow-managing codes nowadays provide ways to automate 
such complex calculations.[6,27,28] This has been done in the past 
for several types of standard calculations (e.g., magnetic ground-
state calculations, defect calculations,[6,29–32]). This automation is 
also directly related to the need for high-throughput calculations 
and accurate computational data in materials science for machine 
learning and data-driven material discovery.[33–35] 
 

 
 

Figure 1. Illustration of the process of bonding analysis using the 
VASP and LOBSTER tools. VASP is used to calculate a wave 
function using the projector-augmented wave method. This 
calculation depends on the basis function chosen in the later 
LOBSTER run. LOBSTER then projects this wave function onto a 
basis set of atomic orbitals that must be adapted to the system at 
hand, corresponding to a unitary transformation between a totally 
delocalized and a localized representation. Then, LOBSTER 
calculates various populations and charges based on these 
populations, which allow to assess the bonding situation in the 
compound. This is a multi-step process whose steps are 
interdependent. We have now developed automated tools to 
perform all the steps of this procedure and to ensure the 
compatibility of the different steps. 
 
For example, high-throughput bonding analysis could provide 
further insight into important interactions within crystal structures 
and provide opportunities to determine coordination environments 
in crystal structures not only based on geometric constraints but 
also on electronic structure.[36,37] This has the advantage that the 
relevance of neighbors can be evaluated based on the  integrated 
COHP as a measure of a bond energy and hence a covalent bond 
strength. In purely geometric approaches, the strength of covalent 
bonds can only be evaluated indirectly using limits on bond 
lengths. Moreover, some of these bond properties could serve as 
descriptors in machine learning studies since the underlying 
bonding situation is expected to be causative for many materials 
properties. Recently, two such studies have been published.[26,38]  
 
Here, we present an implementation of bonding analysis using the 
programs VASP and LOBSTER in a Python-based workflow. We 
have automated this process using the programs VASP, 
LOBSTER,[7,16–19] pymatgen,[39] custodian,[39] and atomate.[28] This 
means that the entire bonding analysis workflow, leading to an 
analysis text and a summary of key properties, can be started with 
very little Python code. In addition to the computational workflow, 
we have also automated the analysis of LOBSTER results. 
Without this automation, users must do this by hand, and there is 
currently no unified strategy for doing so, unless the user is 
properly trained. Therefore, automating this process will also help 
in standardizing the analysis of LOBSTER results. This 
automation of the whole process will hopefully lead to fewer errors 
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in the future and less training being required. We also expect that 
the automated analysis will contribute to a much wider use of the 
tools and serve as a starting point for more detailed and individual 
bonding analysis by the user. In addition, high-throughput studies 
should now be in reach for non-expert LOBSTER users. 
 
To illustrate the capabilities of the code, we have tested it on a 
range of binary and more complex materials: we use the binaries 
NaCl, GaN, then the oxynitrides CaTaO2N, BaTaO2N, SrTaO2N, 
and finally Yb14Mn1Sb11, where the bonding analysis is performed 
fully automatically. In the case of the oxynitrides, we also show 
how easily correlations with other material properties can be 
derived based on the developed tools. We test the correlation 
between the total energy of the systems and the strongest 
integrated COHP upon varying the anion order in these perovskite 
systems. In addition, Yb14Mn1Sb11 illustrates the potential of the 
code to identify important interactions for magnetic properties and 
potential bonding-based driving forces for properties in materials. 

Results and Discussion 

The workflow 
 
The implemented workflow is shown in Figure 2. 

 
 

Figure 2. This graphic illustrates the progress that has been made 
in this work. Instead of creating all input files through custom 
scripts or by hand and starting and evaluating calculations by 
hand, there is now a fully automated workflow for the entire 
bonding analysis process using the VASP and LOBSTER 
programs. This workflow can automatically create all input files, 
start and monitor calculations. We have also developed tools to 
evaluate all the results and create automatic output texts and 
dictionaries of the most important bonding properties, which can 
be used to populate databases and machine learn the data.  
 
The crystal structure is optimized in a first optional step (a). This 
step is optional to ensure that structures of any origin can be used 
as input for the subsequent COHP analysis.  
Then, the wave functions are calculated based on DFT (b). In this 
step, special requisites for the DFT calculation are considered. 
Due to the required projection from plane waves to atomic orbitals, 
as many bands must be included in the DFT calculation as are 
needed for the projection to atomic orbitals. The number of bands 
actually depends on the structure at hand and on the basis 
chosen for the projection in LOBSTER. COHPs can only be 
computed if this number is correctly set by sheer mathematics. In 

Section 2 of SI, it is demonstrated how the minimum number of 
bands is computed for GaN.  This detail also illustrates the need 
for automation, since the input in this earlier step depends on an 
input that is chosen in a later step of the computational procedure, 
and VASP and LOBSTER runs are highly interdependent. This is 
also one of the most labor-intensive steps in the entire bonding 
analysis workflow and requires a lot of training for new users. Our 
workflow ensures that users always select the correct minimum 
number of bands according to the proposed basis. Currently, two 
basis sets (Koga and pbeVASPfit2015) can be used for the entire 
periodic table but only pbeVASPfit2015 also includes additional 
orbitals relevant for the solid state (e.g., 2p in metallic Be[17]). 
Some more trivial settings for the DFT run must also be chosen. 
For example, DFT runs must be performed without most of the 
symmetries to be compatible with LOBSTER (VASP input: 
ISYM=0) as only time-reversal symmetry is implemented in 
LOBSTER so far. 
The next step is to test several atomic orbital bases for the 
projection of the wave function in LOBSTER (c). Some LOBSTER 
beginners trained in plane waves but lacking atomic-orbital 
knowledge may overlook the need to thoroughly test the basis for 
the projection. Here this is done systematically and all basis 
functions possible in LOBSTER are exploited. We start with a 
minimal basis consisting only of occupied valence orbitals in the 
atomic ground state of each atom. This is determined using the 
pseudopotential file of VASP. We then systematically add 
unoccupied orbitals for each element and test all possible 
combinations. This test is further constrained by the basis 
functions currently available in LOBSTER. 
Particular attention has been paid to the handling of the large 
wavefunction files that are generated as they can become a 
burden on storage on typical supercomputers, especially for high-
throughput studies. They can be automatically deleted. The most 
important outputs of the VASP and LOBSTER runs will be stored 
in a MongoDB database (d). For LOBSTER, this is the information 
from the lobsterout file. Additionally, other output files can be 
stored in the database as well. 
In the last step (e), an automatic analysis of the LOBSTER 
calculations typically with the lowest absolute charge spilling is 
performed. This charge spilling indicates how much charge was 
lost in the projection from the plane-wave wave function to the 
atomic-orbital wave function and it is one of the most important 
quality criteria for the projection; in principle, the transformation is 
exact but small deviations may occur, just like in DFT. If used in 
the “cation-anion” mode, the automated analysis first detects 
cations and anions based on Mulliken charges calculated using 
LOBSTER[40] and then identifies the strongest cation-anion bond 
within the crystal structure based on the integrated Crystal Orbital 
Hamiltonian populations (ICOHPs). For the test systems shown 
below, only bonds with a strength of at least 10% of the strongest 
cation-anion bond were considered. This cutoff can be adjusted. 
In case all bonds (not only cation-anion bonds) are considered in 
the analysis, the ICOHP cutoff will typically be set to 10% of the 
strongest bond. 
To implement this workflow and simplify the bonding analysis, we 
extended and created several Python packages.  
Two new workflows are available in the atomate[28] workflow 
library (see Figure S1 in the supporting information). The first one 
is the workflow above. The second one relies only on a predefined 
basis. This workflow should only be used if the quality of the 
predefined basis has already been tested. The concrete DFT 
workflows are implemented in atomate using the workflow 
manager fireworks, the error handler custodian, and the 
pymatgen library for material analysis. With atomate and the other 
underlying Python packages, it is possible to perform complex 
calculations mostly with VASP (e.g., band structure calculations) 
on high-performance computers. All input files are generated 
automatically.  
To handle the input and output files, we have implemented 
classes for almost every input and output file of LOBSTER in 
pymatgen. Plotting classes for COHPs, COOPs, COBIs are now 
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available and there is an interface to the existing plotting classes 
for densities of states and fatbands in pymatgen. New classes 
have been developed to allow for the automatic analysis of local 
environments based on orbital-based bonding analysis. They 
connect to available tools for determining and analyzing atomic 
environments in pymatgen (ChemEnv,[36] localenv[37]). The bonds 
between atoms are determined based on the magnitude of the 
ICOHP values. Comparisons with ideal polyhedra are then made 
based on, for example, ChemEnv and its implementation of 
continuous symmetry measures describing a distance to a 
shape[36]. In combination with localenv[37], structure graph objects 
and further information about the neighboring atoms can be 
retrieved. 
In order to perform hundreds to thousands of calculations in 
parallel, error handling and validation are critical for high-
throughput studies. We have therefore also added new 
implementations for validators in custodian, which must be 
successfully passed. For example, this system checks whether 
the main LOBSTER output file (lobsterout) has been created and 
whether enough bands have been selected in the DFT run. Also, 
a validator was added to check if the charge spilling is reasonably 
low (<5%). We use the latter validator only when exactly one set 
of basis functions is used for the LOBSTER calculations. If 
different basis functions are tested in the workflow, this check is 
not performed. Also, a job class has been introduced to run 
LOBSTER jobs with custodian. 
Two tutorials showing how to use these classes and functions are  
available online .[41,42]   
Parts of this implementation have been used in other publications, 
e.g., to understand defects and their stability in photovoltaic 
materials or to benchmark a new implementation in the LOBSTER 
program.[16,43] In the latter study,[16] we identified the 
computational settings used in this study that lead to very well 
converged LOBSTER results. These and other details on the DFT  

and LOBSTER settings can be found in the methods section of 
this paper. 
The tools for automatically analyzing LOBSTER outputs are 
implemented in the lobsterpy package. An overview of the 
package can be found in Figure S1 in the supporting information. 
The Analysis class takes care of the automatic analysis of 
LOBSTER output and is the starting point for another class called 
Description, which will provide automated text and tools for 
automatic plotting. Detailed examples of COHP data analysis are 
attached to the code repository corresponding to this paper. By 
default, only cation-anion bonds are included in the analysis. 
Especially for large compounds such as Yb14Mn1Sb11, the 
automatic output otherwise provides too much information for the 
user, since weak cation-cation interactions are also present. An 
analysis of all bonds can be enforced since there are compounds 
where cation-cation interactions are responsible for the stability of 
a material and the particular structure (e.g., Ge4Se3Te[44]). For 
very large coordination environments (coordination number >13), 
only the coordination number is determined, but not the 
environment, which is based on a limitation of ChemEnv. 
ChemEnv only has reference polyhedra for coordination numbers 
≤13. 
Lobsterpy also offers a command-line interface that connects and 
extends the plotting tools available in pymatgen. The user can 
provide customized style sheets for the plots. This is also possible 
for automatic COHP plots. The automatic description can also be 
printed to the screen.  
 
Automatic Test of Best Basis and Projections 
The Lobster workflow in atomate was run for several test systems 
(NaCl, GaN, MTaO2N (M = Ba, Ca, Sr), Yb14Sb1Mn11). First, we 
will discuss the resulting projections. 
For most systems, only one basis is available (see Table 1) since 
their constituting ions are in noble gas configuration (full octet). 

Figure 3. Illustration of the automatic output for four different GaN phases. The structures of the phases are depicted next the automatic COHP plots and the text 
description. All Ga-N COHPs are nearly fully bonding except for small traces of anti-bonding interactions close to EFermi. The algorithm correctly recognizes all 
coordination environments. In addition, the Madelung energies per unit cell are given. Table 1 shows the Madelung energies per formula unit of GaN. For the COHP 
plots, a Gaussian smearing was used as the VASP version determined the band gap at the bottom of the band gap with the tetrahedron smearing but not the 
Gaussian smearing. We expect that this will be fixed again in future versions of VASP. Furthermore, we manually adapted the energy range here and restarted the 
Lobster run from the projection step. Very often, only states close to the Fermi energy EFermi are relevant for our bonding analysis and we therefore have a different 
standard setting for the energy range in our automatic workflow. 
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For Yb14Sb1Mn11, we will test the influence of the 5d orbital for Yb. 
This orbital would be unoccupied in a Yb atom according to the 
corresponding pseudopotential file. However, its use reduces the 
absolute charge spilling by more than 1%. Therefore, we will use 
the larger basis in the following. For all systems tested here, the 
charge spilling is less than 2%, indicating a very good projection. 
Note that a subsequent Löwdin orthogonalization of the local 
basis automatically carried out in LOBSTER assures that the 
entire Hilbert space is recovered, so no electron density gets lost. 

Table 1. Possible bases for our test systems. 

Composition Basis 1 Basis 2 

GaN Ga (4s, 4p, 3d), N (2s 2p) - 

NaCl Na (3s 3p), Cl (3s 3p)  

CaTaO2N Ca (3s 3p 4s), Ta (6s, 5p, 5d), O 
(2s 2p), N (2s 2p) 

 

SrTaO2N Sr (4s 4p 5s), Ta (6s, 5p, 5d), O 
(2s 2p), N (2s 2p) 

 

BaTaO2N Ba (5s 5p 6s), Ta (6s, 5p, 5d), O 
(2s 2p), N (2s 2p) 

 

Yb14Mn1Sb11 Yb (6s 5p), Mn (3p 3d 4s), Sb (Ss, 
5p) 

Yb (6s 5p 5d), Mn (3p 
3d 4s), Sb (Ss, 5p) 

 
We assume that this automatic checking of the basis will indeed 
ensure that users test the projections, rather than simply choosing 
a basis that gives reasonable spilling under a certain limit without 
further checking. We also hope that high-throughput studies will 
allow us to develop further criteria for the quality of a basis 
besides the absolute charge spilling. 
We now discuss the results of the automatic analysis of the output 
files. 
 
Two illustrative examples: NaCl and GaN 
We start with the analysis of two rather simple binary systems: 
GaN and NaCl. We usually describe chemical bonds in crystalline 
materials in terms of their metallic, covalent, and ionic 
contributions. The Van Arkel-Ketelaar triangle represents the 
different contributions for materials and allows us to map 
materials according to the nature of their bonds.[1,45–47] COHP 
provides a way to quantify covalent contributions. Madelung 
energies are commonly used to quantify ionic contributions. 
LOBSTER calculates these based on quantum-chemical Mulliken 
or Löwdin charges rather than just based on formal oxidation 
states. In the following, we will show that such information about 
the bonding situation in crystals can be easily extracted using our 
automation. We will also use this information on covalency and 
ionicity to discuss the stability of the different GaN and NaCl 
phases. 
We start with the four most stable GaN phases available in the 
Materials Project database[29] (see Table 2 and Figure 3). These 
four phases have been investigated by experimental and 
theoretical studies.[48] GaN is a well-known semiconducting 
compound for optoelectronic applications and is therefore 
expected to show significant covalent interactions.[49] Based on 
COHPs, our code correctly recognizes all coordination 
environments. This is consistent with geometric evaluations 
based on ChemEnv and its standard settings. ChemEnv 
compares coordination environments to ideal shapes.[36] 
We now proceed to discuss the stability of the compounds and 
what is effectively causing this. GaN in the wurtzite and 
zincblende structures is predicted to be more stable than GaN in 
NaCl structure type based on the DFT total energies, which is 
consistent with our expectations. GaN in the BN structure type lies 
between these extremes. We expected that the stabilization of the 

zincblende and wurtzite structure type compared to the NaCl 
structure type is due to a higher covalency as GaN is 
semiconducting.[1] Indeed, we find that the more stable 
compounds crystallizing in the wurtzite and zincblende types have 
more covalent interactions than GaN crystallizing in the NaCl 
structure type. This is indicated by the sum of Ga-N ICOHPs per 
Ga atom (Table 2 and Figure 3) and it is also connected to the 
Ga-N distances in the compounds. Ga in wurtzite and zincblende 
structure type show much stronger COHPs, especially for lower-
lying states (mostly with contributions of N (2s)). This is, of course, 
directly correlated to the smaller distances in these compounds 
as, for example, the more localized 2s orbitals (around -15 eV 
below the Fermi energy EFermi) cannot overlap that easily with the 
Ga orbitals anymore. The dispersion of the bands seems to be 
very similar in all four compounds, which is a bit surprising. The 
total energy of GaN in the BN structure, however, cannot be 
explained that easily based on covalent contributions alone. The 
calculated Madelung energies suggest that there may be 
electrostatic stabilization that could explain this energetic ordering. 
GaN in the BN structure exhibits the most negative Madelung 
energy per formula unit based on Mulliken charges of all four 
compounds. The same tendency can be found based on Löwdin 
charges. 

Table 2. Comparison of total DFT energies per formula unit, Madelung energies 
calculated based on Mulliken charges, and sum of Ga-N ICOHPs. The phases 
are referenced by the material project IDs (mp-...). The lowest, i.e., most 
stabilizing values are highlighted in bold.  

Com- 
positi
on 

Phas
e 
(MP-
ID) 

Total 
energies/ 

formula 
unit (eV) 

Sum of  
Ga-N 
ICOHPs per 
Ga atom 

(Covalency)  
(eV) 

Shortest 
Ga-N 
distance  
(Å) 

Madelung 
energy  
per  
formula unit 

(Ionicity) 
(eV) 

GaN Wurt
zite 
(mp-
804) 

-12.16 -20.12 1.976 -11.61 

GaN Zinc-
blend
e 
(mp-
830) 

-12.15 -20.20 1.970 -10.85 

GaN BN 
(mp-
1007
824) 

-11.46 -18.75 1.854 -15.11 

GaN NaCl 
(mp-
2853
)  

-11.21 -19.23 2.137 -9.16 

 
As shown in this simple example, correlations of DFT total 
energies with covalent bond strengths or Madelung energies can 
now be easily tested on a much larger scale to potentially 
understand phase transitions based on bonding properties and 
electrostatics. 
We now turn to the analysis of simple but very ionic systems - two 
NaCl phases. Here we do not expect covalency to be the driving 
force for the stability of these compounds. Nevertheless, it is 
possible to identify the correct coordination environments in these 
phases based on the bond energy given by COHP (Fig. 4).   
For the binary ground-state structure of NaCl (mp-22862, Figure 
4 a), the code correctly recognizes the octahedral coordination 
environment for Na+ and summarizes the mean values for the 
integrated COHPs. For the high-pressure phase of NaCl (mp-
22851, Figure 4 b), the cubic environment is correctly recognized.  
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The differences from the ground-state structure of NaCl are visible 
in the sum of ICOHP values (ICOHP_sum) and the mean value of 
ICOHPs per bond (ICOHP_mean). The ground-state structure of 
NaCl has a more negative value (i.e., it has stronger covalent 
bonds). However, this value should be taken with caution because 
NaCl is a comparatively ionic compound and exhibits very small 
ICOHP values in general. In this case, the electrostatics and 
calculated Madelung energies should lead to a much better 
understanding of the compound stability: Indeed, the ground-state 
structure of NaCl also shows a more negative Madelung energy 
than the high-pressure phase by more than 0.3 eV per cell.  
 

 
Figure 4. Automatic analysis and structure of NaCl in the ground-state 
structure (a) and the high-pressure CsCl-type structure (b). 
Additionally, the automatic output dictionaries for both phases are 
shown. Note that the automatic output provides a counting scheme 
for the atoms that starts at 1 (similar to LOBSTER outputs), but that 
the digits for sites within the dictionaries start at 0 (standard in Python). 
 
Two advanced examples: oxynitrides and Yb14Mg1Sb11 
 
Now, two more advanced examples will be discussed.  
We first focus on the oxynitride compounds CaTaO2N, SrTaO2N, 
and BaTaO2N, which crystallize in a perovskite-related structure. 
The anion order in these compounds have been under some 

debate in the past, and possible driving forces for certain anion 
orders have been discussed.[50–52] We now automatically analyze 
the importance of certain bonds for the anion order in these 
compounds (Figure 5). 
For this purpose, we vary the anion order of the systems in a 
supercell with up to 2 formula units. This results in seven different 
structural models per compound with different anion orders. The 
energetically least and most favorable models are shown in 
Figure 5 a and b. Based on our automated bonding analysis, we 
can then easily correlate the total energy of the systems with the 
strongest covalent interaction (Ta-N bond) in the systems (Figure 
5 c). We also see an anti-correlation with the bond energies of the 
Ta-O bonds because the more covalent Ta-N bonds strengthen 
at the expense of the Ta-O bonds. The covalency of the Ta-N 
interactions is therefore crucial for the anionic ordering of these 
oxynitrides.  
The Ca/Sr/Ba-O bonds are too weak to be detected with our 
automated analysis and the corresponding relative ICOHP cutoff 
(10% of the absolute largest ICOHP). The ICOHPs help to focus 
on the most important covalent interactions in our system, which 
could also be an advantage for determining coordination 
environments compared to purely geometric determinations of the 
latter.  
Thanks to our automation tools, the whole bonding analysis 
process can be performed with only a few lines of Python code, 
as shown in the repository accompanying this paper. This 
correlation between the strongest covalent interaction and the 
total energy of the system has already been observed for the 
oxynitride CaTaO2N[50,51]. This correlation has now been 
confirmed for SrTaO2N and BaTaO2N, which was to be expected 
given the chemical similarity of the compounds. One now arrives 
at such an analysis almost fully automatically. 
As a final example, we show the analysis of a very large and 
complex structure, namely that of the well-known thermoelectric 
material Yb14Mn1Sb11.[53] It has 104 atoms in the unit cell, and 
such a bonding analysis by hand would require a lot of manual 
work. Up to a distance limit of 6 Å (maximum considered distance 
in our current implementation of the workflow), more than 1400 
bonds are found in this structure. The band structure of the 
compound in the nonmagnetic state has been recently studied.[54] 
Similarly, an analysis of the band structure of Yb14Mg1Sb11 
crystallizing in the same type of structure, has been carried out.[55] 
The magnetism in Yb14MnSb11 has also already been studied both 
experimentally and theoretically.[56] From previous studies, we 
expect an influence of the Mn-Sb bonds on the magnetism. 
To investigate the influence of chemical bonding on magnetism in 
this compound, we decided to compare COHPs from non-
magnetic and ferromagnetic runs. This type of investigation was 
inspired by a study by Landrum and Dronskowski on magnetism 
and driving forces for itinerant magnetism based on chemical 
bonding.[15] We then performed two static LOBSTER runs that 
differ in the magnetic model after structural optimizations in the 
ferromagnetic setting. We introduce magnetic moments on Mn 
only. 
Similar to Perez et al.[54] in the nonmagnetic state, Yb, Mn, and Sb 
states play an important role in the valence band of Yb14Mn1Sb11. 
We find that both Yb-Sb and Mn-Sb bonds are relevant cation-
anion bonds in the structures, the Yb-Sb bonds being on average 
stronger than the Mn-Sb bonds. The bonds in the "Sb3

7-" are not 
considered in the standard automatic analysis of LOBSTER 
output files. By default, this analysis focuses only on cation-anion 
bonds to obtain a readable result even for very large structures 
such as Yb14Mn1Sb11. However, it is possible to enforce their 
analysis.  The automatic text output and the structure for the 
ferromagnetic setting are shown in Fig. 6. 

 
  



7 

 
Figure 5. a) Structure as depicted with VESTA[57] and automatic analysis of the 
conventional cell for CaTaO2N. The code is able to automatically determine 
relevant bonds, coordination environments and average bond strengths 
(average ICOHPs); note that more negative ICOHPs indicate stronger bonds. 
In this case, only the Ta-O and Ta-N bonds were detected. Potential Ca/Sr/Ba-
O and Ca/Sr/Ba-N bonds are much less covalent and play a less important 
direct role for the material. This information can then be easily correlated with 
other material properties (e.g., total energies) to understand these properties 
based on bond strengths. b) Structure of the most stable Ca/Sr/Br TaNO2 model 
including up to 2 formula units.. c) A correlation plot of the most important 
ICOHPs for this compound and the total energy of the systems with different 
anion orders is shown. The correlation coefficient r for the strongest covalent 
interaction (Ta-N) is always higher than 0.95, indicating a significant correlation. 
 

 
Figure 6. a) Structure of Yb14Mn1Sb11 above the automatic text analysis of the 
bonding situation in the compound. Yb shows octahedral and pentagonal 
bipyramidal environments and Mn shows a tetrahedral environment. 
Ferromagnetism was considered in these calculations. b) Here, the structure 
was optimized in a ferromagnetic environment and the COHPs were calculated 
in a nonmagnetic and in a ferromagnetic setting. 
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In the ferromagnetic setting, the octahedral environments are 
discovered for three of four crystallographically nonequivalent Yb 
atoms. The other is determined to be a pentagonal bipyramid. In 
contrast, the purely geometric tool ChemEnv,[36] based on 
Voronoian analysis with distance and solid angle cutoffs and 
determination of continuous symmetry measures, determines 
octahedral environments for all four. SimplestChemEnvStrategy 
and a standard relative solid angle cutoff of 0.3 were used. This 
lower cutoff is relative to the largest solid angle in the Voronoi 
construction. One of the identified octahedral environments is, 
however, highly distorted, as indicated by a continuous symmetry 
measure greater than 7. This is the environment that our orbital-
based analysis determines to be a pentagonal bipyramid. If we 
change the angle cutoff to 0.2, the geometric algorithm also 
arrives at the pentagonal bipyramidal environment. The 
determination of the tetrahedral coordination environment for Mn 
agrees well with the geometric-based determination. Overall, the 
agreement between the geometric and orbital-based 
determination of the coordination environments is very good.   
 
Upon analyzing the COHP diagrams with and without spin 
polarization for Yb14Mn1Sb11 (Figure 6b), we indeed find an 
influence of the Mn-Sb bonds on the magnetism as it has been 
seen before[56]: strong antibonding Mn-Sb interactions are 
discovered below the Fermi level for the calculation without spin 
polarization. When spin polarization is turned on, the antibonding 
interactions in one spin channel disappear completely and this 
spin channel now has fully bonding Mn-Sb bonds. In the other 
spin channel, small antibonding Mn-Sb interactions remain 
around the Fermi level. This finding agrees well with the 
antibonding fingerprint for other ferromagnetic compounds such 
as the transition metals, FeNi3, FePd3, and MbSb, demonstrated 
by Landrum and Dronskowski. [15] In contrast to the results of 
Landrum and Dronskowski, we do not detect stronger Mn-Sb 
bonds for the ferromagnetic setting, however. These bonds are 
slightly weaker than in the non-magnetic setting. In our 
gedankenexperiment, however, we find an "oxidation” of Mn when 
spin polarization in considered. The Mulliken charges of Mn 
change dramatically from 0.69 (nonmagnetic) to 0.91 
(ferromagnetic). This makes the Madelung energy much more 
negative with a change from -104.21 to -118.82 eV. This could 
indicate additional electrostatic stabilization for this compound in 
the ferromagnetic setting, rather than the typical covalent 
stabilization observed for other compounds such as α-Fe. These 
differences to the situation in α-Fe with homopolar Fe-Fe bonds 
are not surprising as we now observe this change in a heteropolar 
bond where Sb is more electronegative than Mn and thereby 
captures some of the electrons of Mn when spin-polarization is 
switched on.  
 
Conclusion 
 
This work simplifies bonding analysis by providing workflow tools 
and tools for automated analysis. Prior to this study, chemical 
bonding analysis based on orbitals was a task with many manual 
steps and therefore error prone. We have demonstrated our 
automation here using several test systems, including the study 
of the anionic order of several oxynitrides and the complex crystal 
structure of Yb14Mn1Sb11. Thanks to automation, these 
calculations can now be performed in a high-throughput manner. 
In addition, we have shown how the tools allow correlating 
important bonding properties with other material properties. We 
expect that these tools will facilitate the search for new descriptors 
for machine learning of material properties. Bader charges[58] or 
other information based on electronic structure theory have 
already helped in such studies. In addition, we hope that the tools 
will help to provide further chemical understanding of materials. 
The study also illustrates how much work is needed to automate 
just one task in computational chemistry. Future work will aim to 
include orbital-by-orbital analysis of bonds, various indicators of 
covalency (ICOOP, ICOBI), and k-dependent covalency in our 

automated analysis, which could be particularly useful for 
compounds with very steep bands. In addition, pre-convergence 
steps with a smaller number of bands could be included in our 
LOBSTER workflow to speed up calculations and convergence of 
calculations, which is currently a problem for compounds 
requiring a very large number of bands (such as Yb14Mn1Sb11). 
Interfaces to other DFT codes could be developed. 
 
For all examples shown, we provide the analysis scripts in our 
Github repository (https://github.com/JaGeo/LobsterAutomation, 
link to zenodo.org will be provided in the final publication). 

Methods 

For all materials considered in this study, DFT calculations based 
on the PAW method[59,60]and the PBE approximation of the 
exchange correlation functional[61] were performed. For 
optimization, we relied on many of the default settings of the 
atomate package imported via pymatgen from the MPRelaxSet. 
However, we chose more precise optimization settings. We use 
an energy difference criterion for the convergence of the 
electronic structure of 10-6 eV, and the structure is considered 
relaxed if the energy difference between two consecutive steps is 
below a setting of 10-5 eV. We relied on the standard cutoff for the 
plane-wave energy of 520 eV. In contrast to the MPRelaxSet in 
pymatgen, we used the VASP pseudopotentials with version 
number 5.4, with the additional difference that s-electrons are 
included in the valence of W. We used 6000 k-points per 
reciprocal atom to ensure that the energies for the defect phases 
of the oxynitrides converged well. We also chose a Gaussian 
smearing for the optimization. 
When calculating the wave function, the energy is converged until 
it is less than 10-6 eV. This stricter criterion, as opposed to the 
default setting in the materials project, was necessary to ensure 
that the wave functions were of sufficient quality. Otherwise, we 
would sometimes have obtained different charge spillings for the 
two spin channels of actually not magnetic compounds, which is 
contrary to expectation and indicates problems with convergence 
of the wave function. In addition, we considered time-reversal 
symmetry in the VASP calculation and used 6000 k points per 
reciprocal atom to ensure convergence of the LOBSTER results. 
The number of bands is adjusted according to the largest basis 
available in LOBSTER for the compound in question. The other 
parameters are the established defaults for the Materials Project 
PBE calculations as implemented in MPRelaxSet. The entire 
implementation of a generator for the input can be found in 
pymatgen and in pymatgen.io.vasp.sets.LobsterSet. These 
settings were previously determined to produce well-matched 
results when testing a new implementation in LOBSTER for 
several hundred LOBSTER calculations.[16] 
The LOBSTER run itself was then based on the pbeVASPfit2015 
basis and fits the atomic basis to the selected POTCAR files. All 
standard outputs of a LOBSTER run (i.e., information on Crystal 
Orbital Hamilton populations, Crystal Orbital Overlap Populations, 
Crystal Orbital Bond Indices, projected density of states, Mulliken 
charges, Löwdin charges, etc.) were calculated. 
To generate the different anion configurations of the perovskite 
structures, we again relied on pymatgen, enumlib[62] and also on 
symmetry identification based on spglib[63]. 
The following program versions have been used: pymatgen 
2022.2.1, atomate 1.0.3, LobsterPy 0.1.0, Lobster 4.1.0, VASP 
6.2.1. 
 
Data and code availability:  
All data is available on zenodo.org. All code is available under an 
open-source license. We also have a github repository to 
reproduce the whole publication 
(https://github.com/JaGeo/LobsterAutomation, link to zenodo.org 
will be provided in the final publication). 
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Section 1. Overview on code developments 

 

Figure S1. This graphic shows the new classes and functions that have been included 
in the packages atomate, custodian and pymatgen to develop the workflows discussed 
in this publication. Furthermore, new classes have been implemented in the package 
lobsterpy to automatically analyze the outputs. 
 

Section 2. How to calculate the number bands in Lobster 

 
Example: GaN 
With the following basis: Ga (4s, 4p, 3d), N (2s 2p) 
For each formula unit of Ga, we need the following number of bands: 
1 (Ga(4s)) + 3 (Ga(4p))+ 5(Ga(3d))+ 1 (2s) + 3(2p) = 13  
 
The available basis functions in Lobster for each pseudopotential can be found in pymatgen. 
pymatgen/io/lobster/lobster_basis/BASIS_PBE_54_max.yaml includes the largest basis that can 
be used in Lobster with the pbeVASPfit2015 basis set, 
pymatgen/io/lobster/lobster_basis/BASIS_PBE_54_min.yaml the smallest basis (occupied 
orbitals according to pseudopotential). In between these two extrema, all combinations will be 
tested with our algorithm. 


