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Abstract 

This work introduces GraphormerMapper – a new algorithm for reactions atom-to-atom 

mapping (AAM) based on a distance-aware BERT neural network. In benchmarking studies with 

IBM RxnMapper1, the best AAM algorithm according to our previous study2, we demonstrate that 

our AAM algorithm is superior on our “Golden” benchmarking dataset2. The mapper is 

implemented in Chython [https://github.com/chython/chython] and Chytorch 

[https://github.com/chython/chytorch, https://github.com/chython/chytorch-rxnmap] Python 

packages which are freely available for out-the-box use. Chython is a cheminformatics library with 

a simple interface for processing reaction and molecular data. The key features of Chython are: 

chemical functional groups standardization, checking atom valence errors, substructure search, 

and advanced reaction manipulation, for example, generating products from reactants and reaction 

atom-to-atom mapping. Chytorch provides a PyTorch-like3 interface for graph-based neural 

networks developed specifically for chemical tasks.  

mailto:rnugmano@its.jnj.com
https://github.com/chython/chython
https://github.com/chython/chytorch
https://github.com/chython/chytorch-rxnmap
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Introduction 

Reaction atom-to-atom mapping (AAM)4,5 is a procedure that establishes a correspondence 

between the atoms of reactants and products. AAM allows identifying reaction centers (RC) which 

can be used for a reaction templates extraction serving multiple downstream tasks like automatized 

forward/retrosynthesis planning6–10, reaction classification11, and reaction substructure and 

similarity searching12–15. 

Several publicly and commercially available AAM tools are currently available1,16–19. A recent 

benchmarking studying2 showed mediocre performance of various AAM algorithms, mostly 

expert systems. The best tested AAM is a data analytics/AI approach being called RxnMapper 

from IBM assigning 1565 of 1851 reactions in the “Golden” dataset correctly2. 

In this work, we implemented a new neural network inspired by representing compounds (from 

SMILES) as a graph20 instead of sequences21 and improved the attention-guided AAM algorithm1. 

The new algorithm has improved inference stability as it does not depend on the order of molecules 

in the reactants and products set and does also not depend on the order of tokens in a SMILES 

string, which is a typical challenge for ensuring a smooth space embedding22,23 and a better 

generalization ability. 

Methods 

Condensed Graph of Reaction for AAM validation 

A Condensed Graph of Reaction (CGR)24,25 encodes a chemical reaction as a single graph, 

where edges and nodes may obtain dynamical properties corresponding to chemical 

transformations, for example, a bond creation or breaking, an atom gaining or losing a charge, etc 

(see Figure 1). 
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Figure 1. Depiction of a reaction equation (on the left) and the corresponding Condensed Graph of 

Reaction (on the right) for an esterification reaction. In addition to conventional (single, double, etc.) bonds, 

CGR contains dynamical bonds (forming and breaking during the transformation, colored here in blue and 

red, respectively). 

We used CGR’s SMILES26,27 representations for a simple comparison of AAM obtained by 

RxnMapper, present algorithm, and manually curated. The workflow was the same as in the 

previous work2. 

Data sets 

The benchmarking study has been performed on the “Golden” dataset2, which contains 1851 

reactions in total, obtained by merging curated Jaworski’s28 dataset with 1382 entries and 469 

manually mapped USPTO29 records. 

The model is trained on the combined open-source reaction dataset USPTO29 and commercial 

reaction dataset Pistachio19. The data normalization followed the process described in30 and 

duplicated entries were removed.  

Graph-based transformer neural network 

Our neural network is inspired by a graphormer architecture20. We changed the centrality 

encoder to total neighbors encoder, which includes the count for explicit atom neighbors and 

implicit hydrogens. An edge encoder is not present as a combination of centrality encoder with an 

atom type encoder can encode hybridization of atoms implicitly. Moreover, atoms’ formal charges 
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and radical states are also skipped. This approach allows us to code resonance structures as a single 

form, and skip the “aromatic” bonds concept frequently used for arenes. 

A)  

B)  

Figure 2. Multiple resonance structures folded into a single form (A), different aromatic ring 

representations folded into a single form (B) 

The spatial encoder in our implementation is limited by a configurable maximum distance 

threshold. Values encoded by elements above a spatial threshold are considered equal. Short-range 

distance limits boosts attention to close atoms, while transformer architectures their multiple layers 

can extract features between long-range atoms. Though, long-range distances can lead to 

ambiguous predictions on molecules larger than in train set. 
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Figure 3. Modified Graphormer architecture.  

A Graphormer has a classic transformer-style layer design and is applicable only for a single 

molecule. We used weight sharing similar to ALBERT31 to prevent overfitting and to decrease 

model size. For multicomponent molecules (salts, complexes, etc) disconnected parts in a distance 

matrices were encoded as a new special token. This gives the possibility to detect relationships 

between ligands, metals or ions instead of enforcing hardcoded bond orders as input. 

 

Figure 4. Salts and complexes coding technique. 
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Graph-based BERT neural network 

In order to learn a reactants-to-products relationships we used techniques from BERT32. The 

architecture consists of two parts: the first part is the modified graphormer, used to generate atom-

in-molecule embedding, the second part is a BERT-like network with sentence encoding, used to 

mark reactants and products. Atom embeddings from the first part of the network contain full 

information about a molecule, thus the second part can find the required reactant-to-product 

relationship. We didn’t use positional encodings because the order of atoms and molecules in 

reactions is arbitrary, changing molecules’ order does not change reaction outcome. 

The model was trained via masked-learning-model (MLM) tasks. For MLM in reaction 

equation part of atoms and neighbors randomly replaced with “[mask]” tokens. Each epoch MLM 

is independent, like in RoBERTa33, so each epoch is trained on “different” data. 

 

Attention guided atom mapping 

Inspired by SMILES-based attention guided AAM described by Schwaller et all1 we developed 

a SMILES-independent approach using graph-based neural networks. In SMILES-based 

implementation, mapping is being done by iterative searching of maximal probability between 

reactants and products’ atoms with independent pre-normalization of products to reactants weights 

on each iteration. Only one head attention from penultimate layer is used to extract the mapping. 

The choice of the head can lead to overfitting and provides dataset dependent model. and whose 

choice is not obvious and supervised despite the stated unsupervised learning. We used the 

averaged weights from all heads of the last layer, we also removed the weights normalization step. 

Additionally, enumeration in the new algorithm is done in a breadth-first search (BFS) manner. 

Each next mapped atom should be bond-connected to already mapped product atoms. The first 

atom in each product molecule or in each connected subgraph is chosen without restrictions. 

Results and discussion 

Model training 

The first part of the model is pretrained on the original graphormer PubChemQC HOMO-

LUMO gap data34,35  in order to learn reasonable atoms in molecule embeddings. Training and 
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validation MAE was 0.0729 and 0.0978 respectively. The reported in Graphormer MAE 0.0253 

and 0.0865 correspondingly, which indicates overfitting. 

Pretrained model stacked with reaction-level part and trained on MLM task on all reaction data 

except “Golden” dataset. After 36 hours of training on 8 NVIDIA A100 GPU with 40 CPU cores 

and 100 GB RAM (5 epochs, batch size 10, lr 2.5*10-5) total loss (sum of cross-entropy losses of 

atom and neighbors MLMs) decreased to 0.003. Additional validation was not carried out due to 

the dynamic input randomization. 

Attention guided atom mapping 

Adopting the original AAM algorithm to our network1 provided us with the tool, which fails to 

map symmetric structures. A strategy with selecting the highest attention leads to the independent 

mapping of substructures in a molecule. This results in a possible switch of substructures, what 

looks like pseudo-rearrangement reactions. For solving this we implemented BFS-like mapping 

(breadth-first search). 

 

Figure 5. Example of the mapping of symmetric compounds 

 

The normalization of attention weights in the original algorithm1 depends on the number of 

atoms of each type. For this reason, unique and rare atoms are always mapped first, however 

frequent atoms can have higher correspondence, as in the example below. In the current work, the 
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normalization step was removed, which allowed us to increase the number of correctly mapped 

reactions in the benchmarked dataset. 

 

1 2 3 4 5 6 7 8 9 10 11

1 0.15 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.26 0.00 0.06 0.05 0.04 0.05 0.06 0.04 0.07 0.00

3 0.09 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.05 0.00 0.14 0.08 0.05 0.07 0.07 0.08 0.04 0.00

5 0.00 0.03 0.00 0.10 0.08 0.05 0.12 0.14 0.09 0.03 0.00

6 0.00 0.04 0.00 0.10 0.09 0.08 0.09 0.07 0.12 0.05 0.00

7 0.00 0.04 0.00 0.09 0.09 0.06 0.16 0.08 0.09 0.05 0.00

8 0.00 0.05 0.00 0.07 0.10 0.15 0.10 0.08 0.10 0.05 0.00

9 0.00 0.05 0.00 0.07 0.12 0.08 0.10 0.07 0.09 0.05 0.00

10 0.00 0.08 0.00 0.04 0.05 0.04 0.04 0.04 0.03 0.23 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10  

Figure 6. Attention weights for Diels-Alder reaction. (Top) Numbers correspond to atoms 

identification number (not AAM); (Attention weights) Rows – product atom IDs, Columns – 

reactants atom IDs. 

Heuristic mapping for difficult cases 

Due to the unsupervised nature of model learning, for some reactions the obtained AAM is 

mechanistically incorrect, e.g. esterification; or not aligned with chemical sense, e.g. acids to 

alcohols reduction (see figure below E and F). Therefore, we fixed in our earlier work these 

reactions mapping by predefined heuristic rules.2 In the new algorithm, we extract only reaction 

centers (RC) and convert them into the CGR SMILES at the first step from a prepared CGR. From 

the list of heuristic rules, we select rules with the same RC CGR SMILES. At the next step, by 
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isomorphism search, we find matched pair of rules and CGR. Rule-to-CGR mapping we use for 

remapping the wrong reaction by the given fix. For example, rule on the figure code changing of 

atom number 3 to 1, so, matched by isomorphism corresponding atoms in the reaction are 3 and 5. 

Changing the product atom number from 3 to 5 gives the correct AAM. 

A)  

B)       C)  

D)  

E)  

F)  

RC SMILES O[.>-]C[->.]O 

Fix 3 > 1 

Changed AAM 3 > 5 
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Figure 7. Invalid AAM (A), CGR (B) heuristic rule (B), and Correct AAM (D); reduction not 

aligned with chemical sense (E), preferrable reduction AAM (F). 

Benchmarking studies 

We evaluated the quality of our AAM algorithm with the previously published “Golden” 

dataset2. We compared AAM with IBM RxnMapper1. For 1851 records new algorithm gives 1656 

correct AAM (5.0 % better) and 187 unique correct. 

1851 reactions This work IBM RxnMapper 

Total correct 1656 1565 

Unique correct 187 96 

Percent correct 89.5 84.5 

 

A)  

B) C1COCCN1.O=C1CCCCC1>>C1=C(N2CCOCC2)CCCC1 
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C)  

D)

13 2 1 12 11 10 9 8 7 6 5 4 3

1 0.00 0.11 0.14 0.07 0.07 0.07 0.14 0.07 0.06 0.00 0.06 0.07 0.00

2 0.00 0.13 0.07 0.05 0.05 0.05 0.07 0.06 0.05 0.00 0.05 0.06 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12

4 0.00 0.05 0.05 0.04 0.04 0.04 0.05 0.08 0.05 0.00 0.05 0.08 0.00

5 0.00 0.05 0.04 0.03 0.04 0.03 0.04 0.06 0.07 0.00 0.07 0.06 0.00

6 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00

7 0.00 0.05 0.04 0.03 0.04 0.03 0.04 0.06 0.07 0.00 0.07 0.06 0.00

8 0.00 0.05 0.05 0.04 0.04 0.04 0.05 0.08 0.05 0.00 0.05 0.08 0.00

9 0.00 0.06 0.08 0.06 0.07 0.06 0.08 0.05 0.05 0.00 0.05 0.05 0.00

10 0.00 0.04 0.05 0.09 0.07 0.09 0.05 0.04 0.04 0.00 0.04 0.04 0.00

11 0.00 0.04 0.06 0.07 0.12 0.07 0.06 0.04 0.04 0.00 0.04 0.04 0.00

12 0.00 0.05 0.06 0.09 0.06 0.09 0.06 0.04 0.04 0.00 0.04 0.04 0.00  

Figure 8. Invalid AAM from IBM RxnMapper (A), B) SMILES used by mapper, C) Correct 

AAM, D) Graph attention. Rows – product atom numbers, Columns – reactants atom numbers. 

As the AAM in RxnMapper is based on SMILES sequences does the order of the sequence 

influence the errors. Interestingly, the mapper pays high attention to ‘=C’ substrings on both sides 

of the reaction and marks these atoms as the same. In opposite, the graph-based attention is 

invariant to the atom order and does not use bond order information, and works with full neighbors 

context, which can be seen in the table above. For example, atom 1 (rows) in the product has high 

and correct equal attention to atoms 1 and 9 (columns). A similar pattern is observed for all atoms.  

For multicondensed rings, RxnMapper also returns an invalid mapping due to drastic 

differences in canonical SMILES of products and reactants. However, by disabling of automated 
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canonicalization of SMILES string (especially handwritten), with the same order of atoms, the 

returned AAM is correct. Our algorithm in this case returns correct AAM. 

A)  

B) BrBr.c1cc2ccc3cccc4ccc(c1)c2c34>>Brc1cc2cccc3ccc4cccc1c4c32 

C) BrBr.c1cc2ccc3cccc4ccc(c1)c2c34>>c1cc2c(Br)cc3cccc4ccc(c1)c2c34 

Figure 9. Invalid AAM in condensed rings (A), canonicalized SMILES (B), handwritten 

SMILES (C) 

Additionally, we compared AAM on USPTO dataset for top-100 correct reaction centers. 

Obtained by RxnMapper centers contains 303457 records. Our algorithm generates 310570 

records (2.3 % better). 

Conclusions 

Here we present a new algorithm GraphormerMapper for reaction atom-to-atom mapping 

based on attention neural network and heuristics expansion. This algorithm outperforms IBM 

RxnMapper, currently the best freely available atom-to-atom mapper. Graph attention 

implemented in Python neural network library – Chytorch, that is easy to use and modify for 

specific goals, such as reaction yield prediction or conditions prediction. Atom-to-atom mapping 

implemented in Chython Python library – a framework for reaction and molecule processing. 
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Code availability 

Described Python packages are freely available at GitHub: https://github.com/chython/chython, 

https://github.com/chython/chytorch and https://github.com/chython/chytorch-rxnmap. The 

repositories contain the source code, as well as the data processing protocol. 
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