
Efficient and Accurate Description of Diels-Alder

Reactions using Density Functional Theory

Daniele Loco,†,‡ Isabelle Chataigner,†,¶ Jean-Philip Piquemal,∗,† and Riccardo

Spezia∗,†
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Abstract

Modeling chemical reactions using Quantum Chemistry is a widely used predictive

strategy capable to complement experiments in order to understand the intrinsic mech-

anisms guiding the chemicals towards the most favorable reaction products. However,

to do so, it is mandatory to use reliable and computationally tractable theoretical meth-

ods. In this work, we focus on six Diels-Alder reactions of increasing complexity and

perform an extensive benchmark of middle- to low-cost computational approaches to

predict the characteristic reactions energy barriers. We found that Density Functional

Theory, using the ωB97XD, LC-ωPBE, CAM-B3LYP, M11 and MN12SX functionals,

with empirical dispersion corrections coupled to an affordable 6-31G basis set, provides

quality results for this class of reactions, at a small computational effort.

Such efficient and reliable simulation protocol opens perspectives for hybrid QM/MM

molecular dynamics simulations of Diels-Alder reactions including explicit solvation.
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Introduction

The Diels-Alder reaction, first observed in 1928 by Otto Diels and Kurt Alder, has long

been established as a key transformation in the toolbox of chemists. This two-bond-forming

pericyclic combination of a 1,3-diene (4π component) with a dienophile (2π component) al-

lows the formation of six-membered rings with well-defined regio- and stereo-chemistries and

tolerates a large variety of functionalities. It is therefore not surprising that its applications

in synthesis are numerous, going from the access to small, highly functionalized building

blocks to the construction of complex natural products or polymers.1,2

The possibility of describing these reactions via chemical simulations is thus of crucial

importance. For example, it makes possible to understand (and predict) solvation effects

or to model the role of pressure in tuning stereo-selectivity.3–6 At this end, computational

chemists are often faced to deal with relatively large systems, either because the reactants

are complex and extended, or because the solvent must be explicitly considered. One ex-

ample of this last case, was reported recently by us showing that to understand pressure

effects one needs to use molecular dynamics simulations within a mixed quantum mechan-

ics - molecular mechanics (QM/MM) approach.6–8 Also, chemical dynamics simulations are

often performed to elucidate the nature of mechanisms in organic reactions, for example to

distinguish between synchronous or step-wise mechanisms,9,10 to elucidate post transition

state dynamics,11–14 or to understand kinetic isotopic effects,15 and this technique needs a

large statistical sampling to have converged and robust results.

To allow the simulations of extended systems, two approaches are tempting: (i) using

small basis sets in conjunction with electronic structure, both using Density Functional

Theory (DFT) or Hartree-Fock (HF); (ii) using semi-empirical Hamiltonians (SEHs). In

fact, the basis set size remarkably affects the computational cost of electronic structure

calculations, while large basis are required, e.g., in ab initio methods. To reach a sufficient

accuracy, some DFT functionals might require very large basis sets.16 Given this constraint,

MD simulations rapidly start to be unfeasible for real life applications, where a large phase
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space needs to be sampled.

DFT was widely used to computationally study Diels-Alder reactions, and in a seminal

work by Houk and co-workers it was pointed out that the popular B3LYP functional is

not able to correctly describe single bond formation and double bond breaking.17 Since

then, the developments of range-separated functionals and inclusion of dispersion made DFT

more reliable and other functionals (like ωB97XD or M06-2X) are largely used in physical

organic chemistry. Later, Grimme and co-workers pointed out how results of popular B3LYP

functional on a set of organic reactions can be improved adding dispersion corrections.18

However, the search for reliable and/or computationally cheap basis sets is an important

task in the field.19

SEHs were largely used in the past and replaced by modern theories when DFT calcula-

tions became available. However, in last years research in optimizing them was still active

and they are still useful to address complex chemical reactions when a huge number of cal-

culations are needed, like is the case when studying unimolecular dissociation in conjunction

with mass spectrometry.20,21

Of course these two options do not cover all the spectrum of possibilities, for example

tight-binding DFT shows recently that it is able to deal with chemical reaction dynamics.22,23

Another possibility is also to train and/or use a machine learning algorithm for chemical

reactions.24 While some attempts to use this technique have been performed to predict

activation energies,25 it is at a preliminary stage and will need a huge data-set. Very recently,

some reactive force-fields were developed with a first application also to a simple Diels-

Alder reaction, but, at the present stage, this method needs a specific parametrization for

each reaction.10 Surely, this approach will have interesting future applications in the field of

organic reactions, but it needs, at the present stage, further development and more grounded

common and standard utilities.

Nowadays organic chemistry can maximize the efficiency of well-known and studied ap-

proaches like DFT, HF or SEHs. At this end, we investigated how accurate is the description
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of Diels-Alder reactions using such relatively fast methods. We have first studied a set of

benchmark calculations on well-established Diels-Alder reactions and then applied to spe-

cific (4+2) cycloadditions where the dienophiles are strained cyclic allene for which both

experimental and very recent calculations are reported.26–29

Prototypical Diels-Alder cycloadditions (see reactions B1-B3 in Scheme 1) were selected

for this benchmark. These small systems were chosen in order to be able to perform

highly-correlated reference calculations (here at CCSD(T) level of theory). We thus chose

three reactions involving cyclic or acyclic dienes, aromatic or non- aromatic substrates, and

dienophiles bearing different types of classical electron-withdrawing groups (cyano, nitro

and ester/anhydride). This led us to select B1 involving cyclopentadiene and acrylonitrile, a

classical reaction that we had recently studied computationally under high pressure.6 In B2

cycloaddition, butadiene reacts with nitrobenzene as aromatic dienophile, a reaction linked to

our interest in (4+2) Diels-Alder cycloaddition with electron-poor aromatic compounds.30–35

Note that in this case the cyclo-adduct will not differ by endo or exo approach, while the TS

will. Here we consider the TS approach corresponding to the conformation which is lower

in energy (the aromatic ring and the diene on the same side). Finally, B3 reaction involves

the classical Diels-Alder between furan and maleic anhydride to form norcantharidin, whose

endo/exo diastereoselectivity under kinetic/thermodynamic control has been debated over

years.36–38

Recently, Houk and co-workers have studied computationally a class of Diels-Alder reac-

tions in which the dienophile has a cyclic allene structure.26 They are particularly interesting

because it is possible to synthesize several stereochemically-reach products in this way. This

is possible thanks to the high endo:exo ratio as reported by many experiments.27–29,39,40

Quantum chemistry calculations provide a key tool to understand and predict such endo:exo

ratio. Our theoretical results can be compared with such experimental data in addition to

the aforementioned calculations which use DFT with an extended basis set which would be

computationally not affordable in further and likely QM/MM molecular dynamics simula-
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Scheme 1: Reactions under consideration in benchmark calculations.

tions. We have thus selected three reactions among those studied by Houk and co-workers

and reported in Scheme 2.

The first reaction (R1) is one of the simplest possible: furan reacts with cyclohexa-1,2-

diene yielding 80% of products with an endo:exo ration of 11:1.27 This selectivity is notable

because it arises from “a new type of secondary orbital interaction that results from the near

perpendicular approach of the diene to the dienophile and the twisted nature of the strained

allene”.26 We have then chosen two other reactions, R2 where the reactants were slightly

modified, resulting in similar endo:exo ratio (9.2:1),28 and R3 where experimentally only

the endo adduct was observed.29 The aforementioned calculations reported recently, done

with the ωB97XD and a relatively large basis set (6-311+G(d,p)) in implicit solvent, found

a relatively small endo:exo ratio (3.3:1)26 which is even smaller than what obtained for

R1 and R2 reactions. Note that calculations were done with R=Me (methyl group), while

experiments were done with R=Bn (benzyl group). The use of a smaller basis set would

allow to easily check if the use of the benzyl group as in experiment in conjunction with the

best performing functionals can bridge this gap.
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Scheme 2: Diels-Alder reactions with a strained cyclic allene dienophile considered in this
study. R1 is done in THF, while R2 and R3 in acetonitrile (MeCN).

Computational details

Reactions under consideration

The reactions studied are reported in Schemes 1 and 2, where the nomenclature used here

and hereafter for the different reactions is also depicted. All calculations described in the

following were done with Gaussian 1641 and Mopac1642 (for semi-empirical Hamiltonians)

software packages.

Reference calculations

Reference energies have been obtained applying the following recipe: pre-complex (PreC)

and transition state (TS) structures are optimized using the best level available, given the size

of the system; the CCSD(T) energy at the Complete Basis Set (CBS) limit is then obtained

performing a two-points extrapolation procedure on the correlation energy only,43 using those

fixed structures. The largest affordable basis sets for the two points extrapolation have been

used, typically the cc-pVDZ and cc-pVTZ Dunning’s basis sets. The basis set superposition
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error (BSSE) counterpoise correction is applied in the CCSD(T) total energy calculations,

from which a BSSE-corrected correlation energy is extracted. Just for Reaction B1 the

calculations were affordable also using the aug-cc-pV(D,T)Z basis sets, and the resulting

extrapolated CBS energy has been reported in the SI (see Table S2).

The final CCSD(T)/CBS reference energy is obtained adding such BSSE-corrected, ex-

trapolated correlation energy to a reference state energy computed at the HF/aug-cc-pV5Z

level,44 so to reasonably account for any source of error coming from incomplete basis sets,

including the BSSE also for the non-correlation part of the total electronic energy. This is

shown to be a reasonable assumption for Reaction B1, where HF energies at aug-cc-pVQZ,

aug-cc-pV5Z and aug-cc-pV6Z are compared, showing a quite low impact of basis set related

errors already at the quadruple-ζ (see SI, Section S1) , and a quite small variation passing

from quintuple-ζ to 6-ζ (see SI, Table S1). In Section S1 of the SI more details are reported

on this topic and on the reference energies calculations in general.

DFT calculations

We have used different functionals, listed in Table 1 where we classified them by type and

where we specified if dispersion is also added and with which method. For dispersion, we

used the D3BJ correction45 when available for the given functional otherwise we used D246

or D3,47 as specified in the same Table 1.

We used different basis sets, and namely: STO-3G, 3-21G, 6-31G, 6-31G(d,p) and 6-

311++G(d,p). BSSE was calculated using the counterpoise method of Boys and Bernardi.87

In the case of reactions involving strained cyclic allene dienophiles, we performed also

calculations in implicit solvent using the SMD solvation model88 as in the recent work by

Houk and co-workers.26
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Table 1: Functional used in the benchmarking. We classified them in the Type column using
the following abbreviations: local spind density approximation (LSDA), generalized gradi-
ent approximation (GGA), hybrid GGA (HGGA), meta-GGA (mGGA), hybrid-meta-GGA
(HmGGA), range-separated hybrid (RS), non-separable gradient approximation (NGA),
double hybrid (DH). When dispersion correction is added this is reported in the specific
column, in parenthesis if the functional is used both with and without dispersion.

Functional Dispersion correction Type References

SVWN – LSDA 48–50

BLYP (D3BJ) GGA 51–53

PBE (D3BJ) GGA 54

HCTH/407 GGA 55

B97 D2, D3 GGA 56,57

G96LYP GGA 52,53,58

BP86 D3BJ GGA 51,59

SOGGA11 GGA 60

B3LYP (D3BJ) HGGA 52,53,61

PBE0 (D3BJ) HGGA 62

B3PW91 HGGA 61,63

B1B95 HGGA 64

mPW1PW91 HGGA 65

mPW1PBE HGGA 54,65

mPW3PBE HGGA 54,65

B3PW91 D3BJ HGGA 61,63

APFD HGGA 66

SOGGA11X HGGA 67

TPSS D3BJ mGGA 68

VSXC mGGA 69

τHCTH mGGA 70

M06-L mGGA 71

M06 HmGGA 72

M06HF HmGGA 73

τHCTHhyb HmGGA 70

BMK D3BJ HmGGA 74

CAM-B3LYP (D3BJ) RS-HGGA 75

ωB97XD D3 RS-HGGA 76

ωB97 RS-HGGA 77

HSEH1PBE RS-HGGA 78

OHSE1PBE RS-HGGA 78

OHSE2PBE RS-HGGA 78

HISSbPBE RS-HGGA 79

LC-ωPBE (D3BJ) RS-HGGA 80

N12SX RS-HGGA 81

M11 RS-HmGGA 82

MN12SX RS-HmGGA 81

N12 NGA 83

M11-L mNGA 84

MN12-L mNGA 85

B2PLYP (D3BJ) DH-GGA 86
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Wave-function and Semi-empirical Hamiltonians

We have also considered Hartree-Fock (HF) and MP2 methods to compare with DFT and

reference CCSD(T) calculations, varying also in those cases the basis set size, in the bench-

marking calculations. Furthermore, we have tested some popular semi-empirical Hamilto-

nians (SEHs) which are computationally much faster than DFT and are thus tempting as

method, in particular in molecular dynamics simulations. At this end we have considered

the following methods: AM1,89 AM1-D, RM1,90 RM1-D, PM3,91 PM6,92 PM6-D, PM6-D3,

PM6-D3H493 and PM7,94 where D and D3 stand for the D95 and D347 methods by Grimme,

respectively.

Results and Discussion

Basis Set Effect

We first consider in detail the role of the basis set superposition error (BSSE) in particular

concerning energy barriers. This will be important to understand also the role of the intrinsic

error of a finitie basis set. DFT calculations are here compared with CCSD(T)/CBS results

which are taken as reference for both method and basis set.

First we consider the activation energy of reactions B1 and B2. The activation energy

Ea = ETS − EPreC (1)

is calculated considering as the starting point the non-covalent complex formed by the re-

actants (PreC). Note that the PreC is obtained once from an intrinsic reaction coordinate

(IRC) calculation from the TS structure corresponding to the reactant state and the resulting

structure is then directly optimized each time with the different methods.

For Reaction B1, which is the simplest system treated in this work, additional high-level

electronic structure calculations are performed, to estimate the reliability of the reference
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chosen. We notice that, as reported in Table S2 of the Supporting Information (SI), the

CCSD(T) calculations with the larger basis sets used for the CBS extrapolation are almost

identical to those which use the slightly smaller basis sets. We then use this last one extrap-

olation for the other reactions with good confidence.

It is relevant to observe here that the MP2/CBS (see Section S1 of SI for details) barrier

provided in the SI is roughly half of the CCSD(T)/CBS one. Since the latter method is widely

considered as a golden standard, the reason of such a huge mismatch can be ascribed to an

erroneous prediction of MP2, which can be rooted in i) the more approximated treatment

of correlation energy, particularly evident ii) in its known deficiency of describing accurately

non-covalent interactions.

We present now how BSSE behaves for some functionals considered: we have chosen

some between those who perform the best as discussed in the following subsections. Also

other DFT functionals perform as well as the ones reported hereafter, and the exhaustive

list of computed energy barriers including all tested functionals is reported in the SI (see

Tables S5 and S6).

In Figure 1 the activation energy differences (|∆E|a) computed with the selected function-

als (M06-2X, MN12SX, B2PLYP and LCω-PBE) with respect to the reference CCSD(T)/CBS

values, are shown for Reactions B1 and B2. The effect of correcting for the BSSE or avoiding

such a costly correction is analyzed. The non-BSSE corrected barriers (full symbols) all con-

verge towards the reference values at the Pople 6-31G basis level, while they are very far from

it for the smaller STO-3G and 3-21G basis, strongly underestimating the reaction barrier.

This is due to the, by definition, always negative BSSE value, which stabilizes more the TS,

for which BSSE values are larger (see Figure 1, BOTTOM panel) than the PreCs, for which

the BSSE is smaller (same panel in Figure 1). For comparison, we also reported the BSSE

corrected barrier differences (empty symbols), which are, as expected, always higher than the

corresponding non-BSSE corrected ones. For the larger 6-311++G(d,p) basis, the difference

between non-BBSE corrected and BSSE corrected barriers is obviously much smaller, so that
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Figure 1: Gas-phase activation energy’s basis set dependence for reactions B1 (TOP) and
B2 (MIDDLE); we report the difference between reference CCSD(T)/CBS and the best
DFT results (Density Functional Approximations, DFAs, as reported on the y-axis of the
graphs). Non-BSSE corrected values (filled symbol) are compared with the BSSE corrected
ones (empty symbol). Empirical dispersion (Grimme’s D3BJ as implemented in the Gaus-
sian suite45) has been added to the non-Minnesota functionals; BOTTOM) average BSSE
absolute values, averaging over the different functionals’ computed energies, for both pre-
complexes (PreC) and TSs
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either one or the other, depending n the functional, reach a satisfactory agreement with the

reference, in most of the cases between ±2.5 kcal/mol.

In Figure 1 (BOTTOM panel) we reporte the BSSE value obtained averaging out the

BSSE of each functional for each basis set. TSs show a much larger BSSE than PreCs, due

to the generally larger inter-fragment distances which characterize the latter. As expected,

the BSSE decreases from smaller to larger basis sets, with the maximum value for the 3-21G

basis, with an average BSSE of 16 and 8 kcal/mol for TSs and PreCs, respectively. The

minimal STO-3G basis shows a quite smaller BSSE values, 13 for TSs and 4 kcal/mol

for PreCs, compared to the smallest Pople’s basis set tested, the 3-21G. This fact can be

interpreted as a smaller overlap between basis from different fragments when using STO-3G.

We also remark here that the BSSE correction applied to 3-21G calculations (TOP and

MIDDLE panels in Figure 1, empty symbols) brings the results of the selected functionals

close, or at least much closer than the non-BSSE corrected ones, to the reference. On the

opposite the STO-3G results show in almost all cases a quite bad agreement with the refer-

ence. All in all, the reduced BSSE (see BOTTOM panel in Figure 1) improves the intrinsic

behavior of DFT, so that BSSE corrected and non-BSSE corrected values are generally im-

proved in the 6-31G and the 6-311++G(d,p) basis sets over the STO-3G qnd the 3-21G. In

particular for the 6-31G basis the reduced BSSE (still larger than those of 6-311++G(d,p))

compensates for the intrinsic error of the DFT functionals, surprisingly giving a very good

agreement between the reference (CBS) and the non-BSSE corrected barriers.

It is worth spending few words to quantify the time needed to perform these calculations.

12



Table 2: computational time ratios for Reaction B1; we reported the slow-down factor
to complete a gas-phase SCF procedure when passing from the 6-31G basis set without
BSSE correction (6-31G-NoCorr) to the largest tested 6-311++G(d,p) basis including or not
BSSE counterpoise corrections (6-311++G(d,p)-Corr/NoCorr). The slow-down factors are
computed for calculations on both TS and pre-complex (PreC). The time factor is computed

as t(B)
t(6-31G-NoCorr)

, with B one of the basis set reported in the left-most column of the table,
including or not BSSE corrections

TS PreC

MN12SX B2PLYP/D3BJ MN12SX B2PLYP/D3BJ

6-31G-NoCorr 1.0 1.0 1.0 1.0
6-31G-Corr 3.0 3.3 2.4 3.3
6-311++G(d,p)-NoCorr 5.4 14.4 4.8 10.9
6-311++G(d,p)-Corr 16.5 32.8 14.2 48.6

In Table 2 we report the slow-down time factor for an SCF energy evaluation in gas-

phase using the 6-311++G(d,p) basis, with and without BSSE counterpoise correction, with

respect to the 6-31G one. The calculations are performed for both TS and PreC structures

of Reaction B1, and we also include 6-31G calculations with BSSE correction. We chose to

use two of the best working functionals, as discussed later, the MN12SX and the B2PLYP

including empirical dispersion, but the conclusions we draw, reasonably, are not significantly

affected by this choice. For both functionals, a slow-down factor between 3 and 15 is found

for the 6-31G basis with BSSE and 6-311++G(d,p) basis without BSSE correction. For the

6-311++G(d,p) basis zith BSSE correction the slowing factor is much higher in average,

being ∼48 in the worst case, for the PreC treated with the B2PLYP/D3BJ method.

If one is interested in simulating the dynamics of the system, even an apparently small

factor, as a 2 or 3 slower calculation, can determine a drastic reduction in the number of

dynamics steps that one can afford, reducing the portion of the phase space of the system

that one can explore and consequently the reliability of calculated quantities.
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Activation energies on benchmark reactions

In light of this preliminary analysis on the BSSE effect on the reaction barriers computed

for two of the Diels-Alder reactions in Scheme 1, we extended the set of tested function-

als to find good cost-effective methods to predict a reliable energy barrier. First we have

considered the gas-phase barrier for reactions B1 and B2 comparing the DFT results with

reference CCSD(T)/CBS calculations. Note that, since CCSD(T)/CBS calculations provide

only electronic energies, here we compare this quantity without considering any contribution

from molecular vibrations (typically to free energies): they will be added when studying the

reactions with strained cyclic allene dienophiles in the last subsection. As shown in the pre-

vious subsection, STO-3G basis set provides very poor results and thus we did not include

it in further comparisons.

The full set of results obtained from 3-21G, 6-31G, 6-31G(d,p) and 6-311++G(d,p) basis

sets with different functionals for Reactions B1 and B2 are reported in Tables S3 and S4 in

the SI where we also compare with CCSD(T)/CBS values. Note that for reaction B1 we

report, for many functionals excluding the Minnesota class, values with and without disper-

sion correction. In general, dispersion decreases the barriers: when they are overestimated

without dispersion they tend to become closer to the reference value, but the improvement

is not generalized.

When dealing with reaction B2, the structures of the PreC are often totally wrong if dis-

persion is not included. In Figure 2 we show as an example the PreC obtained at B3LYP/6-

31G level of theory with and without dispersion correction. We should remind that here we

define a PreC as a structure which is formed when the reactants approach to each other and

technically obtained by following the intrinsic reaction coordinate (IRC) backward to reac-

tants from the TS down to the first minimum. In other terms, the PreC by definition should

have a structure where the reactants are close together “ready” to form the TS (correspond-

ing substrates in almost parallel plans in our case dealing with a Diels-Alder cycloaddition),

which in the present case is what obtained when dispersion correction is added. On the other
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hand, when the dispersion is not included, the geometry is totally unrealistic, with substrates

lying in perpendicular plans in the present case. The same behavior is observed with almost

all the functionals and basis sets, but the Minnesota families of functionals, which are able

to catch, in our application, the good behavior without adding empirical dispersion. The

qualitatively good description of dispersion of the Minnesota functionals can be ascribed

to their specific functional form, and thanks to the detailed and extended fitting procedure

applied to evaluate the parameters which are involved in their definition.96,97 With this con-

sideration, and verifying that PreC and TS structures do not undergo significant distorsion,

we did not add dispersion correction when using Minnesota functionals.

Figure 2: Pre-complex structures for Reaction 2 using B3LYP-D3BJ/6-31G (left) and
B3LYP/6-31G (right).

Results with the small 3-21G basis set are largely off, the best being ωB97XD for Reac-

tion B1 and CAM-B3LYP/GD3BJ for Reaction B2, which are underestimated by 2.16 and

5.31 kcal/mol, respectively. When moving to 6-31G basis set the results are largely better:

many functionals provide energy barriers which are different by less than 1 kcal/mol with

respect to CCSD(T)/CBS reference. In particular, range-separated functionals (ωB97XD,

M11, LC-ωPBE and MN12SX) are able to provide barriers which are very close to the ref-

erence value. The double hybrid B2PLYP/D3BJ functional also provides excellent results
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with such relatively small basis set. Note that also other Minnesota functionals are able to

provide good results, in particular for Reaction B2. Notably, when we just add polarization

functions, the situation is not improved, and the same classes of functionals provide the

best results. The 6-31G(d,p) basis set does not improve the quality of the results while it

is computationally more expensive, even if slightly. Note that this is particularly important

for molecular dynamics simulations when many energy and gradient calculations are needed

and thus this can result in a huge difference from a computational point of view.

The same picture arises with a larger basis set, 6-311++G(d,p), for which again range-

separated functionals (in particular LC-ωPBE, M11 and MN12SX) provide the barriers in

better agreement with the reference values.

We now move to results for reaction B3, for which we have calculated the transition states

for both endo and exo forms, and thus we can compare those two values and the difference

between them. Values obtained with different basis sets (here we did not consider the smallest

3-21G basis which, as we have shown, provides too poor results) and functionals are reported

in Table S8 of the SI and compared with CCSD(T)/CBS results. Here again, 6-31G and

6-31G(d,p) results are very similar and there is not a clear improvement adding polarization

functions. Again long-range corrected and screen-exchanged functionals provide very good

results. Notably, the global hybrid GGA SOGGA11X functional provides very good results

with both 6-31G and 6-31G(d,p) basis sets. When moving to the 6-311++G(d,p) large

basis set, the range-separated functionals (and in particular CAM-B3LYP/D3BJ, ωB97XD,

MN12L and MN12SX) work best. Concerning the endo:exo energy difference, the reference

CCSD(T)/CBS reports a very small value (0.48 kcal/mol) which could be very difficult to

reproduce accurately with an approximated electronic structure method. Notably, almost

all calculations reproduce the correct sign, with very few exceptions (τHCTC/6-31G(d,p),

τHCTC/6-311++G(d,p) and M06HF/6-31G(d,p)) in which the difference is very small (0.15

kcal/mol or less).

Before discussing the energetic of two analogous Diels-Alder reactions in solution, we
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should pause and consider the global behavior of all these functionals at a given basis set.

Since we have a relatively large number of functionals, we can see how they behave on average

and if the best functionals have a considerable deviation from such average. We report in

Table 3 the mean signed and unsigned errors (MSE and MUE, respectively) together with

the root mean square deviation (RMSD) as a function of the basis set for the different

reactions, mixing all together (for reaction B3 we consider only one barrier to have only

independent values). Notably, from 6-31G to 6-311++G(d,p) the MUE does not change

dramatically (about 1 kcal/mol) and the RMSD is almost constant, thus strengthening the

picture we have discussed previously. In fact, we can notice (again) that the 3-21G basis

set systematically largely underestimates the barrier while 6-31G provides results close to

(if not better than) 6-31G(d,p), and not significantly worst than 6-311++G(d,p), but with

a much reduced computational effort.

Let’s now consider five functionals (all being range separated) which show a good behavior

in the three benchmark reactions, namely: CAM-B3LYP/D3BJ, LC-ωPBE/D3BJ, ωB97XD,

M11 and MN12SX.

6-31G basis set performances

As shown and discussed in the previous subsection, 6-31G basis set seems to be a good

compromise. We now discuss in more details the performances of the different functionals

with this basis set in order to provide a limited set of functionals which will be more likely

to be used in real applications.

In Figure 3 we report the absolute error obtained by the different functionals for the

barrier of reaction B1 with respect to CCSD(T)/CBS results. Notably many functionals

provide an error less than 1 kcal/mol with respect to the reference, and notably the double

hybrid B2PLYP/D3BJ and the range separated ωB97XD, M11, M11L, LC-ωPBE/D3BJ,

MN12SX, MN12L while CAM-B3LYP/D3BJ has a slightly bigger error (2 kcal/mol).

As discussed previously, for reaction B2 many functionals (actually all but Minnesota
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Table 3: Mean signed and unsigned error (MSE and MUE, respectively) and root means
square deviation (RMSD) for different basis sets and benchmark reactions (differences are
with respect to CCSD(T)/CBS calculations). Values are in kcal/mol.

Reaction Basis set MSE MUE RMSD

B1 3-21G -8.04 8.04 3.30
6-31G -0.70 2.54 3.19
6-31G(d,p) -2.25 3.16 3.27
6-311++G(d,p) -1.20 2.88 3.45

B2 3-21G -11.36 11.36 4.18
6-31G -4.21 4.56 3.86
6-31G(d,p) -5.02 5.17 3.90
6-311++G(d,p) -3.99 4.46 3.90

B3-Endo 3-21G -15.69 15.69 4.01
6-31G -4.88 5.09 3.25
6-31G(d,p) -5.21 5.36 3.25
6-311++G(d,p) -3.54 4.01 3.61

B3-Exo 3-21G -15.36 15.36 3.81
6-31G -4.33 4.57 3.12
6-31G(d,p) -5.37 5.47 3.17
6-311++G(d,p) -3.56 3.95 3.51

B3-∆ 3-21G -0.32 0.37 0.31
6-31G -0.54 0.54 0.21
6-31G(d,p) 0.16 0.21 0.21
6-311++G(d,p) 0.02 0.17 0.21

B1+B2+B3-Endo 3-21G -10.90 10.90 0.49
6-31G -2.68 3.72 0.39
6-31G(d,p) -3.74 4.26 0.37
6-311++G(d,p) -2.54 3.58 0.39
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Figure 3: Absolute activation energy differences (|∆E|a) between tested functionals (Density
Functional Approximations, DFA on the y-axis) and the reference CCSD(T)/CBS, reported
in kcal/mol, for 6-31G calculations for Reaction B1.

functionals) are not able to correctly define the PreC structure without adding dispersion

correction. In Figure 4 we thus report the absolute error of the different functionals with

dispersion correction (when needed).

Also in this case, a good number of functionals show a small error even with the small

6-31G basis set, and notably the double-hybrid B2PLYP/D3BJ and the range separated

ωB97XD, LC-ωPBE/D3BJ, M11 and MN12SX (as previously also other functionals show

good results, like M062X and SOGGA11X). As for reaction B1, CAM-B3LYP/D3BJ provides

a slightly worst energy barrier (1.9 kcal/mol).

Finally, in Figure 5 we report the activation energy barrier for endo TS of reaction B3 as

well as the difference with respect to exo TS, namely a |∆E|a(endo-exo), in absolute value,

for the series of tested functionals with 6-31G basis set. For comparison, in the same Figure,

we also show the reference CCSD(T)/CBS results.

Surprisingly, many functionals are able to correctly catch the small |∆E|a(endo-exo)
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Figure 4: Absolute activation energy differences (|∆E|a) between tested functionals (Density
Functional Approximations, DFA on the y-axis) and the reference CCSD(T)/CBS, reported
in kcal/mol, for 6-31G calculations for Reaction B2.
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(∼0.5 kcal/mol in the reference). On the other hand, few functionals are able to provide the

endo energy barrier close to the reference value. Notably, τHCTH barrier is very close to

the reference, but this method provides, wrongly, a lower exo barrier. Other well behaving

functionals are SOGGA11X, M06L, CAM-B3LYP/D3BJ and ωB97XD. Still in acceptable

agreement with the reference, but slightly worse, are results obtained by the Minnesota

MN12SX and the N12SX functionals, which give very similar results as the B2PLYP/D3BJ.

Overall the results on the B3 reaction show less functionals in very good (close to 1.0-0.5

kcal/mol) agreement with the reference compared to the B1 and B2 cases, if we consider the

absolute reaction barrier. However, concerning the difference between endo and exo barriers

the general agreement is more satisfactory, as discussed in the previous section.

Figure 5: Absolute activation energies (Ea in blue) and differences between endo end exo
activation energies (|∆E|a in red) for the B3 reaction, are reported in kcal/mol and computed
with the many functionals reported on the x-axis always using the 6-31G basis set; the
reference CCSD(T)/CBS corresponding values are also reported for comparison.
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Semiempirical methods

In principle, Hartree-Fock (HF) and Semi-Empirical Hamiltonians (SEH) methods can pro-

vide an efficient way to evaluate reaction energetics, thanks to the much more favorable

scaling with the size of the system if compared to MP2. We thus tested a number of SEHs

and also HF with small basis sets. The full set of results are reported in Table S10 of SI,

where we also report MP2 values with relatively small basis sets and reference calculations

for the three benchmark reactions. In Figure 6 we show the results for SEHs and HF/6-31G

calculations.

Figure 6: |∆E|a computed between the SEHs and HF/6-31G reaction barriers and the cor-
responding reference CCSD(T)/CBS reference value computed in this work.

As one can clearly notice from these results, the different methods show a poor agreement

with respect to reference CCSD(T)/CBS calculations. For Reaction B2, we found that few

SEHs, as the AM1-D, RM1, PM6-D3 and PM6-D3H4, reproduce quite well the reference,

which is not the case for Reaction B1 nor B3, being probably due to fortuitous error cor-

rections. Globally, a slight preference for RM1 or PM7 could be drawn, but the deviation
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from the reference is too large to be used with confidence. Thus, we do not consider in the

following neither HF nor SEH methods. Note that, HF in general shows probably the worst

results between all the methods tested in this work.

Application to Strained Cyclic Allene Dienophiles

Given the results on benchmark reactions, we finally found that range separated functionals

(CAM-B3LYP, LC-ωPBE, ωB97XD, M11 and MN12SX) show the best performances with

6-31G basis set, having computing time which are similar to standard functionals. Also the

double-hybrid functional B2PLYP provides very good results, but it is much more compu-

tationally demanding, in particular when frequency calculations are needed and thus it will

not be considered here. We have thus consider these range separated functionals plus the re-

cently proposed SOGGA11X functional, which provides good performances with 6-31G basis

set, to study some selected Diels-Alder reactions with a strained cyclic allene dienophile (see

Scheme 2).

These reactions were recently studied by Houk and co-workers by using ωB97XD func-

tional with extended 6-311++G(d) basis set in THF (reaction R1) and acetonitrile (MeCN)

(reactions R2 and R3).26 Here we used the same implicit solvation model (SMD) with the

aforementioned functionals with 6-31G basis set. Furthermore the final endo:exo ratio based

on free energy TS barriers of the two forms is with experiments reported on these reac-

tions.27–29

We first report in the top panel of Figure 7 the difference of the free energy barriers

between endo and exo approaches, as obtained by present calculations with 6-31G basis

set and compared with what was reported by Houk and co-workers. In Table 4 we list all

the associated values. We first notice that the basis set has a small effect (as noticed in

benchmark calculations), in fact ωB97XD calculations done with the 6-31G basis set are

very similar to what reported by Houk and co-workers with the same functional but larger
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basis set. Furthermore, also other functionals report values quite close to those ones, where

CAM-B3LYP shows a slightly larger difference.

Calculations reported with the extended basis set are done with the methyl group for

reaction R3 (R=Me in Scheme 2) while experiments were done with a benzyl group (R=Bn

in Scheme 2). We have thus performed calculations with 6-31G basis set with both R=Me

and Bn and the corresponding reactions are noted as R3-model and R3-real. Free energy

barriers and endo-exo differences vary relatively little moving from Me to Bn group, and

we will discuss more in details this aspect comparing our results directly with experimental

data.

In fact, the experimental endo:exo ratios were reported for these reactions. We have

calculated them simply from the transition state free energy barriers of endo and exo forms.

Results obtained from experiments and calculations are reported in the bottom panel of

Figure 7. We should recall here that, from the experimental results, only the endo form is

obtained for R3. This experimental finding is translated into an endo:exo ratio larger than

20.

Results show that for reactions R1 and R2 the different functionals with 6-31G basis

set are in quite good agreement with experiments (and previous calculations). Notably, for

reaction R1, where ωB97XD/6-311++G(d) calculations overestimate the endo ration, our

results are better or equivalent (with a much lower computational cost). Moving to reaction

R2, experimentally a slight decrease of endo:exo ratio is noticed experimentally, while almost

all calculations show the opposite (as well as the previously reported ωB97XD/6-311++G(d)

ones), with the exception of M11, which however overestimates this ratio for both reactions.

We should notice that the endo:exo ratio is very sensitive to small modification in free energy

difference, since it has an exponential dependence on ∆∆G.

For reaction R3, in the previous work of Ramirez et al. the methyl group was considered

and the endo:exo ratio was considerably lower than 20 (even lower than the other reactions).

We tested for reaction R3 both methyl (called here and hereafter R3-model) and benzyl
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group (called here and hereafter R-real), this last being the same as in experiments. Results

show that in many cases the endo:exo ratio is increased with respect to R3-model. This is

particularly evident for LC-ωPBE/D3BJ and MN12SX results which are best in agreement

with experiments with an endo:exo ratio larger than 20.

Conclusions

The aim of the present work is to find a reliable and affordable electronic structure-based

startegy to efficiently describe, real-life, Diels-Alder reactions in the most accurate way

possible. We have thus investigated the opportunity of applying reduced-cost electronic

structure methods to study such reactions in order to predict reliable characteristic energy

barriers. On a series of six reactions, we extensively analysed the performances of a number

of recent and traditional DFT functionals (Table 1), with different basis sets, and SEHs,

including in many cases empirical dispersion corrections, due to the known deficiencies of

such approximated methods in treating long-range electron correlations.96 All employed

methods are commonly available in general electronic structure codes widely used in the

Computational chemistry community.

In a first stage, a specific attention has been put on the role of BSSE when using DFT,

testing the quality of reaction barriers predicted using different small-medium size basis sets

on two relatively small reactions (reactions B1 and B2 in Scheme 1), for which BSSE effects

have been explicitly analyzed by comparing the DFT results to reference CCSD(T)/CBS

calculations. In most cases, a good compromise has been found using the 6-31G Pople’s

basis set due to a non-negligible error compensation due to the BSSE. In particular, range-

separated functionals with dispersion corrections provide good quality results despite the

modest basis set size and therefore greatly reduce the computational cost of the simulations.

On the other hand, as one could expect, HF and SEHs are shown to be quite ineffective,

even with the new SEH parametrizations and dispersion corrections.
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Figure 7: Top) ∆∆Ga between Exo and Endo TS structures for Cyclic Allene Dienophiles
reactions (values are in kcal/mol) for different functionals with 6-31G compared with results
from Houk and co-workers obtained at ωB97XD/6-311+G(d,p) level of theory in implicit
solvent. Bottom) Endo:Exo ratio for Cyclic Allene Dienophiles reactions for different func-
tionals with 6-31G basis set, compared with results from Houk and co-workers obtained at
ωB97XD/6-311+G(d,p) level of theory and experiments; reaction R3 is either a simplified
model to reduce the number of atoms and so the computational cost (R3-Model), as done
bu Houk and co-workers (ωB97XD/6-311+G(d,p)), either the real system (R3-Real).
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Table 4: ∆G‡ for endo and exo structures, ∆∆G‡ and endo:exo ratio for reactions R1, R2
and R3. Energies are in kcal/mol. ωB97XD/6-311++G(d) values are taken from Ramirez
et al.,26 which also reports the experimental values for endo:exo ratios.

Endo Exo ∆∆G‡ Ratio

R1
CAM-B3LYP/6-31G 21.81 23.23 1.42 11:1
CAM-B3LYP-GD3BJ/6-31G 17.71 19.39 1.69 17:1
LC-ωPBE/6-31G 22.21 24.02 1.81 21:1
LC-ωPBE-GD3BJ/6-31G 17.46 19.30 1.84 22:1
ωB97XD/6-31G 18.58 20.37 1.79 20:1
SOGGA11X/6-31G 20.32 21.33 1.02 5.5:1
M11/6-31G 18.68 20.42 1.74 19:1
MN12SX/6-31G 17.63 18.94 1.31 9:1
ωB97XD/6-311++G(d) 19.40 21.1 1.7 18:1
Experiments 11:1

R2
CAM-B3LYP/6-31G 20.86 22.80 1.93 26:1
CAM-B3LYP-GD3BJ/6-31G 15.97 17.67 1.70 18:1
LC-ωPBE/6-31G 21.49 23.35 1.86 23:1
LC-ωPBE-GD3BJ/6-31G 15.45 17.45 2.00 29:1
ωB97XD/6-31G 16.39 18.64 2.26 45:1
SOGGA11X/6-31G 19.11 21.07 1.96 27:1
M11/6-31G 17.10 18.80 1.69 17:1
MN12SX/6-31G 13.00 13.54 0.53 31:1
ωB97XD/6-311++G(d) 17.4 19.5 2.1 35:1
Experiments 9.2:1

R3 (R=Me)
CAM-B3LYP/6-31G 23.56 25.05 1.49 12:1
CAM-B3LYP-GD3BJ/6-31G 17.41 18.54 1.12 7:1
LC-ωPBE/6-31G 24.34 25.77 1.44 11:1
LC-ωPBE-GD3BJ/6-31G 16.96 19.12 2.16 39:1
ωB97XD/6-31G 17.79 18.42 0.63 3:1
SOGGA11X/6-31G 21.83 22.95 1.13 7:1
M11/6-31G 18.75 20.50 1.76 19:1
MN12SX/6-31G 17.57 18.69 1.12 7:1
ωB97XD/6-311++G(d) 21.0 21.70 0.70 3.3:1

R3 (R=Benzyl)
CAM-B3LYP/6-31G 24.21 25.84 1.63 16:1
CAM-B3LYP-GD3BJ/6-31G 17.79 18.42 0.64 3:1
LC-ωPBE/6-31G 24.95 26.62 1.67 17:1
LC-ωPBE-GD3BJ/6-31G 16.45 18.73 2.28 47:1
ωB97XD/6-31G 17.89 18.75 0.86 4:1
SOGGA11X/6-31G 22.24 22.86 0.59 3:1
M11/6-31G 18.10 19.60 1.50 13:1
MN12SX/6-31G 17.17 19.04 1.86 23:1
Experiments > 20:1
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We have then applied the best DFT methods to the prediction of three different Diels-

Alder reactions in solution using the small 6-31G basis set. We found that they are able to

correctly describe the experimentally observed endo:exo ratios while free energy barriers ap-

pear in agreement with computations performed with an extended basis set.26 Furthermore,

the use of such affordable computational approach enables to consider the full complexity

of the most extended considered system and therefore to obtain results in better agreement

with experiments than those using a slightly reduced model (used in the Literature data).

This paves the way for studying either very large systems and/or to use QM/MM dynamics

in solutions for Diels-Alder reactions, achieving an high level of accuracy and thus reliable,

but cost-effective, predictions.

Concluding, we suggest that the best functionals to be used in future studies on Diels-

Alder reactions (in association with the 6-31G basis) should be : ωB97XD, LC-ωPBE/D3BJ,

CAM-B3LYP/D3BJ, M11 and MN12SX. It will be surely interesting to understand how (and

if) they can be successfully applied also to model other organic reactions.

Supporting Material

In the Supporting Information we report: (i) a pdf file with additional Tables mentioned in

the manuscript; (ii) a tar file with xyz structures used in CCSD(T)/CBS calculations of B1,

B2 and B3 reactions.
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Accuracy for Alkane Thermochemistry: The DHthermo Approach. J. Org. Chem. 2021,

86, 5538–5545.

(20) Martin-Somer, A.; Macaluso, V.; Barnes, G. L.; Yang, L.; Pratihar, S.; Song, K.;

Hase, W. L.; Spezia, R. Role of Chemical Dynamics Simulations in Mass Spectrometry

Studies of Collision-Induced Dissociation and Collisions of Biological Ions with Organic

Surfaces. J. Am. Soc. Mass Spectrom. 2020, 31, 2–24.
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