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In recent years, the applications of first-principles density functional theory (DFT) is 

diversified and expanded in a wide range due to the development of robust algorithms and 

more powerful computer systems. In general, DFT is used in condensed matter physics, 

chemistry, material science and biology to predict and interpret the behaviour of complex-

system at atomic-scale. Specifically, DFT is widely applied to study the effect of dopants on 

phase transformation, magnetic and electronic behaviour, spin and charge transport 

properties, etc. in material science/condensed matter physics;  geometrical and electronic 

structure, dynamics, spectral hyperfine-interaction, excited-state, etc. in chemistry; interactive 

behaviour, bond formation and breaking, stabilization, etc. in the biological system. 

Furthermore, the solvation models are used to include a solvent for the accuracy and realistic 

approach. To study the physical/chemical and biological system with DFT embedded tools 

such as Gaussian, Vienna Ab initio software package (VASP), Quantum espresso etc., require 

a basic theoretical understanding of DFT. Therefore, I have summarised DFT including basis 

set and solvation models for easy understanding in a short time.  

1 Introduction  

Efficient computer programming of the theoretical model provides a great insight into 

molecular/cluster systems with different perspectives. These computer-aided simulation 

techniques have effectively influenced both the basic understanding of atomic/molecular 

systems and their application in various fields of interest1–5. Despite the advent of more 

powerful computer systems such as HPC (high-performance computing), the computational 

capability for solving scientific problems is still facing stiff challenges, especially in the context 

of the atomic-level study of large molecular systems. For a few decades, first principles (Ab 

initio) methods, based on quantum mechanics, have emerged as a powerful tool to probe the 

properties of matter at an atomic scale4,5. The first principles-based density functional theory 

(DFT) has gained significant popularity because of its capability in providing the ground state 
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properties with good accuracy6,7. Recently, the DFT method has been found to be effective in 

bringing significant acceleration in the development and optimization of new energy storage 

materials8–15. For example, in the case of rechargeable batteries, many intrinsic properties of 

electrode/electrolyte materials, i.e., working potential window, structural stability, metal-ion 

diffusivity, band structure, and electronic hopping barriers can now be computed accurately 

with the first-principles computation methods16–22. Apart from the energy storage, DFT is 

widely used to study charge transport23,24, material interface25–27, biological system28–30, etc. 

Therefore, this report is focused on the theoretical methodologies, e.g. Hartree-Fock (HF) 

theory and DFT, which were earlier developed for finding the solution of many-body 

Schrodinger equation. Since the solvent effect are generally included in the molecular system, 

therefore, the solvation models have been also discussed in the report.  

 Electronic structure calculations began in the early, 1930s with the proposal of an 

approximate solution for the movement of electrons by Dirac, Wigner and Seitz31–33. The 

approximation suggested that each and individual electron of molecule/solid must be 

considered to be in motion in the self-consistent field (SCF). In the late 1930s, a few methods, 

for example, Hartree-Fock-Slater method, effective potential method, orthogonalized and 

augmented plane wave method was proposed and used for the electronic structure calculation 

till 1960s34–40. The electronic structure calculations rapidly increased in the latter part of 1960s 

after the formulation of  DFT based on the Hohenburg-Kohn theorem and Kohn-Sham 

approach41–44. In the DFT, the electron density is considered as fundamental quantity for 

describing the interaction between electrons, which provides the ground state properties43. In 

the Kohn-Sham DFT, the interacting electrons in a static external potential are switched 

towards the non-interacting electron with the implementation of an effective potential44. 

External potential and the Coulombic interactions between the electrons are included in the 

effective potential, the details of which have been discussed later in this chapter. The first-

principles based DFT calculations were not generally used until 1980s, due to the lack of 

adequate powerful computation facilities. With the development of the advanced computer 

system, e.g., high-performance computing (HPC) clusters, DFT based electronic structure 

calculations are getting more popular. At present, DFT is a leading method in solid-state 

physics and quantum chemistry along with several biological systems of interest45–48.    
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2 Many electron systems 

Calculation of the electronic structure of many-electron systems (atom, 

molecule/cluster or extended solid system) begin with the fundamental equation of quantum 

mechanics, i.e., Schrödinger equation49. The time-independent Schrödinger equation for many-

body system is given as below;  

Ĥ𝛹 = E𝛹                                                              (1) 

 where �̂� is Hamiltonian operator, E represents the total energy of the system in the atomic unit 

and Ψ is the many-body/electron wave function. Consider a molecular system with N electron 

with position {𝒓𝒊}  and M nuclei with position {𝑹𝑨} as shown in the Figure 1. The 

corresponding Hamiltonian for such system can be written as; 

           Ĥ =  
1

2
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            (2) 

where ZA and ZB correspond to the mass of nuclei A and B, respectively. In Equation 2, the first 

and second terms represent the kinetic energies of electrons (Te) and kinetic energies of nuclei 

(Tn), respectively. Third term corresponds to the electron-nuclei coulombic interaction (Ven) 

and fourth term represents the nuclei-nuclei coulombic repulsion (Vnn). The last term of the 

above equation corresponds to electron-electron coulomb repulsion (Vee). Therefore, Equation 

2 can be written as; 

      �̂� = 𝑇𝑒 + 𝑇𝑛 + 𝑉𝑒𝑛 + 𝑉𝑛𝑛 + 𝑉𝑒𝑒                                            (3) 

The basic task is related to finding the solution of many-body Schrödinger equation which can 

only be solved by considering certain approximations required for simplifying the Hamiltonian. 

Since the masses of protons and neutrons are much greater than that of electrons, therefore, 

with the use of Born-Oppenheimer approximation50 we can simplify molecular Hamiltonian as 

given in Equation 3.     
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Figure 1: A molecular co-ordinate system; i,j are electrons and A,B are nuclei. 

3 Born-Oppenheimer approximation 

          Finding the solution of Schrödinger equation for simple molecular species such as H2
+ is 

quite easy; however, dealing with the molecular systems is very complicated. Born-

Oppenheimer approximation plays an important role in the case of electronic structure 

calculation of the molecular/cluster systems due to simplification of the molecular Schrödinger 

equation50. The mass of a proton is 1836 times higher than an electron, due to which the nuclei 

will have a much smaller velocity compared to the electron. On the time scale of the nuclear 

motion, we can consider that the electrons will relax to the ground state which can find out by 

using equation 2. This approximation makes it possible to separate the motion of the atomic 

nuclei and the motion of the electrons within the molecule. The Born-Oppenheimer 

approximation is primarily based on the following assumptions; 

a. The electronic wave function depends upon the nuclear positions but not upon their 

velocities, i.e., the nuclear motion is so much slower than electron motion that they can 

be considered to be fixed. 

b. The nuclear motion (e.g., rotation, vibration) sees a smeared out potential from the fast-

moving electrons. 

Applying this approximation, the molecular wave function (Ψ) can be separated into the 

electronic wave function (𝜓) and the nuclear wave function (Φ) i.e. 

                     Ψ({𝑟𝑖}, {𝑟𝛼}) = 𝜓({𝑟𝑖}, {𝑟𝛼})  Φ({𝑟𝛼})                                (4)     

The Born-Oppenheimer approximation treats the nuclei as classical and stationary particles, 

and the electrons are said to be on the Born-Oppenheimer surface. Under this approximation, 
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the nuclear kinetic energy is neglected and repulsion between the nuclei is considered as 

constant for fixed nuclei. The molecular Hamiltonian (given in Equation 3) is then reduced to 

the electronic Hamiltonian (Ĥ𝒆𝒍𝒆𝒄) which contains only electronic part given as;  

       Ĥ𝒆𝒍𝒆𝒄 =  
1

2
∑ ∇i

2N
i=1 + ∑

1

rij

N
i,j

i≠j

− ∑  N
i=1 ∑

ZA

riA

M
A=1                          (5) 

Since the electron feels the external potential due to the static nuclei in the system, therefore 

we can write the electron-nuclei coulombic interaction term (last term of Equation 5) as 

external potential (Vext). i.e.  

Ĥ = Te + Vee + Vext                                            (6) 

Vext which act as an external potential for the electronic system is described as: 

   Vext = ∑ 𝑣𝑒𝑥𝑡(𝑟𝑖)
𝑁
𝑖=1 ;                   𝑣𝑒𝑥𝑡(𝒓) = ∑ ∫

𝑍

 |𝑟−𝑟𝑘|  

𝑛𝑢𝑐𝑙𝑒𝑖
𝑘 𝑑𝒓               (7) 

         Finding the solution of the Schrodinger equation with the aforementioned Hamiltonian 

(given in Equation 6) is still too complex due to having 3N variables by the many-electron 

wave-function51. Therefore, for solving many-electron problems, it is required to use special 

approaches, e.g., Thomas-Fermi theory52,53 and Hartree-Fock method54,55 which has been 

discussed in the following section.   

4 Hartree - Fock Theory 

This method provides the approximate solution for the many-body Schrödinger 

equation in the ground state. This method was initially introduced by D. R. Hartree at the end 

of 1920s and further developed by V. Fock in 1930, just after the discovery of the Schrödinger 

equation54,56. HF method serves as the backbone of the molecular orbital theory which suggests 

that the motion of each electron can be described with the single-particle function and this 

particle function does not depend explicitly on instantaneous motions of other electron57. The 

electron-electron interaction is approximated through the Hartree approximation where N-

electron wave-function (Ψ) is considered as the product of single-particle orbitals (𝜓𝑖(𝒓𝑖𝜎𝑖)).  

    Ψ1(𝒓1𝜎1, 𝒓2𝜎2, ⋯ ⋯ , 𝒓𝑁𝜎𝑁) =
1

√𝑁!
 𝜓1(𝒓1𝜎1) 𝜓1(𝒓1𝜎1) ⋯ ⋯ 𝜓𝑁(𝒓𝑁𝜎𝑁)          (8) 

where 𝜓𝑖(𝒓𝑖𝜎𝑖) is consists of spatial function and electron spin function 

https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
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The Hartree approximation does not account for the exchange interaction under the interchange 

of particle coordinates. This problem was rectified by Fock with subsequent development of 

Hartree-Fock approximation58. This approximation assumes that electron exchange interaction 

can be written by the wave-function (ΨHF) which is defined as an antisymmetrised product of 

orbitals. ΨHF  is determined as a linear combination of 𝜓𝑖(𝒓𝑖𝜎𝑖), which includes all 

permutations of the electron coordinates with the corresponding weights  ±1.  In 1951, Slater 

found that ΨHF can be efficiently represented with N×N determinant which is defined as the 

Slater determinant34; 

𝛹𝐻𝐹 =  
1

√𝑁!
 

|
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        (9) 

The full Hartee-Fock equation with Hartree-Fock wave function is given as 

E[𝛹𝐻𝐹] = (−
1

2
𝛻2 + 𝑣𝑒𝑥𝑡) 𝜓𝑖(𝒙 ) + ∑ ∫ 𝑑𝑥′

𝑗

|𝜓𝑖(𝒙 ′)|2

|𝑟 − 𝑟′|
 − 

− ∑ 𝛿𝜎𝑖𝜎𝑗 ∫ 𝑑𝑥′
𝑗

𝜓𝑗
∗

 
(𝒙 ′) 𝜓𝑖(𝒙 ′) 

|𝑟−𝑟′|
𝜓𝑗(𝒙 ′)        (10) 

Here, the wavefunction 𝜓 (𝒓 𝜎 ) is represented as 𝜓 (𝒙 ) for the simplification of the 

above equation. The Hartree-Fock equation consists of four terms; the first term represents the 

kinetic energy of electrons while the second term includes the electron-ion potential 

contribution. The third term, which is known as Hartree potential, is an electrostatic potential, 

appears due to the charge distribution of N-electrons. The last term, known as the exchange 

term, arises due to the inclusion of the Pauli principle and determinant form of the 

wavefunction.  

The HF approximations correspond to the single electron concept of the electronic 

structure, i.e., the distribution of N-electron can be simply defined as the sum of one-electron 

distribution. The HF method was developed with the assumption of a single determinant form 

of wave-function and negligible correlation between the electrons. Due to neglected electrons 

correlation, the HF method produces higher energies, large band gaps and very small band 

width. Therefore, HF method is found to be suitable for the small organic molecule which has 
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small number of localized electron59. However, the HF method fails to describe the high 

electron density transition materials as it ignores the collective coulomb screening60. Therefore, 

due to the aforementioned shortcoming of HF theory, the density functional theory was 

developed where electron density is considered as a central parameter.  

5 Thomas-Fermi Theory 

  The Thomas-Fermi method, developed by Thomas and Fermi, is one of the oldest 

methods for finding the solution of the many-electron problem52,53. In this method, the electron 

density ρ(r) is considered as a central variable rather than wavefunction. Thus, the total energy 

of the system, composed of three terms as given below, can be defined as a 

functional 𝐸𝑇𝐹[𝜌(𝑟)].  

      𝐸𝑇𝐹[𝜌(𝑟)] = 𝐴𝑘  ∫ 𝜌(𝑟)
5

3 𝑑𝑟 + ∫ 𝜌(𝑟)𝑣𝑒𝑥𝑡(𝑟)𝑑𝑟 +
1

2
 ∫ ∫

𝜌(𝑟)𝜌(𝑟)′

|𝑟−𝑟′|
 𝑑𝑟𝑑𝑟′        (11) 

The first term of the above equation represents the kinetic energy of a non-interacting 

electron system which has a similar characteristic as homogeneous electron gas. Furthermore, 

𝐴𝑘 is the coefficient which is defined as 𝐴𝑘 =
3

10
(3𝜋2)

2
3⁄ . The next term corresponds to the 

classical electrostatic interaction energy term between the nuclei and the electrons. The static 

coulombic potential term 𝑣𝑒𝑥𝑡(𝑟)  arises due to nuclei. The last term of the above equation 

represents the electron-electron interaction energy, known as Hartree energy. The Thomas-

Fermi method provides a rough description of electrostatic potential and charge density. 

However, this model could not explain the binding mechanism of atoms, which leads the failure 

in the case of the molecule and solid system61. Apart from many serious defects, this theory 

provides a way for the development of DFT, which is discussed below.  

6 Density functional theory 

Density functional theory is a powerful method to predict the electronic properties of 

molecule/clusters and materials due to accuracy and high computational efficiency. In this 

method, the electron density is treated as a central variable instead of many-electron 

wavefunction. The implementation of electron density leads to a significant reduction in the 

level of difficulty as well as the computational cast. In other words, 3N variables (in the case 

of many-electron wavefunction) are reduced to only three variables (three Cartesian directions) 

with the use of density, which shows that variables do not depend on the number of electrons. 
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Earlier, DFT (proposed by Thomas-Fermi), where kinetic energy is considered as functional of 

electron density, incorporated with only electron-electron interactions via mean-field potential. 

Similar to Hartree-Fock method, old DFT neglected both exchange and correlation energy. 

Later, the expression for exchange energy term was formulated by Dirac as a function of 

electron density, although the significant improvement was not found with the implementation 

of this method. In 1964, Hohenberg-Kohn-Sham formulated the DFT, based on their proposed 

theorems (Hohenberg-Kohn theorems), which became the foundation of modern DFT62,63. 

6.1 Hohenberg-Kohn (H-K) theorems: 

       These theorems relate the system which consists of the electrons moving under the 

influence of an external potential 𝑣𝑒𝑥𝑡(𝒓). The Hamiltonian obtained from Born-Oppenheimer 

approximation (Equation 6) can be written as  

Ĥ = F̂ + V̂ext           where,              F̂ = Tê + V̂ee                       (12) 

           The electron operator, F̂ is same for all N-electron systems, therefore, Ĥ is only 

dependent on the number of electrons (N) and the external potential 𝑣𝑒𝑥𝑡(𝒓). In addition, the 

number of electrons can be determined by the integration of the density over all space. 

  𝑁 = ∫ dr ρ(r)         (13) 

The energy of the system is defined as 

Ev[ρ(r)] = F[ρ(r)] + ∫ dr V(r)ρ(r)        (14) 

where, F is the electronic Hamiltonian for given Equation 12.  

There are two fundamental theorems proposed by Hohenberg and Walter Kohn, stated 

below: 

6.1.1 First theorem 

  The external potential is a unique functional of the electron density only. Thus the 

Hamiltonian, and hence all ground state properties, are determined solely by the electron 

density63. 

Proof: This theorem can be proved by reductio ad absurdum method. Consider the external 

potential V̂ext is related to the ground state wavefunction (|Ψo >) and density ρ(r). Now 
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assume that the second external potential V′̂ext corresponds to a different ground state 

wavefunction (|Ψo >) although with the same density ρ(r). The ground state energies of the 

two systems are given as: 

E0 = < Ψo| Ĥ |Ψo >                   (15) 

E′0 = < Ψ′o| H′̂|Ψ′o >                 (16) 

Since |Ψ′o >  is not an eigenfunction of Hamiltonian Ĥ, therefore let us consider |Ψ′o > as a 

trail wavefunction of Ĥ. Hence, 

E0 <   < Ψ′o| Ĥ |Ψ′o >       (17) 

E′0 <   < Ψ′o| H′̂ |Ψ′o >                 (18) 

By adding and subtracting < Ψ′o|H′̂|Ψ′o > in the right side of the equation, we can write 

< Ψ′o|H ̂ |Ψ′
o >   = < Ψ′o| H′ ̂ |Ψ′

o > +< Ψ′o|(Ĥ − H′̂)|Ψ′o > 

    =  E′0 + ∫ dr ρ(r)[Vext(r) − V′ext(r)]              (19) 

Similarly, by considering |Ψo > as a trial wavefunction for Hamiltonian H′̂, we can get 

< Ψo|H′ ̂|Ψ 
o >   = < Ψo| H  ̂|Ψ 

o > +< Ψo|(H′̂ − Ĥ)|Ψo > 

      =  E0 + ∫ dr ρ(r)[Vext(r) − V′ext(r)]     (20) 

Re-writing the inequalities from Equations 2.27 and 2.28 and making use of the Equations 2.29 

and 20. 

E′0  <  E0 + ∫ dr ρ(r)[Vext(r) − V′ext(r)] 

E0  <  E′0 + ∫ dr ρ(r)[V′ext(r) − Vext(r)] 

By adding the above two equations, we found that  

E0 +  E′0 <  E0 + E′0 
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Above condition is clearly a contradiction. Therefore, the external potential Vext(r) is uniquely 

determined by the ground state density ρ(r).  

6.1.2 Second theorem:  

The ground state energy can be obtained variationally:  the density that minimises the total 

energy is the exact ground state density63.  

The proof of this theorem is straightforward with the use of variational principle. This theorem 

dictates that every trial function, except the ground state function, will give energy higher than 

the ground state energy; 

 < Ĥ > =   
<𝜓|𝐻  ̂|𝜓>   

<𝜓|𝜓> 
 ≥ E0  

where, E0  is the smallest eigenvalue of the Ĥ.  The calculated energy (Ev[ρ(r)]) with electron 

density (ρ(r)), is larger than ground state energy (E0). i.e., 

 Ev[ρ(r)]  ≥ E0    

Using the ground state wavefunction  |Ψo > as a trial state for external potential V(r), we can 

write the total energy as given below 

< Ψ | Ĥ |Ψ >  = < Ψ | F ̂|Ψ >  + < Ψ | V̂ |Ψ >   

   =  F[ρ(r)] + ∫ dr V(r)ρ(r)               (21) 

   =  Ev[ρ(r)]    ≥   E0  

With minimization of the functional Ev[ρ(r)], the energy will approach the ground state energy 

(E0), however can never be equal to E0.    

The Hohenberg-Kohn theorems were found to be extremely powerful, although they do 

not provide a direction for the computation of ground-state density of a system. Approximately 

one year later, Kohn and Sham published a seminal DFT paper with simple method (known as 

Kohn-Sham approach) for carrying-out DFT calculations. The details of Kohn-Sham approach 

is given in the following section. 
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6.2 Kohn-Sham Approach 

Kohn-Sham formulation allows to transform a system of interacting electrons in a static 

external potential to a system of non-interacting electrons in an effective potential called Kohn-

Sham potential 𝑣𝐾𝑆(𝒓)62. Major benefit of using the Kohn-Sham scheme is that the Kohn-Sham 

equations are the set of single-particle equations which are easier to solve in comparison to 

previously coupled Schrodinger equations.  

Using second Hohenberg-Kohn density functional theorems, the variational method for 

N electron system can be written as  

δ[ F[ρ(r)] + ∫ dr Vext(𝐫) ρ(𝐫) − μ(∫ d𝐫 ρ(𝐫) − N)] = 0      (22) 

where, μ is the Lagrange multiplier. Corresponding Euler Equation for the above equation is 

given as below; 

𝜇 =
𝛿 F[ρ(𝐫)] 

𝛿𝜌(𝒓) 
+ 𝑉𝑒𝑥𝑡(𝒓)        (23) 

The functional F[ρ(r)] can be segregated into the three terms;  

F[ρ(𝐫)] =  Ts[ρ(𝐫)] + EH[ρ(𝐫)] + EXC[ρ(𝐫)]       (24) 

First, two constitute the majority of energy and are known exactly, while the third is a 

small unknown quantity. Here,  Ts[ρ(r)] is the kinetic energy of a non-interacting electron gas 

of density ρ(r). The second term, i.e., EH[ρ(r)] is the classical electrostatic energy (in Hartree 

unit) of the electrons is defined as 

EH[ρ(𝐫)] =  
1

2
 ∫ ∫

ρ(𝐫) ρ(𝐫′) 

| r−r′ |
 d𝐫 d𝐫′       (25) 

The third term, i.e., EXC[ρ(r)] represents the exchange-correlation energy which 

contains the difference of exact kinetic energy and kinetic energy of non-interacting electron 

system. Furthermore, the third term includes the non-classical contribution of the electron-

electron interaction energy of which the exchange energy is a part.    

Differentiating Equation 2.34 with respect to density and using Euler equation as given 

in Equation 2.33, we get the final form; 

μ =
δ Ts[ρ(𝐫)] 

δρ(𝐫) 
+ VKS(𝐫)    (26) 
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Where Kohn-Sham potential VKS(𝐫) is given by  

VKS(𝐫) = Vext(𝐫) + VH(r) + VXC(𝐫)              (27) 

The Hartree potential (VH(r)) describes the Coulomb interaction between electron and 

electron density. As the electron is a part of total electron density, hence it further includes self-

interaction contribution. The exchange-correlation potential (VXC(𝐫)) is related to the 

exchange-correlation functional. Both the potential, i.e., Hartree potential and exchange-

correlation potential are defined by the following equations; 

VH(r) =  
δ EH[ρ(𝐫)] 

δρ(𝐫) 
=  ∫

ρ(𝐫′) 

| 𝐫−𝐫′ |
d𝐫′  (28) 

VXC(𝐫) =  
δ EXC[ρ(𝐫)] 

δρ(𝐫) 
    (29) 

 The Kohn-Sham potential (VKS(𝐫)) depends on the density through the exchange-

correlation potential, therefore, must be solved self-consistently as discussed in the next 

section. To find the ground state density, ρ0(𝐫), which corresponds to the energy minimum of 

the electronic system, we can use N single-electron Schrodinger equation with Kohn-Sham 

potential as given below; 

[−
1

2
𝛻 

2 + 𝑉𝐾𝑆(𝒓)]𝜓𝒊(𝒓) = 𝜀𝒊𝜓𝒊(𝒓)  (30) 

Where 𝜀𝒊 are Lagrange multipliers corresponding to orthonormality of the  𝑁 single-particle 

states, ψ𝐢(𝐫).  The density is constructed as; 

𝜌(𝒓) = 2 ∑ |𝜓𝒊(𝒓)| 
2𝑁/2

𝑛=1
    (31) 

Here factor two in the equation has been introduced due to the spin degeneracy from the 

assumption that the orbitals are singly-occupied. 

The non-interacting kinetic energy Ts[ρ(𝐫)] is therefore given by the equation; 

Ts[ρ(𝐫)] =  −
1

2
 ∑ 𝜓i

∗(𝐫 )
N
i=1 ∇2𝜓𝐢 

d𝐫    (32) 

By switching over to the Kohn-Sham scheme, we have effectively changed our problem 

from a system of many interacting particles with 3N coordinates in an external potential to a 

system of non-interacting particles in an effective potential with only 3 coordinates. The 
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contribution of the unknown energy in the total energy of the non-interaction electron system 

is reduced as much as possible by Kohn and Sham with the implementation of the concept of 

exchange-correlation energy64. The treatment of the exchange-correlation term is discussed 

below. 

6.3. Exchange and Correlation Term  

The Kohn-Sham equation (given in Equation 30) is exact and has not used any 

approximation for the solution of the many-body Schrödinger equation. With the mapping of 

the fully interacting system to the auxiliary non-interacting system, we can find the same 

ground-state density. Since Kohn-Sham kinetic energy is not a true kinetic energy, therefore, 

we have to define the exchange-correlation energy (EXC[ρ(𝐫)]) implicitly as given below;  

EXC[ρ(𝐫)] = 𝑇 [𝜌(𝒓)] − Ts[ρ(𝐫)] + Eee[ρ(𝐫)] − EH[ρ(𝐫)]       (35) 

where, 𝑇 [𝜌(𝒓)] and Eee[ρ(𝐫)] are the exact kinetic energy and electron-electron interaction 

energy, respectively. Since the EXC[ρ(𝐫)] term is not fully known, therefore, an approximate 

functional depending upon the electron density has been used to describe EXC[ρ(𝐫)]. Till now, 

several approximated exchange-correlation functionals have been proposed. These functionals 

can be categorised according to Jacob’s ladder scheme (Figure 2) which was proposed by 

Perdew65,66.  
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Figure 2: Schematic diagram of “Jacob’s ladder” for exchange-correlation functional. 

In Jacob’s ladder scheme, each rung of the ladder contains a group of a different 

functional set, which have been categorised on basis of their complexity. This ladder provides 

a direction from the Hartree approximation on “earth” to the exact exchange-correlation 

functional in “heaven”. Furthermore, the exchange correlational functional can be categorized 

into empirical and non-empirical, as mentioned in Figure 2. A number of possible 

approximations, e.g., local density functional (LDA, generalised gradient approximation 

(GGA) etc. and a few of the exchange-correlation functional which are generally used in the 

DFT calculations, are discussed in the following section.  

6.3.1 Local Density Approximation (LDA)      

This approximation is the simplest approximation for finding the exchange-correlation 

energy67,68. This approximation assumes that the exchange-correlation energy at a point  is 

equal to the exchange-correlation energy of a uniform electron gas that has the same density at 

the point . In general, for a spin unpolarised system, the LDA for exchange-correlation energy 

is written as; 



 

15 
 

EXC
LDA[ρ(𝐫)] = ∫ d𝐫 εxc[ρ(𝐫)] ρ(𝐫)  (36) 

where, ε𝐱𝐜[ρ(𝐫)] is the exchange-correlation energy per particle of the uniform electron gas 

having density [ρ(𝐫)]. Since𝑬𝑿𝑪
𝑳𝑫𝑨 depends only on the value of electron density at each point 

in the space (not depends on derivative of density or Kohn-Sham orbitals), therefore, this 

method is called the Local Density Approximation69,70. The term εxc[ρ(𝐫)] can be split into the 

two term: exchange and correlation energy which is given below; 

εxc[ρ(𝐫)] = εx[ρ(𝐫)] + εc[ρ(𝐫)]   (37) 

The exchange energy (εx[ρ(𝐫)]) term has been analytically calculated by Dirac for the 

homogeneous system68, as given below; 

εx[ρ(r)] =  −
3

4
 (

3

π
)

1
3⁄

∫ 𝜌(𝒓)
4

3⁄ d𝐫 =  
0.458

𝑟𝑠
  (38) 

Where 𝑟𝑠(= (
3

4𝜋𝜌(𝑟)
)

1
3⁄  is known as Wigner-Seitz parameter.   

The accurate value of correlation energy has been determined analytically from the 

Quantum Monte Carlo (QMC) calculations, value of which is given as; 

  εc[ρ(r)] =  
0.44

𝑟𝑠+7.8
    (39) 

Incorporating Equations 38 and 39, Equation 37 can be re-written as; 

εxc[ρ(𝐫)] = −
0.458

 r𝐬
−

0.44

 r𝐬+7.8
  (40) 

Furthermore, exchange-correlation potential corresponding to the exchange-correlation 

energy for LDA is given by, 

VXC
LDA[ρ(r)] =

δ(EXC
LDA[ρ(r)])

δ(ρ(r))
= 𝜀𝑥𝑐[𝜌(𝒓)] + 𝜌(𝒓)

𝜕(𝜀𝑥𝑐[ρ(r)])

𝜕(ρ(r))
    (41)  

This potential can be inserted in Equation 27 for the calculation of Kohn-Sham 

potential. The LDA method has been found to provide an accurate result for the systems, where 

charge density varies slowly. However, in strongly correlated systems, where independent 

particle picture breakdown, the LDA method show very inaccurate results71. For example, LDA 

prediction shows that transition metal oxides XO (X=Fe, Mn, Ni) can be either metal or 
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semiconductor, while in the real picture, they are only Mott insulators. Furthermore, LDA does 

not account for the van der Waal bonding, which provides a poor description of hydrogen 

bonding. The mentioned as well as other limitations of LDA method, motivated to develop the 

other approximation such as generalised gradient approximation. 

6.3.2 Generalised Gradient Approximation (GGA)      

The LDA method which depends on homogeneous charge distribution does not 

regularly predict accurate chemical bonding properties, therefore, it is required to modify the 

LDA energy density. In the GGA scheme, electron density and each coordinate of the system 

are considered with the gradient of the density, therefore known as Generalised-Gradient 

approximations72,73. The inclusion of higher derivatives of electron density and density gradient 

provides better results in comparison to the LDA method. The general form of the GGA 

exchange-correlation functional is given below; 

EXC
GGA[ρ(𝐫)] = ∫ ρ(𝐫) εXC

LDA[ρ(𝐫)] 𝐹𝑋𝐶[ρ(𝐫), ∇ρ(𝐫)] d𝐫   (42) 

Where FXC[ρ(𝐫), ∇ρ(𝐫)] is defined as the enhancement factor, which directly depends on 

electron density and density gradient. The enhancement factor is written in terms of the Seitz 

radius (𝑟𝑠) and a dimensionless reduced density gradient (sometimes called smoothing 

factor) s(𝐫) which is given as; 

s(r) =  
|∇ρ(𝐫)|

2kF(𝐫) ρ(𝐫)
    (43)  

where, kF(𝐫) is the Fermi-wavevector and is defined as; 

kF(𝐫) =  [3𝜋2𝜌(𝒓)]
1

3⁄    (44) 

As GGA is the analytical functional method, therefore, with plotting  FXC(𝑟𝑠, 𝑠) with 

respect to s for various value of rs, we can get an effective way of examining and comparing 

different GGAs. GGA has shown great importance for various chemical systems, especially 

covalent bond energies and distance, although it has a shortcoming in describing van der Waals 

bonding. There are a few GGA functional, e.g., PW91, PBE which are generally used in the 

DFT calculation or embedded in hybrid functional (discussed in next section) and have been 

discussed below.   
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6.3.2.1 Perdew-Wang GGA functional (PW91) 

 Consider a GGA functional PW91 which was developed by the Perdew and Wang in 

1991, is generally used in solid-state DFT calculations74,75. This functional does not contain 

any experimental data-dependent parameter, rather the parameters are determined by exact 

quantum mechanical calculation. The exchange enhancement factor for the PW91 functional 

is given as; 

 FX
PW91(𝑠) =  

1+0.19645𝑠 𝑠𝑖𝑛ℎ−1(7.7956𝑠)+(0.2743−0.15084𝑒−100𝑠2
)𝑠2

1+0.19645𝑠 𝑠𝑖𝑛ℎ−1(7.7956𝑠)+0.004𝑠4 
    (45) 

Above equation shows that the exchange enhancement factor slowly varies with smoothing 

factor (s) and does not depend on the Seitz radius (𝑟𝑠).   

  The calculation of GGA correlation energy for the PW91 functional is quite 

complicated due to various interactions between spin components. The spin-compensated 

PW91 correlation energy can be defined as; 

 EC
PW91[ρα, ρβ] = ∫ ρ(r)[εC( rs, ζ) + H(t,  rs, ζ)]d𝐫   (46)  

where, ζ is the degree of spin-polarization and εC( rs, ζ) is defined as Perdew-Wang 

parametrisation of homogeneous electron gas correlation energy. Furthermore, the parameter t 

is another dimensionless gradient term as given below; 

          t =  
|∇ρ(𝐫)|

2g 𝑘𝑠 ρ(𝐫)
                (47) 

Where 𝑘𝑠 and g factor are defined as; 

ks =  [
4𝑘𝐹

𝜋
]

1
2⁄

                 (48) 

g = [(1 + 𝜁)
2

3⁄ + (1 − 𝜁)
2

3⁄ ] /2   (49) 

6.3.2.2 Perdew-Burke-Ernzerho GGA functional (PBE) 

The PBE GGA functional was developed by Perdew, Burke and Ernzerho for the 

simplification of the PW91 GGA functional73,76. The modified exchange enhancement factor 

is given as; 
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 FX
PBE(𝑠) = 1 + 𝜅 −

𝜅

1+
𝜇𝑠2

𝜅

   (50) 

where, the analytical predicted value of the parameters are: μ=0.21951 and 𝞳=0.804.  

6.3.3 Meta-GGA Functional 

The First and second rungs of the Jacob’s ladder, i.e., LDA and GGA method, are 

typically employed in the solid-state calculations while third and fourth rungs, e.g., Meta-GGA 

and hybrid functional are generally used in the quantum chemistry simulations for the 

prediction of molecular properties77. The meta-GGA method is a semi-local approximation 

which is developed through the extension of GGA with consideration of the second derivative 

of the density78. As it comprises similar physical information and higher stability, generally 

orbital kinetic energy density is used at the place of the second derivative of density.  The 

mathematical expression of meta-GGA is given as; 

EXC
meta−GGA[ρ(𝐫)] = ∫ ρ(𝐫) εXC

meta−GGA[ρ(𝐫), ∇ρ(𝐫), ∇2ρ(𝐫)] d𝐫    (51)  

    = ∫ ρ(𝐫) εXC
meta−GGA[ρ(𝐫), ∇ρ(𝐫), τ(𝐫)] d𝐫   (52) 

where τ(r) is the orbital kinetic energy density defined as; 

τ(𝐫) =  
1

2
∑ |∇𝜓𝒊(𝒓)|2𝑁

𝑖=1     (53) 

The meta-GGAs such as the TPSS functional is found to have improved performance over 

LDAs and GGAs, especially, in the calculation of gas-phase molecular properties.  

6.3.4 Hybrid Functional 

The functional of the fourth rung of Jacob’s ladder is called hybrid functional because 

of the incorporation of exact exchange terms from the Hartree-Fock formalism and correlation 

terms from other areas such as experiments or theoretical calculations. One of the most 

powerful and highly accurate hybrids functional is B3LYP. The mathematical expression for 

the B3LYP functional is given below, which consists of Becke-three-parameters exchange 

functional79,80and Lee-Yang-Parr correlation functional74,81.  

  𝐸𝑥𝑐
𝐵3𝐿𝑌𝑃 =  (1 − 𝑎)𝐸𝑥

𝐿𝐷𝐴 +  𝑎𝐸𝑥
𝐻𝐹 +  𝑏∆𝐸𝑥

𝐵𝑒𝑐𝑘𝑒 + 𝐸𝑐
𝐿𝐷𝐴 +  𝑐∆𝐸𝑐

𝐿𝑌𝑃      (54) 
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where, the parameters a, b and c are semi-empirical coefficients having numerical values 0.20, 

0.72 and 0.81, respectively. These coefficients were optimised to match extensive molecular 

data sets as mentioned above. The first term, ( (𝐸𝑥
𝐿𝐷𝐴), of Equation 2.64 is the full LDA 

exchange term while the second term, ( 𝐸𝑥
𝐻𝐹) is the exact Hartree-Fock exchange functional 

which is expressed below; 

   𝐸𝑥
𝐻𝐹[{𝜓𝑖}] =

1

2
∫ 𝑑𝒓 ∫ 𝑑𝒓′ 

∑ 𝜓𝑖
∗(𝒓)𝜓𝑗

∗(𝒓′)𝜓𝑖
 (𝒓′)𝜓𝑗

 (𝒓)𝑖,𝑗

|𝒓−𝒓′|
    (55)  

The third term of the Equation 2.64, i.e.,  𝐸𝑥
𝐵𝑒𝑐𝑘𝑒is known as Becke’s B88 exchange functional 

which have the mathematical expression, 

   𝐸𝑥
𝐵𝑒𝑐𝑘𝑒[𝜌(𝒓)] = −𝛽∫ 𝑑𝒓 𝜌(𝒓) 

4/3 𝛼 
2

1+6𝛽𝑠𝑖𝑛ℎ 
−1𝛼

      (56)                  

where, the value of the parameter (β) is 0.0042 Hartree, which is found by molecular data sets. 

The other parameter, (α) can be expressed as; 

𝛼 =    
|∇𝜌(𝒓)|

𝜌(𝒓) 
4/3     (57) 

Beyond the fourth rung of Jacob’s ladder, there exist many other exchange-correlation 

functionals, which have higher complexity. However, climbing towards higher on Jacob’s 

ladder with the addition of complexity does not bring necessarily improvement in total 

energies. 

6.4 Self-consistent method 

             As the Kohn-Sham potential, 𝑣𝐾𝑆(𝒓) depends on the density, 𝜌(𝒓) through the Hartree 

potential and exchange-correlation potential (as mentioned in Equations 27, 28 and 29), 

therefore, the density can be found through solving the Kohn-Sham equation self-consistently. 

First, an initial guess for density (𝜌0(𝒓)) is used for creating the effective Kohn-Sham potential, 

𝑣𝐾𝑆(𝒓), then solving the Kohn-Sham Schrodinger equation. This provides a new set of wave 

functions, {𝜓𝒊(𝒓)}. From these wave functions, a new density is found based on Equation 2.41.  

This new density then become the next guess for the Kohn-Sham Schrodinger equation, which 

gives a new set of the wave function and another new density, (𝜌1(𝒓)). If the energy difference 

between the energy that this new density, (𝜌1(𝒓)), produces with the energy of the previous 

density, (𝜌0(𝒓)), is smaller than a set value, then the calculation is considered "converged". 
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However, if the difference is greater than this tolerance, then the new density is put back 

through the cycle until the energy difference is below the specified value. This tolerance is 

called the convergence criteria for energy. By making this number smaller and smaller, the 

resulting calculations become more and more accurate at the cost of increased calculation time. 

This process is known as a self-consistent calculation because the ground state density is found 

with the self-consistent calculation of density. The flow chart for the self-consistent method is 

given below; 

 

Figure 3: Flow chart for SCF calculations 

7 Basis sets 

In general, a basis set is the linear combination of numerical functions (called basis 

functions) which are used for the representation of the electron wave function82. In DFT, the 

Kohn-Sham orbitals are represented with an appropriate basis set for the practical application 

in computers. Any basis functions, e.g.,  Gaussian, exponential, polynomial, plane-wave, 

spline, Slater type orbitals, numeric atomic orbitals, etc. may be used to construct the basis set 

depending on the certain criteria as mentioned below83; 

1.   The basis function must allow to find highly accurate wave function/density with 

low computational cost as possible. 



 

21 
 

2.  The behaviour of the basis function must ideally capture some of the physics 

problems. For example, for the bound atomic or molecular system, the function should 

go to zero when the distance between the nucleus and electron becomes large.  

Due to low computational cost and high efficiency, few functions like Slater type orbitals and 

Gaussian type orbitals (discussed below) are commonly used in the calculations of chemical 

properties.   

7.1 Slater-type orbitals (STOs) functions 

The Slater-type orbitals (introduced by John C. Slater in 1930) are the natural basis 

functions in quantum molecular calculations84, though these functions show restricted 

application due to difficulty in mathematical integration. The mathematical expression of STOs 

functions in polar coordinates are; 

 𝜓𝜁,𝑛,𝑙,𝑚(𝑟, 𝜃, 𝜙) = 𝑁𝑌𝑙,𝑚(𝜃, 𝜙)𝑟𝑛−1𝑒−𝜁𝑟  (58) 

Where N is the normalization constant and 𝑌𝑙,𝑚 are spherical harmonic functions. The n, l and 

m represent the quantum numbers, principle: angular momentum and magnetic respectively. 

The exponent parameter, 𝞯, controls the width of STOs. The exponential term dependent on 

the distance between nucleus and electron (r) shows the exact behaviour of the orbitals for the 

hydrogen atom. Furthermore, the exponential dependent term ensures the fairly rapid 

convergence with an increasing number of functions. Since STOs do not have any radial nodes, 

therefore linear combinations of STOs have been introduced, which shows the nodes in radial 

parts. The STOs are generally used in atomic and diatomic systems which require high 

accuracy.  

7.2 Gaussian-type orbitals (GTOs) functions 

The Gaussian-type orbitals (proposed by Boys in 1950) is the most generally used basis 

function in quantum chemical program package85. The primary reason for superior 

performance in computation over STOs is related to the “Gaussian Product Theorem” which 

guarantees that the product of two GTOs centred on two different atoms is a finite sum of 

Gaussians centred on a point along the axis connecting them. In this manner, the four-centre 

integrals are reduced to finite sums of two-centre integrals, and in the next step, reduced to 

finite sums of one-centre integrals which demands the lower computational cast. The 
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mathematical expression for the GTOs in both, i.e., polar and Cartesian coordinates is given 

as; 

𝜓,𝑛,𝑙,𝑚,𝜁(𝑟, 𝜃, 𝜙) = 𝑁𝑌𝑙,𝑚(𝜃, 𝜙)𝑟2(𝑛−1)−1𝑒−𝜁𝑟2
 (59)  

𝜓𝑙𝑥 ,𝑙𝑦 ,𝑙𝑧 ,𝜁(𝑥, 𝑦, 𝑧) = 𝑁𝑥𝑙𝑥𝑦𝑙𝑦𝑧𝑙𝑧𝑒−𝜁𝑟2
   (60)  

where, lx, ly and lz are the parameters that provide the important information about the 

orbital. The sum of the parameters, i.e., lx + ly + lz = L is analogous to angular momentum for 

the atom. The varying value of L corresponds to the different shapes of orbitals, for example, 

s-type (L=0), p-type (L=1), d-type (L=2) and f-type (L=3). The Gaussian function mentioned 

in Equation (60) is called the primitive Gaussian function. The group of the several primitive 

Gaussian functions provide the new one-Gaussian function which is known as “contracted 

Gaussian function”, given as below; 

𝜓𝑙𝑥 ,𝑙𝑦 ,𝑙𝑧 ,𝜁
𝐶𝐺𝑇𝑂 (𝑥, 𝑦, 𝑧) = 𝑁 ∑ 𝑐𝛼𝑥𝑙𝑥𝑦𝑙𝑦𝑧𝑙𝑧𝑒−𝜁𝑟2𝑀

𝛼=1   (61) 

where M is the number of GTOs used in the linear combination. N is the normalization 

constant and the coefficients (𝑐𝛼), which are then called a linear combination of atomic orbitals 

(LCAO), are chosen for the shape of the basis function. There are two different ways of 

contracting a set of Primitive-GTOs (PGTOs) to a set of Contracted-GTOs (CGTOs), namely, 

segmented and general contractions. In segmented contractions, each primitive of a given atom 

and angular momentum is, very strictly used only in one contracted function, while in general 

contractions all primitives of a given atom and angular momentum are used in all the contracted 

functions. 

By contracting with any of the mentioned methods, several Gaussians into one, the 

computational cost can be reduced, yet maintaining the STO’s accuracy, therefore, the 

technique has been very popular in quantum chemical calculations. 

7.2.1 Minimal basis sets 

 One question always arises that how many basis functions should be used to describe 

the atomic system. The basis set selection process requires a lot of expertise. In practice, we 

should start with only contracted functions that are enough to describe the atomic system, 

which is known as a minimum basis set. The minimum basis functions which are needed to 

describe the individual atom is called the Minimal Basis set (MBS). For example, hydrogen 
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only needs a single s-function while first row elements of the periodic table require two s-

function and a set of p-functions (2px, 2py and 2pz) to describe its occupied atomic orbitals. 

The MBS for carbon atom is a set of 1s function, one 2s function and one set of 2p functions. 

The function, STO-nG is found as the most common minimal basis set, where n is an integer, 

e.g. STO-3G, STO-4G etc. The value “n” is used to represent the available primitive Gaussian 

functions that are contained within a single basis function. In the minimal basis set, the same 

number of primitive Gaussian functions comprise the core and valence orbitals, therefore, 

typically giving rough results that are not sufficient for predicting the chemical properties. 

7.2.2 Split valence basis sets 

As we know the outer shell electrons, i.e. valance electrons, usually participate in the 

chemical bond formation, therefore it is necessary to distinguish the core and valence electron 

considering the basis functions allocation. More the sets of the basis function (larger zeta) 

allocated for the valance electrons in comparison to the core electrons, the higher will be the 

accuracy of the results. Basis sets are categorised, e.g. valence double, triple, quadruple-zeta, 

on basis of the available number of basis functions for defining the valance atomic orbital. 

When the basis set has two/three sets of basis functions to represent each orbital, they are called 

double/triple-zeta (DZ)/TZ) basis set.  For example, two s-functions (1s and 1s’) are used as 

DZ basis set for the hydrogen atom. The first row of the element in the periodic table needs 

four sets of s-functions (1s, is’, 2s, 2s’) and two sets of p-functions (2p, 2p’) for DZ basis sets. 

It is noted that the primed and un-primed orbitals differ in size. The commonly used basis sets 

6-31G and 6-311G are examples of double and triple zeta valence basis sets, respectively, 

where two/three sets of contracted functions are used for each valence orbital. 

 The mentioned basis sets are enough for the free isolated atom which has spherical 

symmetry in nature. However, the atom in a molecule or some other chemical environment 

exhibit distortion in the electron density. Therefore, for the inclusion of these effects in the 

basis set, it is required to use augmented basis sets with some additional functions, which are 

described in detail below.    

 Polarized functions: In the case of the molecules, the one atomic orbitals are shifted 

towards one side or other side (means polarized) due to mixing of other orbitals, which 

distorts the orbital shape. In other words, the s orbital can polarize in one direction if 

it’s mixed with a p orbital and the p orbitals can polarize if mixed with d orbitals. These 

polarization effect can be implemented in the basis set with consideration of additional 
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functions of higher angular momentum. For example, in the case of ethylene, p 

functions sufficiently describe the π-bonds, but the d functions allow the electron 

density to bend away from the π-bond towards the hydrogen. The common polarised 

basis sets are 6-31G(d) and 6-311G(d,p). 

 Diffused functions:  In the case of negative ions, where the electron is held far away 

from the nucleus, the atomic orbital is distorted from its original shape. For the correct 

description of such kind of system, it is required to the addition of Gaussian functions 

with a small exponent, known as diffused functions. These functions represent the “tail” 

of the atomic orbitals or the regions which are far from nuclei. The diffused basis 

functions are necessary for the negative ions, very electronegative atoms, excited states 

and weak bonds (e.g. hydrogen bonds). Furthermore, the diffused basis functions are 

mandatory to use for the calculation of some of the properties which depend on the tail 

of the wavefunction (e.g. dipole moment and polarizabilities). The basis set, 6-

311+G(d,p) is an example of diffused basis set, which is generally used in the evaluation 

of chemical properties of interest. 

8 Solvent model 

In the physical and biological systems, most of the reactions take place in the fluid/liquid 

medium rather than the gas phase. In the coming chapters, we have studied the lithium cluster 

in the electrolytic media in the perspective of the Li-ion battery system. Therefore, it is 

necessary to discuss the mathematical model/theory which is used to simulate the 

atomic/molecular component in the fluid media. These media can be incorporated in the 

quantum chemical calculation with the proper implementation of the solvent model. In general, 

the solvent models are the computational technique/method that has been developed to account 

for the behaviour of the solvated condensed phase. The solvent models allow to simulate the 

chemical reaction and biological process in the solvated phases with improved understanding 

and prediction. There are various solvation models which are generally classified into two 

classes, explicit and implicit models, on basis of the physical appearance of the solvent 

molecule86,87. Both the models are discussed in the following section. 

8.1 Explicit solvent model 

The explicit solvent model treats the solvent by considering the molecules explicitly. 

With this solvent model, the most realistic picture of solute-solvent interaction can be obtained 

among all solvent models. This model has wide application in molecular dynamics, molecular 



 

25 
 

mechanics, and Monte Carlo simulation. In the field of quantum chemical calculations, this 

model can be further applied with the use of the molecular cluster as the solvation shell. In 

general, molecular mechanics (force field) are utilized for the computation of physical and 

chemical properties including motion of the large molecular system. In the force fields method, 

the molecules are treated as the mechanically connected system of atoms, which generally 

consist of empirical and parametrized functions, leading to highly efficient simulation. The 

force field generally consists of various interaction terms, which describe the respective 

possible strain in the molecular system83. The total strain energy of the molecular system is 

given as follows; 

𝐸𝑀𝑀 = 𝑉𝑠𝑡𝑟 + 𝑉𝑏𝑒𝑛𝑑 + 𝑉𝑡𝑜𝑟 + 𝑉𝑐𝑟𝑜𝑠𝑠 + 𝑉𝑣𝑑𝑊 + 𝑉𝐸𝑆    (62) 

where V represents the potential energy term coming from the bond stretching (𝑉𝑠𝑡𝑟), bending 

(𝑉𝑏𝑒𝑛𝑑), torsional energy (𝑉𝑡𝑜𝑟), van der Waals energy (𝑉𝑣𝑑𝑊), electrostatic energy (𝑉𝐸𝑆), and 

cross terms (𝑉𝑐𝑟𝑜𝑠𝑠). With the separation of the van der Waals interaction and electrostatic 

interaction terms in the above equation, the constant parameters of the remaining interaction in 

the force field could be generated in such a way that the parameters become more transferrable 

over the whole molecule in comparison to the spectroscopic force field.  

This solvent model provides descriptive information about the solvent, though the 

extremely computational expensiveness restricts their application. Therefore, the limitation of 

the computation cost motivated to develop the other solvent models based on a continuous 

distribution of solvent, e.g., an implicit solvent model which is discussed in detail in the 

following sections.  

 8.2 Implicit/Continuum solvent model 

In the Implicit solvent model, it is assumed that continuum solvent media can be 

replaced by the homogeneous polarizable medium. This model considers thermally averaged 

and usually isotropic solvents, therefore, only a small number of parameters are required to 

represent the solvent with reasonable accuracy. The main parameter is the dielectric constant 

(ε) which is responsible for defining the degree of the polarizability of various solvents. In 

comparison to the explicit solvent model, this model doesn’t consider the coordinate of an 

individual molecule, therefore, found to be computationally not too expensive. There are many 

implicit solvent models are developed, e.g. Polarised Continuum Model (PCM), universal 
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solvent model (SMD) etc., of which PCM has been used to study the chemical properties of 

molecule/cluster in the solvent88–90.  

Polarised Continuum Model  

 In this case, the solute which is embedded into a cavity is treated as a polarizable charge 

distribution and solvent (surrounded by the solute) is represented with a dielectric continuum 

medium that is polarized by the solute. The induced charge on the solvent affects the charge 

distribution of solutes as well as their geometry.  The solvent reaction field found because of 

induced solvent charge can be acquired with the self-consistent method by solving the non-

homogeneous Poisson equation, which is coupled to the quantum mechanical electron density 

of the solute molecule. 

    −∇ × [𝜀(𝒓) ∇𝑉(𝒓)] = 4𝜋𝜌𝑀(𝒓)  (63)  

Where, 𝜌𝑀(𝒓) represents the solute charge distribution while 𝜀(𝒓) symbolizes the position-

dependent permittivity. If the charge distribution, 𝜌𝑀(𝒓) is contained in the molecular cavity 

“C” which is built with an isotropic and homogeneous solvent, then 𝜀(𝒓) can be represented 

as; 

𝜀(𝒓)    =        {
1            𝒓 ∈ 𝐶 

 𝜀           𝒓 ∉ 𝐶        
,  (64)  

Using the boundary condition (as given in Equations 2.74), Equation 2.73 is solved in 

terms of V, which is the sum of the solute potential and apparent charge distribution, σ(s) (arises 

on the boundary between the solute and the solvent) and is given as; 

 𝑉(𝒓) = 𝑉𝑀(𝒓) + 𝑉𝜎(𝒓)    (65) 

𝑉𝜎(𝒓) =  ∫
𝜎(𝒔)

|𝒓−𝒔|
 𝑑2𝑠

 

𝛤
        (66) 

This equation is generally solved by the discretization of integral into the finite number 

of the element. The whole problem can be solved, once we find the numerical value of the 

term 𝜎(𝒔). Following equation represents the electrostatic component of the solvation free 

energy, and depends on the 𝜎(𝒔) as given below; 

 𝐺𝑒𝑠 =  ∫ 𝜎(𝒔)
 

𝛤
[∫

𝜎(𝒔)

|𝒓−𝒔|
 𝑑3𝑟 

 

𝑉
] 𝑑2𝑠   (67) 
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In the PCM framework, the different alternatives depend on the apparent surface charge, 

(𝜎(𝒔)). For example, D-PCM is defined with different value of apparent surface charge, given 

as; 

𝜎(𝒔) =  
𝜀−1

4𝜋𝜀

𝜕

𝜕𝑛
(𝑉𝑀(𝒓) + 𝑉𝜎(𝒓) )𝒔  (68) 

Now, the molecular free energy in the solutions can be calculated through PCM model as; 

 𝐺𝑠𝑜𝑙 = 𝐺𝐸𝑆 + 𝐺𝐷𝑅 + 𝐺𝐶𝐴𝑉    (69) 

Where the electrostatic (ES) component is calculated with the help of Equation 2.77 

with different apparent surface charges. The components, dispersion-repulsion (DR) and 

cavitation energy (CAV) are computed using the creation of cavity which is defined with the 

interlocking van der Waals spheres centred at atomic positions. The point charges which 

represent the reaction field, are located on the surface of a molecular cavity (known as the 

Apparent Surface Charge model). Hartree-Fock (UAHF) model is used to build the cavity, 

which is in-built in the particular version of PCM model91,92.  The implementation of the 

PCM/UAHF model in computational code “Gaussian 03/09” can be invoked using 

the SCRF keyword in combination with PCM specific modifiers. 

The polarizable continuum model is a well-known and verified solvent model, which is 

often used to predict the electrolyte structure/stability and to understand the chemical properties 

in a practical environment. There are several reports where the solvent model has been used 

for the prediction and investigation of the electrolytic solvent93–95. For example, 

electrochemical windows of sulfone based electrolytes were studied by shao et al. with the 

PCM model for their application as high voltage electrolytes and later verified by Erik et al. 

through experimental technique96,97. Furthermore, stable fluorinated sulfone electrolytes have 

been synthesised and further studied with the PCM model, which shows excellent agreement 

between both the theoretical and experimental results98. In the last few decades, several articles 

have appeared in reputed journals, where both solvation model and experimental results are 

combined and support each other99–102.  With the above discussions, we conclude that the 

solvation model is very trustable and provides a direction for the development and 

understanding of the electrolyte.   

Zhang et al. have studied the solvation free energy of several organic solvents with both 

implicit and explicit solvent models.103 The implicit solvent model was found to be in good 
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agreement with the experimental results, however, it didn’t fit well with the explicit solvent 

model. The detailed investigation reveals that the dielectric constant of a solvent is found as a 

powerful predictor for polar contribution to the free energy in the implicit model. However, 

due to the consideration of the Onsager reaction field in case of the implicit model, the 

numerical value differs in comparison to the explicit model103. Further, with the implicit solvent 

model, the neutral and ionic solute with different dielectric constant and various radii scaling 

factors were investigated by Klamt et.al104. Their study found a good agreement between the 

calculated and the experimental solvation free energy of the order of 0.5-1.0 kcal/mol (0.02 – 

0.04 eV).  

9. Summary 

In this report, I have discussed the theoretical background of density functional theory and the 

solvation model. We extensively describe Born-Oppenheimer approximation, Hartree-Fock 

and Thomas-Fermi theory, Hohenberg-Kohn theorems, Kohn-sham approach, Exchange-

correlation approximation and self-consistent method. Furthermore, we have discussed Basis-

set and solvation model, especially the polarisable continuum model. I hope that this brief note 

will be very helpful to understand DFT and solvation model in a limited and short time.   
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