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Abstract

While there is a great deal of interest in methods aimed at explaining machine learning predictions
of chemical properties, it is difficult to quantitatively benchmark such methods, especially for regression
tasks. We show that the Crippen logP model (J. Chem. Inf. Comput. Sci. 1999, 39, 868) provides an
excellent benchmark for atomic attribution/heatmap approaches, especially if the ground truth heatmaps
can be adjusted to reflect the molecular representation. The ”atom attribution from finger prints”-method
developed by Riniker and Landrum (J. Chem. Inf. Comput. Sci. 2013, 5, 43) gives atomic attribution
heatmaps that are in reasonable agreement with the atomic contribution heatmaps of the Crippen logP
model for most molecules, with average heatmap overlaps of up to 0.54. The agreement is increased
significantly (to 0.75) when the atomic contributions are adjusted to match the fact that the molecular
representation is fragment-based rather than atom-based (the finger print-adapted (FPA) ground truth
vector). Most heatmaps and the corresponding FPA overlaps are relatively insensitive to the training set
size and the results are close to converged for a training set size of 1000 molecules, although for molecules
with low overlap some heatmaps change significantly. Heatmaps of the prediction uncertainty and the
uncertainty in the atomic attributions can help identify molecular regions that contribute significantly
to errors in the logP prediction and/or attribution and these heatmaps can be used to guide the design
of counterfactual examples to probe the ML model further. Like the simpler attribution benchmarks for
classification tasks that have come before it, this work sets the bar for regression tasks.

1 Introduction

Machine learning (ML) models occasionally make wrong predictions and given their black-box nature it is
not always obvious when that is the case. While there are several methods for assigning uncertainties to the
predictions, these methods report (at best) on the likelihood of prediction errors and there is not a strong
correlation between errors in the predictions and their uncertainties.[1] There is therefore a great deal of
interest in methods aimed at explaining the ML predictions, often referred to as explainable AI (XAI), which
can help humans decide whether the predictions are reasonable.[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] Within
chemistry, in general, and drug discovery in particular, another motivation is to use the explanation to help
guide the design of molecules with improved properties (for example: [15]).

Attribution methods, which aim at producing explanations by assigning a numerical value to each atom
to create a so-called heatmap, are among the most popular XAI methods in chemistry.[8, 9, 10, 11, 12, 13,
14] Some of these methods were originally developed for image classification (for example [16]) where it is
often fairly obvious whether the heatmap highlights the correct part of the image. However, for chemical
applications it is often less clear whether the atomic attributions are correct for a certain chemical property,
which complicates the benchmarking of these methods. One solution is to use simple toy models such as
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classifying molecules with respect to the presence or absence of certain functional group. While methods
that fail at such simple tasks can probably be discounted, it is not clear whether methods that succeed will
also succeed for more complex classification and, especially, regression tasks.

Harren at al.[8] has demonstrated that binding affinity data for pairs of closely related molecules (matched
molecular pairs) combined with expert chemical knowledge can be a powerful benchmark, but it is difficult to
quantify the performance using this approach. Sanchez-Lengeling et al.[13] addressed this problem by fitting
models to experimentally measured solvation energies[17] and comparing the corresponding heatmaps to the
contributions from Crippen’s well-known linearly additive atom-based model of logP values[18] - a property
that is related to solubility. The attribution methods tested using this benchmark gave atomic attributions
with relatively modest correlation to this ground truth but, as pointed out by Henderson et al.[9], part of
the reason may be that the correlation between logP values and solvation energies is not perfect. Instead
they suggested that it may be better to fit the model to Crippen logP values themselves, but did not test
this approach.

In this study we show that ML models fit to Crippen logP values do lead to heatmaps that are in slightly
better agreement with the ground truth heatmap derived from the atomic contributions of the Crippen
model. However, when using finger prints (FPs) as the molecular representations there is a fundamental
limit to the correlation that can be obtained due to the fact that the FPs are inherently fragment based and
not atom based. We show that when the ground truth heatmaps are adapted to reflect this fragment-based
nature the correlation is increased significantly.

2 Computational Methodology

The Crippen logP model[18] implemented in RDKit[19] predicts the logP value of a molecule by

logP = ∑
i

niai (1)

where ni is the number of a particular atom type i and ai is the logP contribution from that atom type.
There are about 100 different atom types and their contributions were determined by fitting to experimental
logP values. The atom types are defined by the nearest neighbour atoms so that, for example, the ai for C is
different for ethane and methanol. However, the model is local in the sense that ai is independent of atoms
not directly bonded to atom i. The ai values are taken as the ground truth for atom attributions, with the
caveat that ai values from H atoms are added to the closest non-H atom.

We use the Random Forest (RF) regression model implemented in scikit-learn,[20] with 200 trees and
a minimum of three samples per leaf node. The predicted logP value is the average over all trees and the
uncertainty in the prediction is the corresponding standard deviation. The molecules for the training and
test set are taken from a 250K molecules subset of the ZINC data base, which has been used in many other
studies.[21, 22, 23, 24] A training set of size N corresponds to the first N molecules in the data set and the
5K test set corresponds to the last 5K molecules in the data set. For the molecular representation we use
Morgan extended connectivity fingerprints[25] with a diameter of four (ECFP4) as implemented in RDKit.
This method identifies fragments of varying sizes centered at each atom of the molecule, with the maximum
size determined by the radius. Each fragment is then assigned a random position in a binary vector of length
2048, where the presence and absence of a particular fragment is indicated by a 1 and 0, respectively. Other
bit-vector sizes are also possible, but 2048 is a very typical value. The number of different fragments for a
collection of molecules is typically much larger than 2048, meaning that a bit position can report on many
different fragments, which is known as bit collision.

We use the ”atom attribution from finger prints”-method developed by Riniker and Landrum[11] and
also test the dummy-atom approach as implemented by Jimenez-Luna et al.[10] Both methods are described
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Fragments involving atom 11

Figure 1: An example of the fingerprint fragments that are removed when an atom (11) is removed.

in more details in the following section. The atom attributions are visualised as colored contour plots, with
magenta-colored dotted and green-colored solid contour lines for negative and positive contributions, respec-
tively. When drawing the maps of the atomic contributions the number of contour lines from minimum
to maximum value needs to be set. This is set so that each contour line approximately represents a 0.06
change: Ncontour = acmax−acmin

0.06
, where acmax and acmin are the highest and lowest atomic contributions of

the molecule, respectively. Ncontour is rounded to nearest integer. The coloring is scaled to the maximum
absolute value in the attribution vector.

3 Results and Discussion

3.1 Comparison of the atomic attributions to the ground truth

The ”atom attribution from finger prints”-method developed by Riniker and Landrum[11] computes the
contribution of a given (non-hydrogen) atom by removing all bits from the fingerprint for which the corre-
sponding fragments contain the atom (cf Figure 1). The ML predicted value using this new fingerprint is
subtracted from the value predicted with the unmodified fingerprint and the difference is attributed to that
atom. This results in a vector of atom attributions that we want to compare to the corresponding atom
contributions-vector (the ground truth vector) from the Crippen logP model. While the ground truth vector
sums up to the ground truth logP value, the atom attribution vector does not sum up to the ML-predicted
logP value. The vector elements are in fact very different in magnitude so a simple difference is not in-
structive. Sanchez-Lengeling et al.[13] used Kendall’s tau (rank correlation) while Henderson et al.[9] used
Pearson’s r to quantify agreement. We choose to compute the dot product of the normalised atom attribu-
tion and ground truth vectors, which ranges from -1 to 1 and where 1 corresponds to a perfect agreement.
This overlap compares the distribution and relative importance of positive and negative contributions within
the molecule, but it does not report directly on the contribution of each atom to the logP value. Thus, when
comparing the vectors visually we re-scale the attribution vector so that it sums to the predicted logP value
and depict the magnitude of these contributions as a contour map, while the color intensity corresponds to
a ”normalised” vector where the largest magnitude contribution is 1 (this vector is very similar to the nor-
malised vectors used to compute the overlap, but gives better visual comparison). We compare the overlap
to Pearson’s r below.

3



0.1 0.5 1.0 5.0 10.0 20.0 50.0 100.0 150.0
training set size (1000)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Bit size = 2048, XAI method: dummy atom

RMSE (test)

overlap (atomic)

overlap (FPA)

ba 

0.1 0.5 1.0 5.0 10.0 20.0 50.0 100.0 150.0
training set size (1000)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Bit size = 2048, XAI method: Riniker & Landrum

RMSE (test)

overlap (atomic)

overlap (FPA)

Figure 2: (a) The average overlap of the ML vector with different versions of the ground truth and FPA
vectors calculated based on the RDKit atom contributions. (b) Same as for (a) but using the dummy atom
approach.

3.2 Results for a large training set

We train nine different RF/ECFP4 models using training sets ranging in size from 100 to 150K molecules
and test the performance using a test set of 5K molecules. The RMSE is shown in Figure 2a and suggests
that the error is converged for the largest training set and that the model is as good as it is going to get.
We first focus on the results from this model since that separates any issues related to incomplete training
from any issues intrinsic to the XAI methodology.

The average overlap (green column) is 0.54 indicating that the atomic attributions are largely correct for
a majority of the molecules. For comparison, a null-model attribution vector, where each atom is assigned
the value logP/N where logP is the predicted value and N is the number of non-H atoms, results in a average
overlap of 0.32 (Figure S1). Figure 3a and b shows plots of the atomic attributions and the ground truth
contributions, respectively, for a molecule (1) with an overlap (0.66) close to the average. Both plots show
positive contributions from the phenyl rings, but the rest of the atoms in the molecule do not appear to
contribute significantly to to the predicted logP value, in contrast to the ground truth. Never-the-less the
logP value is predicted to within 0.3 units. One possible reason is that when using a FP radius of two, the
removal of an atom results in the removal of a relatively large chunk of the molecule, while the associated
change in logP is ascribed to a single atom. For example, removing the carbonyl C atom in the pyrrolidone
ring actually removes the entire moiety plus part of the substituents (Figure 1) and the combined atomic
logP contributions of these atoms, which is roughly zero, is assigned to that atom. To quantify this effect we
compute the sum of the logP contributions for each of the ten fragments and assign it to the carbonyl C and
repeat this process for all the other atoms to produce a ”finger print-adapted” (FPA) ground truth vector.
A plot of this vector is shown in Figure 3c and shows a near perfect agreement with the ML attribution
vector, with an overlap of 0.99. Thus, the discrepancy between the attribution and ground truth vectors
observed for this molecule is due to the way the attributions are computed and not a deficiency in the ML
model itself. Using FPA ground truth vectors the average overlap for the test set increases significantly from
0.54 to 0.75, suggesting that this is the case for most molecules, although the average null-model overlap
also increases, to 0.61 (Figure S1).
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Figure 3: Heatmap examples for four molecules (1-4). The first column is the heatmap from the ML model
trained on 150K molecules. The second column is the ground truth heatmap from the atomic contributions
of the Crippen model and the third column is the FP adapted ground truth heatmap (see text). ML
contributions are scaled so they sum to ML prediction, AF contributions are scaled to sum logP. Crippen
(atomic) contributions sum to logP by nature. *While the predicted logP is positive, summing the atomic
contributions results in a negative number. Instead of scaling to logPpred, the atomic contributions are scaled
to sum to -logPpred
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However, the good match between the ML-attribution and FPA vectors for 1 does not mean that the ML
model has learned the contribution of each FP fragment correctly. Out of the 41 different ECFP4 fragments
that describe 1 only nine (Figure 4) make a significant (>0.05) contribution to the logP value and a FP
with only these nine bits reproduces the predicted logP value to within 0.25 units. All but one of these
fragments (fragment 90) are ECFP2 fragments and none of these fragments derive from the pyrrolidone
ring. So according to the ML model the net logP contribution of the pyrrolidone ring is nearly zero because
all associated fragments each make nearly zero contributions, in contrast to the FPA vector where most
fragments make sizeable positive or negative contributions that mostly cancel.

Figure 4: The bits that make the largest contributions to the predicted logP value of molecule 1

Figures 3d-f show similar plots for the molecule (2) with the lowest FPA overlap (-0.69) in the test set.
The predicted logP value is slightly positive (0.26) while the ground truth is negative (-1.12) and the error
(1.38) is more than twice the model MAE (0.58) (Table S1). Comparison of the ML-attribution vector to
the ground truth and FPA vectors clearly show that the discrepancy arises from the region of the molecule
involving the N cation. Indeed, the error is eliminated by removing the proton, which also increases the
overlap to 0.75 (Figure S2).

In general a low overlap does not necessarily correspond a high error: the Pearson correlation factors for
the FPA overlap vs MAE is only -0.11. While the direct correlation is small there is a modest enrichment
of low error predictions for molecules with high overlap (Figure S6d). For example, the MAE of molecules
with overlaps between 0.8 and 1.0 is 0.55 while the MAE for molecules with negative overlaps is 0.82

Figure 5: The bits that make the largest contributions to the predicted logP value of molecule 3

Figures 3g-i show heat maps for a molecule (3) with both a low error and low FPA overlap (-0.33). In
this case the ML-attributions are all negative, while the predicted logP value is positive. Comparison of
the ML attribution vector and FPA vector shows that the problem lies mainly with the C atoms in the
furan ring, which make negative contributions to the logP. Removing the N proton changes the sign of these
contributions and increases the overlap to 0.73 (Figure S3), so the ”sign problem” in the furan ring is related
to the protonation state of the neighboring pyrazole ring. We investigated several possible explanations,
such as bit collisions between fragments in these two rings or the effect of FP fragments that connect the
two rings, but the reason turns out to be a bit more complicated. The changes in predicted logP that gives
rise to the heat map has three main contributions (Figure 5): bit 1171 (the NH2 group), 1386 (the NH+

group), and 1750 (the furan C atoms). In fact a FP vector with only these three bits results in a predicted
logP value (0.91) that is very similar to the value predicted with all 45 on-bits (1.07). Removing bit 1750
from this FP decreases the predicted logP by 0.36 (i.e. bit 1750 makes a positive logP contribution), while
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removing bit 1750 from the full FP vector increases logP by 0.35, which gives rise to the negative contours
on the furan ring. Clearly, at least one additional bit is needed for the negative furan ring contributions
and that bit turns out to be 875, which represents the three C atoms of the pyrazole ring (Figure 5). Note
that all three bits (875, 1171, and 1386) must be on for bit 1750 to make a negative contribution, which is
why deprotonation (which removes bit 1386) changes the sign of bit 1750’s contribution. This is a case of
overfitting in the sense that the ML model has learned a non-additive rule for an additive property, but we
will qualify this point further the end of this subsection.

Clearly, the ML heatmap for 3 (Figure 3g) is not helpful in understanding the predicted logP values and
we found that for 13% of the molecules the sum of the ML atomic attributions do not have the correct sign
(Figure S6d). This sign problem is also found in the FPA heatmaps in 5% of the molecules, but only 2% of
the molecules have a sign problem for both the ML and FPA heatmaps. About half of the sign problems
in the FPA heatmaps occur for logP values that are ≤0.5 suggesting the sign problem is due to imperfect
cancellation of nearly equal positive and negative contributions and the heatmaps still offer insights into the
predicted logP value (see e.g. Figure S3).

The non-additive behavior observed for compound 3 is also observed for compound 2: at first sight the
heat map seems to show that the model simply has erroneously learned that a protonated tertiary amine
group makes a small contribution to a logP value. However, a similar bit-analysis shows that the NH+ only
makes small contributions when bits related to the distant sulfone group are on. Changing the sulfone group
to a methylene group leads to an excellent logP prediction (0.53 vs 0.64) and a better overlap (0.60) where
the NH+ makes a sizable negative contribution to the logP value (Figure S2).

Figures 3j-l show heat maps for the case of high error but average overlap. The relatively high overlap
considering the difference in heatmaps reflect the fact that the overlap focuses more on the distribution of
positive and negative contributions, rather than on their magnitudes. The ground truth and FPA vectors
show that the ground truth logP value (0.02) is a result of the near perfect cancellation of positive and
negative contributions of near equal magnitude. Comparing the ML- and FPA-vectors it is clear that while
the colors, which are representative of the overlap, are matched reasonably well, the contours, which are rep-
resentative the magnitude of the contributions, are not. The error clearly comes from an underestimation of
the effect of the N cation and an overestimation of some of the C atoms in the pyrimidine ring. Neutralising
the cationic N decreases the error by ca 1 unit due the ground truth logP value being raised by roughly the
same amount while the predicted value is essentially unchanged (Figure S4). However, roughly the same
error (2.26) can be obtained by removing the chlorophenyl group since the NH+2 group now correctly makes
a sizeable negative contribution to the predicted logP value (Figure S4). So, just like for 2, the contribution
of a cationic N is dependent on another, distant, functional group, which is clearly at odds with the additive
nature of the ground truth model. In the absence of the proton or the chlorophenyl group, the remaining
error is largely due to some of the C atoms in the pyrimidine ring. The reason seems to be a consistent over-
estimation of the effect of the corresponding bit (875, Figure 5) for the pyridine ring and the overestimation
can be removed simply by adding a methyl group (Figure S4).

To sum up, the ”atom attribution from finger prints”-method developed by Riniker and Landrum, when
used with a RF model, gives atomic attributions that are in reasonable agreement with the atomic contri-
butions of the Crippen logP model for most molecules. The agreement is increased significantly when the
atomic contributions are adjusted to match the fact that the molecular representation is fragment-based
rather than atom-based (the FPA ground truth vector). Molecules where the atomic attribution differs
significantly from the ground truth tend to have slightly larger errors on average, but the correlation fac-
tor is near zero when considering individual molecules. One question is whether cases such as 3 with low
errors and wrong attribution is due to overfitting. The fact that the ML-model has a learned non-additive
correlations between structurally distant FP fragments is at odds with the additive and local nature of the
ground truth and thus consistent with overfitting. On the other hand, the problem (as measured by the
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Figure 6: UAA uncertainty heatmaps of the four molecules depicted in Figure 3. Depicted uncertainties are
scaled such that 0.3 is the zero-point (no color or contour on the map) and the color scale is with respect to
the maximum atom uncertainty in the molecule. Each contour represents a 0.2 increase in uncertainty.

percentage of molecules with ”sign problems”) is most severe for the largest training set where one would
expect overfitting to be less important. A likely explanation is that the use of a non-additive representation
(binary FPs) to model an additive property, combined with bit collision, results in an intrinsically overfit
model. For example, only two FP fragments make significant contributions to the predicted logP of n-butane:
CH3- and CH2-CH3-CH2-. The fragment that indicates that there are two of each of these fragments in
n-butane (CH3-CH2-CH2-CH3) is not in the training set so that bit position is used for another fragment not
contained in n-butane (bit collision). Even if n-butane was contained in the training set, the corresponding
fragment would only appear once and the model would learn that that this bit position is far more likely
to report on some other non-pertinent fragment. For example, there are only 24 instances where bit 94
corresponds to the fragment shown in Figure 1, compared to 6050 instances for the most popular fragment,
so this bit cannot be used by the model to predict logP for molecule 1. Thus, rather than making use of
large fragments to help estimate the number and proximity of smaller fragments, the model is forced to
learn correlations between smaller fragments. As a result, spurious correlations between fragments such as
those seen for molecules 2-4 can occur because the representation does not effectively report on whether,
for example, the fragments shown in Figure 5 are in the same ring or not. A corollary of this hypothesis is
that the Crippen logP values represent a challenging benchmark for the ECFP4/RF model and, hence, the
atomic attribution method.
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3.2.1 Using atom attributions in the absence of the ground truth

As we have shown in the previous section, one can learn a great deal about the ML model from heatmaps
by comparing to the corresponding ground truth heatmaps. However, ground truth heatmaps will not be
available for other properties so here we discuss what can be learned without them. We investigate two
approaches: uncertainty in the atomic attribution (UAA) and atomic attribution of the uncertainty (AAU).
The UAA is obtained by computing the atomic attributions for each tree in the random forest and computing
a standard deviation for each atom while the AAU is computed as described above except using the standard
deviation of the logP predictions instead of the logP value itself. Figure 6 shows heatmaps of the UAA for
the four molecules discussed so far, which generally emphasize the same parts of the molecules as the logP
attributions, i.e. the atoms that contribute most to the logP value tend to have the highest uncertainties.
However, the heatmaps for molecule 2 and 4 do indicate uncertainties for the cationic atoms that are higher
than the corresponding logP contributions and similarly for the C atoms in the furan ring of 3. The AAU
plots show a reverse trend where the highest uncertainties often are in regions that make relatively small
logP contributions. The plots for molecules 3 and 4 show the highest uncertainties for the cationic atoms
as well as the C atoms in the furan ring for 3. Interestingly, for molecule 2 the S atom of the sulfone group
contributes significantly to the uncertainty in the logP prediction.

To summarise, the plots of the UAA and AAU can help identify molecular regions that contribute
significantly to errors in the logP prediction and/or attribution and can be used to guide the design of
counterfactual examples to probe the ML model further (Figures S2-S4).

3.3 Results for smaller training sets

Most data sets in chemical science are often considerably smaller than 150K with many as small as 500-5000
molecules, so we investigate the effect on training set size on the conclusions drawn thus far. Figure 2a
shows that the average overlaps are essentially converged for 5K molecules. The drop in average overlap on
going to smaller training sets is more pronounced for the ground truth vector compared to the FPA vector
but even for a training set of 100 molecules the average overlaps (0.44 and 0.70) are still significantly larger
than for the null-model (0.31 and 0.58). Figures 8 and 9 show heat maps for molecules 1-4 for training set
sizes of 100 and 1000 molecules, respectively. Comparison to Figure 3 shows that for molecule 1 there is
very little change in the heatmap, overlaps, and predicted logP value on going to the smaller training set.
For molecule 2 the heatmap for 100, 1000, and 150K all look different from the ground truth and from each
other while the error in the predicted logP is consistently high. In contrast, for molecule 3 the FPA overlap
decreases from 0.77 to 0.70 to 0.33 on going from training set sizes of 100 to 1000 to 150K, while the error in
the predicted logP value decreases from 1.91 to 0.58 to -0.01. The furan ring is correctly predicted to make a
positive contribution to the logP for the two smaller training set sizes and the heatmaps are consistent with
a positive logP value. More generally, the number of molecules with ”sign problems” is lower for the smaller
training set sizes as shown in Figure S6. Finally, for molecule 4 the main difference in the heatmaps is the
growing contribution of some of the C atoms in the pyrimidine ring on going to larger training set sizes, but
the FPA overlap is essentially unchanged.

To sum up, most heatmaps and the corresponding FPA overlaps are relatively insensitive to the training
set size and the results are close to converged for a training set size of 1000 molecules, although for molecules
with low overlap some heatmaps change significantly. The difference in average error for molecules with
high and low overlap is more pronounced for smaller training sets (Figure S6), but this could just reflect the
larger spread in errors for models trained on smaller training sets.
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Figure 9: ML heatmaps for molecules 1-4 for a training set size of 1000 molecules.
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3.4 Comparison to related approaches

3.4.1 Dummy atom approach

Sheridan[12] has developed an XAI approach in which the contribution of an atom is determined by replacing
it with a Na atom and this approach has been adopted by others.[10, 8] The advantage if this approach is
its ease of implementation and general applicability to all kinds of molecular representations such as FPs
and graph neural networks. Figure 2b shows the average overlaps as a function of training set size using this
approach as implemented by Jimenez-Luna et al.[10] The overlaps are significantly lower, especially using
the FPA vector, where the average overlap is lower than the null-model for all training set sizes. The effects
on the average overlaps with the ground truth vector is less pronounced but the average overlaps are similar
to or lower than the null-model for training set sizes smaller than 5000 molecules.

The likely reason for the poorer performance of the dummy atom approach is that while it removes the
same bits as the Riniker and Landrum approach, it also introduces an equal number of new on-bits associated
with the dummy atom. These new on-bits introduces spurious logP contributions which can corrupt the
heatmaps. We note that these conclusions are specific to the FP representation and do not necessarily apply
to the use of dummy atoms with graph neural networks.

3.4.2 Overlap vs correlation coefficients

As mentioned in the introduction, Sanchez-Lengeling et al.[13] have tested graph-based atom attribution
methods by fitting solubility data[17] and then comparing the atomic attributions to the atomic contribu-
tions from the Crippen logP model - an approach that has also been used by Henderson et al.[9]. Both
used correlation coefficients to compare the vectors for individual molecules: Sanchez-Lengeling et al. used
Kendall’s tau (rank correlation) while Henderson et al. used Pearson’s r. In general we find that there is a
good correlation between Pearson’s r and the overlap. For example, for the 150K training set the average
Pearson’s r values for the ground truth and FPA ground truth are 0.46 and 0.74, which are in reasonable
agreement with the corresponding average overlaps of 0.54 and 0.75 (Table S2). However, comparing R and
overlap values for the four molecules in Figure 3 the R value occasionally overestimates the agreement with
the ground truth vector. For example, for molecules 3 and 4 the R values indicate significantly above-average
agreements with the ground truth vector, while the overlaps indicate slightly below-average agreements.

Since the models used by Sanchez-Lengeling et al. and Henderson et al. are fit to solubility values rather
than logP values one cannot say anything definitive about how their attribution methods compares to our
approach. However, the best average r values found by Sanchez-Lengeling et al. and Henderson et al. (0.37
and 0.28) are not too different from the corresponding value (0.43) we obtain for a training set size of 1000
(Table S2), which roughly corresponds to the size of the solubility dataset used in these studies. As pointed
out in both studies, these average r values are relatively low and our study suggests that perhaps they
could be improved somewhat by fitting the model to the Crippen logP values. However, a more important
factor could be that the ground truth attribution must be (somehow) adapted to better reflect the molecular
representation used in these graph-based models.

4 Conclusions and outlook

The ”atom attribution from finger prints”-method developed by Riniker and Landrum, when used with a
RF model fitted to Crippen logP values, gives atomic attribution heatmaps that are in reasonable agreement
with the atomic contribution heatmaps of the Crippen logP model for most molecules, with average heatmap
overlaps of up to 0.54. The agreement is increased significantly (to 0.75) when the atomic contributions are
adjusted to match the fact that the molecular representation (FPs) is fragment-based rather than atom-based
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(the FPA ground truth vector). Molecules where the atomic attribution differs significantly from the ground
truth tend to have slightly larger errors on average, but the correlation factor is near zero when considering
individual molecules.

Most heatmaps and the corresponding FPA overlaps are relatively insensitive to the training set size and
the results are close to converged for a training set size of 1000 molecules, although for molecules with low
overlap some heatmaps change significantly. The difference in average error for molecules with high and low
overlap is more pronounced for smaller training sets (Figure S6), but this could just reflect the larger spread
in errors for models trained on smaller training sets.

Heatmaps of the prediction uncertainty (AAU) and the uncertainty in the atomic attributions (UAA)
can help identify molecular regions that contribute significantly to errors in the logP prediction and/or at-
tribution and can be used to guide the design of counterfactual examples to probe the ML model further.

Our main conclusion is that the Crippen logP model provides an excellent benchmark for heatmap
approaches, especially if the ground truth heatmaps can be adjusted to reflect the molecular representation.
While this is straightforward for a FP representation, it is not immediately clear how to do this for graph-
based representations, should that be necessary. In any case, we have shown that a combination of a relatively
simple and widely used ML model and attribution method can provide heatmaps that are in good agreement
with the ground truth and give a great deal of insight into how the model has learned. Like the simpler
attribution benchmarks for classification tasks that have come before it, this work sets the bar for regression
tasks.
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Supporting Information

The code and data resulting from this study can be found here https://github.com/jensengroup/FP RF XAI
and https://sid.erda.dk/sharelink/eUVFpTDU62, respectively.

Table S1: Table of training and test MAE values

Training set size
100 500 1000 5000 10.000 20.000 50.000 100.000 150.000

Nbits

2048
train 0.59 0.46 0.44 0.39 0.37 0.36 0.34 0.32 0.31
test 1.01 0.86 0.79 0.73 0.71 0.67 0.63 0.60 0.58

1024
train 0.57 0.45 0.44 0.39 0.38 0.37 0.35 0.33 0.32
test 1.03 0.88 0.82 0.76 0.74 0.71 0.66 0.63 0.62

Table S2: Mean of Pearson’s r for the test set

Training set size
100 500 1.000 150.000

FPA 0.63 0.66 0.69 0.74
”ground truth” 0.34 0.39 0.43 0.46
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Figure S6: overlap, error and sign-problem analysis on test set based on model trained on 100, 500 and
150.000 entries with bit vector of length 2048. Doing the same analysis on the first 5000 entries of the
training set for the 150.000 model results in an increased number of molecules with sign problem (845 vs
672 for the test set) Doing the same analysis on the test set but with a model trained on 150.000 and with
a bit vector length of 1024 results in a decrease in the total number of molecules with the sign-problem (558
vs. 672)
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