Anaerobic defluorination of chlorine-substituted per- and polyfluorinated carboxylic acids triggered by microbial dechlorination

Bosen Jin¹, Shun Che^{1,2}, Jinyu Gao¹, Yaochun Yu¹, Jinyong Liu¹, Yujie Men^{1,2,*}

¹Department of Chemical and Environmental Engineering, University of California, Riverside,

California, 92521, United States

²Department of Civil and Environmental Engineering, University of Illinois at Urbana-

Champaign, Urbana, Illinois, 61801, United States

* Corresponding Author

Yujie Men

Department of Chemical and Environmental Engineering

University of California, Riverside

Address: A235 Bourns Hall, 3401 Watkins Drive, Riverside, CA 92521

Email: ymen@engr.ucr.edu; menyjam@gmail.com

Phone: (951) 827-1019

Table of Contents

Supplemental Methods
Determination of the biotransformation rate constant and half-life
Microbial acute toxicity test using luminescent bacteria (Vibrio fischeri)
Density functional theory (DFT) calculation of bond dissociation energies (BDE)
Table S1. Selected Cl-PFCAs and their basic information
Table S2. Transformation products and compounds structurally similar to the Cl-PFCAs
Table S3. Parent compound decay half-lives (with 95% confidence bounds) of twelve
transformable PFAS calculated with pseudo first-order reaction model by MATLAB
Figure S1. Comparison of F ⁻ measured by ISE and IC using six mock samples (blue) and four
real supernatant samples (green). Two red-dashed lines indicate the $\pm 10\%$ variation compared to
the 1:1 yellow-dashed line
Figure S2. Aerobic defluorination of Cl-PFCAs by the activated sludge community (the Cl-
PFCA mix includes all Cl-PFCAs in this study except for Cl-C2c and Cl-C3c)
Figure S3. Parent compound decay and fluoride formation in the abiotic and heat-inactivated
biomass controls for the investigated Cl-PFCAs
Figure S4. Parent compound decay for Cl-C2a, C2a (DFA), C2c (TFA), and Cl-C3a in the
activated sludge community under anaerobic condition (the target initial concentration was 50
μ M, ±20% variation occurred when adding stock solutions into the anaerobic batch reactors).S14
Figure S5. Anaerobic biotransformation and defluorination of C2b and C3c by the same
activated sludge community (A), the confirmation of TP155_C3c (B), and the plausible

biotransformation pathway of C2b (C) and C3c (D) (TPs in brackets were unstable transient
intermediates; in dashed boxes were those not detected; other TPs were confirmed using
reference compounds)
Figure S6. Calculation of bond dissociation energy (BDE) for the investigated Cl-PFCAs S16
Figure S7. The identification of TP110_Cl-C2b (A) and TP77_Cl-2b/TP77_Cl-C2c (B) (Note:
MS^2 was not available for the reference standards, MS^1 and isotopic pattern of Cl (${}^{35}Cl:{}^{37}Cl = 3:1$
in nature) were used for the structure confirmation, instead)
Figure S8. Proposed biodefluorination pathways of Cl-C2c
Figure S9. The identification of TP144_Cl-C3b (A) and TP127_Cl-C3b/TP127_Cl-C3c (B)S19
Figure S10. Biotransformation and fluoride formation of H-PFCAs (A & B) and PFdiCAs (C &
D) under anaerobic condition
Figure S11. The identification of TP160_Cl-C3c

TPs; (G) the list of CTFE4 TPs; (H) the confirmation of TP138 of CTFE4 (See Figu	re S14D for
the confirmation of TP170)	\$38
Figure S16. EC ₅₀ values of Cl-PFCA (for Cl-PFCAs, $C# = 4$, 6, and 8 represent CTI	FE2, CTFE3,
and CTFE4, respectively, and $C# = 5$, 7, and 9 represent Cl-terminal PFCA; H-PFC	A: H-
terminal PFCA)	\$39
References	S40

Supplemental Methods

Determination of the biotransformation rate constant and half-life

For most of the investigated Cl-PFCAs, no significant abiotic transformation and passive adsorption was observed. For those Cl-PFCAs, the parent compound decay data were fitted into a pseudo first-order reaction model in MATLAB:¹

$$C = C_0 \cdot e^{-kt}$$

where C represents the concentration of the parent compound (μ M) at time t; C₀ is the initial concentration (μ M); k is the pseudo-first order removal rate constant (d⁻¹); t is the incubation time (d). The removal half-life of the parent compound was:

$$t_{1/2} = \frac{\ln\left(2\right)}{k}$$

Microbial acute toxicity test using luminescent bacteria (Vibrio fischeri)

The microbial acute toxicity test was carried out using a BioTox Watertox Standard Kit (EBPI, Mississauga, ON, Canada). The procedure was modified based on the ISO method $11348-3^2$ and conducted in 96-well plates according to manufacturer's instructions. Briefly, the freeze-dried luminescent bacterial reagent was firstly reconstituted in 1 mL of reagent diluent and incubated at 4 °C for at least 30 minutes. Selected PFAS was diluted in 1 mL Milli-Q water with the final concentration of 50 μ M. The sample was then adjusted to reach the pH of 7.0 \pm 0.2 and the dissolved oxygen (DO) value above 3 mg/L. The adjusted sample with a series of diluted samples (n = 10) and a negative control (sample diluent) with the volume of 150 μ L each were

transferred to the white 96-well microplate (Fisher Scientific) labeled as Plate A. Each PFAS chemical had a duplicate test.

Bacterial suspension (3 μ L) and 150 μ L sample diluent (20 g/L of NaCl in Milli-Q water) were transferred to the white 96-well microplate (Fisher Scientific) labeled as Plate B. After another incubation at 20 °C ± 1 °C for 15 minutes, the luminescence values (I₀) were detected by the BioTek Synergy H1 Hybrid Multi-Mode Reader (Winooski, VT, USA). Samples in Plate A (150 μ L) were then transferred to Plate B. The luminescence values (I_t) were also read after inoculation at 20 °C ± 1 °C for 15 minutes. More details about the toxicity test were shown in the SI. The inhibitory effect (E_t) of a test sample was calculated based on the luminescence strength:

$$E_t \% = \left(1 - \frac{I_t}{I_0 \times \frac{I_{t-NC}}{I_{0-NC}}}\right) \times 100\%$$

where I_{t-NC} and I_{0-NC} were the luminescence values of negative control. Inhibitory effects (E_t) versus concentrations (C_i) were plotted in MATLAB (The MathWorks, Natick, MA) and fitted to the adjusted Hill equation to calculate the EC₅₀ value of a PFAS chemical:

$$E_t = E_{min} - \frac{E_{max} - E_{min}}{1 + (\frac{EC_{50}}{C_i})^n}$$

where E_{min} and E_{max} were the minimum and maximum effects calculated by the software, and n was the Hill coefficient.

(1) Add 150 μL of sample diluent to each relative well with 3 μL cooled bacterial stock spiked; (2) measure initial light intensity (I₀) after 15-minute incubation; (3) add 150 μL of sample from Plate A; (4) measure light intensity (I_t) after 15-minute incubation.

Density functional theory (DFT) calculation of bond dissociation energies (BDE)

BDE of C–F and C–Cl bonds were calculated for all examined compounds by the GAUSSIAN 09 software package as previously described.³ All molecular geometries were calculated by the B3LYP/6-311+G(2d,2p) hybrid functional theory. Grimme empirical dispersion correction with the Becke-Johnson damping term (D3-BJ) was added to the calculation for the optimization.

Compound*	ID #**	CAS #	Structure and formula	Purity (%)	RT (min)	LOD (µM)	LOQ (µM)
2-chloro-2,2-difluoroacetic acid ⁽¹⁾	Cl-C2a	1895- 39-2	$CI \rightarrow OH$ F F $C_2HCIF_2O_2$	97	1.34	0.07	0.1
2,2-dichloro-2-fluoroacetic acid ⁽¹⁾	Cl-C2b	354-19- 8	CI C	≤100	1.72	0.1	0.2
2-chloro-2-fluoroacetic acid ⁽¹⁾	Cl-C2c	471-44- 3	C_{1} C_{1} C_{1} C_{1} C_{2} $HCl_{2}FO_{2}$	≤100	1.02	0.3	0.5
3-chloro-2,2,3,3- tetrafluoropropanoic acid ⁽¹⁾	Cl-C3a	661-82- 5	CI F F OH F F OH C3HClF4O2	97	3.32	0.1	0.2
2-chloro-2,3,3,3- tetrafluoropropanoic acid ⁽²⁾	Cl-C3b	6189- 02-2	F F C C 3HCIF4O2	99	3.47	0.1	0.2
2,2-dichloro-3,3,3- trifluoropropanoic acid ⁽²⁾	Cl-C3c	422-39- 9	F OH CI CI C ₃ HCl ₂ F ₃ O ₂	95	4.62	0.2	0.7
3,4-dichloro-2,2,3,4,4- pentafluorobutanoic acid ⁽¹⁾	CTFE2	375-07- 5	$CI \rightarrow CI \rightarrow$	97	5.62	0.05	0.1
5-chloro-2,2,3,3,4,4,5,5- octafluoropentanoic acid ⁽³⁾	Cl-C5a	66443- 79-6	F F F F O F F F F F $C_5HClF_8O_2$	95	6.24	0.005	0.01
3,5,6-trichloro-2,2,3,4,4,5,6,6- octafluorohexanoic acid ⁽¹⁾	CTFE3	2106- 54-9	$\begin{array}{c c} CI & FCI & F & O \\ CI & & & OH \\ F & F & F & F & F \\ F & F & F & F \\ C_6 H Cl_3 F_8 O_2 \end{array}$	95	6.75	0.05	0.1
7-chloro-2,2,3,3,4,4,5,5,6,6,7,7- dodecafluoroheptanoic acid ⁽¹⁾	Cl-C7a	1550- 24-9	$CI \xrightarrow{F F F F F F F}_{F F F F F F F} OH$ $C_7HCIF_{12}O_2$	97	6.97	0.001	0.01
3,5,7,8-tetrachloro- 2,2,3,4,4,5,6,6,7,8,8- undecafluorooctanoic acid ⁽¹⁾	CTFE4	2923- 68-4	$\begin{array}{c} F CIF CIF CIF OH \\ F FF FF FF FF \\ C_8 H Cl_4 F_{11} O_2 \end{array} $	95	7.25	0.1	0.2
9-chloro- 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9- hexadecafluorononanoic acid ⁽¹⁾	Cl-C9a	865-79- 2	CI F F F F F F F F F F F F F F F F F F F	≤100	7.43	0.01	0.05

Table S1. Selected Cl-PFCAs and their basic information

*: CI-PFCA compounds were purchased from three companies: (1) SynQuest Laboratories, Inc (Alachua, FL,

USA); (2) Matrix Scientific (Columbia, SC, USA); (3) Manchester Organics, Ltd (Runcorn, UK)

**: ID numbers were created based on the number of carbons. The lowercase "a" represents that the Cl-PFCA only contains one terminal chlorine.

Compound*	ID #**	CAS #	Structure and formula	Purity (%)	RT (min)	LOD (µM)	LOQ (µM)
2,2-difluoroacetic acid ⁽¹⁾	C2a (DFA)	381-73- 7	$F \rightarrow OH F$ $C_2H_2F_2O_2$	98	0.91	0.05	0.1
2-fluoroacetic acid ⁽²⁾	C2b (MFA)	144-49- 0	F_{OH} $C_2H_3FO_2$	N/A	0.88	1	1.5
2,2,2-trifluoroacetic acid ⁽¹⁾	TFA	76-05-1	Г F F C2HF3O2	99	1.1	.01	.05
2,2,3,3- tetrafluoropropanoic acid ⁽¹⁾	C3a	756-09- 2	$\begin{matrix} F & O \\ F & F \\ C_3 H_2 F_4 O_2 \end{matrix}$	97	1.31	0.001	0.01
2,3,3,3- tetrafluoropropanoic acid ⁽¹⁾	C3b	359-49- 9	$F \rightarrow OH$ $F \rightarrow OH$ F	97	1.23	0.005	0.01
3,3,3-trifluoropropanoic acid ⁽¹⁾	C3c	2516- 99-6	$F \rightarrow OH$ $F \rightarrow OH$ $C_3H_3F_3O_2$	97	1.14	0.05	0.5
2,2,3,3,3- pentafluoropropanoic acid ⁽¹⁾	PFPrA	422-64- 0	F F F C ₃ HF ₅ O ₂	98	2.22	0.001	0.05
2,2,3,3,4,4- hexafluorobutanoic acid ⁽¹⁾	C4a (H-PFBA)	679-12- 9	$\begin{array}{c} F & F \\ F & F \\ F & F \\ C_4H_2F_6O_2 \end{array}$	97	3.01	0.001	0.005
2,2,3,3,4,4,4- heptafluorobutanoic acid ⁽¹⁾	PFBA	375-22- 4	F F OF F F $OF F F C_4HF_7O_2$	98	5.07	0.001	0.01
2,2,3,3,4,4,5,5- octafluoropentanoic acid ⁽¹⁾	C5a (H-PFPeA)	376-72- 7	F F F O F F F F C5H2F8O2	97	5.25	0.001	0.01
2,2,3,3,4,4,5,5,5- nonafluoropentanoic acid ⁽¹⁾	PFPeA	2706- 90-3	F F F OF F F $OF F F F C_{5}HF_{9}O_{2}$	98	6.1	0.001	0.01
2,2,3,3,4,4,5,5,6,6,6- undecafluorohexanoic acid ⁽¹⁾	PFHxA	307-24- 4	FFFF FFFF C6HF11O2	97	6.59	0.001	0.01
2,2,3,3,4,4,5,5,6,6,7,7- dodecafluoroheptanoic acid ⁽¹⁾	C7a (H-PFHpA)	1546- 95-8	$\begin{array}{c} F & F & F & F & F \\ F & F & F & F & F \\ F & F &$	98	6.38	0.005	0.05

Table S2. Transformation products and compounds structurally similar to the Cl-PFCAs

2,2,3,3,4,4,5,5,6,6,7,7,7- tridecafluoroheptanoic acid ⁽¹⁾	PFHpA	375-85- 9	F = F = F = F = O F = F = F = F = F $C_7 H F_{12} O_2$	97	6.93	0.005	0.01
2,2,3,3,4,4,5,5,6,6,7,7,8, 8- tetradecafluorooctanoic acid ⁽¹⁾	C8a (H-PFOA)	13973- 14-3	F F F F F F F OH F F F F F F F F C $C_8H_2F_{14}O_2$	97	6.66	0.001	0.005
2,2,3,3,4,4,5,5,6,6,7,7,8, 8,8- pentadecafluorooctanoic acid ⁽¹⁾	PFOA	335-67- 1	FFFFFFF C8HFI5O2	98	7.18	0.001	0.005
2,2,3,3,4,4,5,5,6,6,7,7,8, 8,9,9- hexadecafluorononanoic acid ⁽¹⁾	C9a (H-PFNA)	76-21-1	$\begin{array}{c} F F F F F F F F F F O \\ F F F F F F F F F \\ C_9 H_2 F_{16} O_2 \end{array} $	97	6.92	0.005	0.01
2,2,3,3,4,4,5,5,6,6,7,7,8, 8,9,9,9- heptadecafluorononanoic acid ⁽¹⁾	PFNA	375-95- 1	F = F = F = F = O = O = O = O = O = O =	97	7.4	0.000 1	0.001
Propanedioic acid ⁽¹⁾	Malonic acid	141-82- 2	о о но Он С ₃ Н4О4	100	0.85	1	2
2,2-difluoromalonic acid ⁽¹⁾	PFPrdiA	1514- 85-8	HO F F C ₃ H ₂ F ₂ O ₄	98	0.82	0.05	0.5
2,2,3-trifluorosuccinic acid ⁽⁴⁾	TP170	664-66- 4	HO F $C_4H_3F_3O_4$	N/A	0.84	0.01	0.1
2,2,3,3- tetrafluorosuccinic acid ⁽¹⁾	PFBdiA	377-38- 8	$\begin{array}{c} HO \xrightarrow{F} \xrightarrow{F} \overset{O}{\overset{O}} \\ O \xrightarrow{F} \xrightarrow{F} \\ C_4 H_2 F_4 O_4 \end{array}$	98	0.81	0.005	0.01
2,2,3,3,4,4- hexafluoropentanedioic acid ⁽¹⁾	PFPediA	376-73- 8	HO F	98	0.86	0.01	0.1
2,2,3,3,4,4,5,5- octafluorohexanedioic acid ⁽¹⁾	PFHxdiA	336-08- 3	$\begin{array}{c} F F F F F \\ O F F F F \\ C_6 H_2 F_8 O_4 \end{array}$	97	1.12	0.01	0.05
2,2,3,3,4,4,5,5,6,6- decafluoroheptanedioic acid ⁽³⁾	PFHpdiA	14919- 09-6	HO F F F F F F F F	90	NA	NA	NA
2,2,3,3,4,4,5,5,6,6,7,7,8, 8- tetradecafluorononanedi oic acid ⁽¹⁾	PFNdiA	23453- 64-7	$HO \xrightarrow{FFFFFF}O \\ FFFFFFFFFFFFFFFFFFFFFFFFFFFFF$	90	5.36	0.001	0.01

*: (1) SynQuest Laboratories, Inc (Alachua, FL, USA); (2) Actually, the examined chemical is sodium fluoroacetate (CAS#: 62-74-8) from MP Biomedicals LLC (Irvine, CA, USA); (3) Mcule, Inc. (Palo Alto, CA, USA); (4) Oakwood Products, Inc. (Estill, SC, USA)

**: ID numbers were created based on the number of carbons.

PFAS	Half-life (Day)	R ²
CI-C2b	11.5 ± 1.6	0.975
CI-C2c	24.5 ± 3.5	0.937
MFA	73.2 ± 11.4	0.912
CI-C3b	15.5 ± 2.3	0.972
CI-C3c	5.0 ± 1.1	0.973
C3c	637.2 ± 189.5	0.767
CI-C5a	633.5 ± 247.5	0.738
CI-C7a	488.6 ± 200.3	0.545
CI-C9a	53.0 ± 15.5	0.772
CTFE2	18.2 ± 8.5	0.870
CTFE3	3.4 ± 0.4	0.995
CTFE4	3.5 ± 3.0	0.882

Table S3. Parent compound decay half-lives (with 95% confidence bounds) of twelve transformable PFAS calculated with pseudo first-order reaction model by MATLAB.

Figure S1. Comparison of F^- measured by ISE and IC using six mock samples (blue) and four real supernatant samples (green). Two red-dashed lines indicate the ±10% variation compared to the 1:1 yellow-dashed line.

Figure S2. Aerobic defluorination of Cl-PFCAs by the activated sludge community (the Cl-PFCA mix includes all Cl-PFCAs in this study except for **Cl-C2c** and **Cl-C3c**).

Figure S3. Parent compound decay and fluoride formation in the abiotic and heat-inactivated biomass controls for the investigated Cl-PFCAs.

Figure S4. Parent compound decay for **Cl-C2a**, **C2a** (DFA), **C2c** (TFA), and **Cl-C3a** in the activated sludge community under anaerobic condition (the target initial concentration was 50 μ M, ±20% variation occurred when adding stock solutions into the anaerobic batch reactors).

Figure S5. Anaerobic biotransformation and defluorination of **C2b** and **C3c** by the same activated sludge community (A), the confirmation of TP155_C3c (B), and the plausible biotransformation pathway of **C2b** (C) and **C3c** (D) (TPs in brackets were unstable transient intermediates; in dashed boxes were those not detected; other TPs were confirmed using reference compounds).

Figure S6. Calculation of bond dissociation energy (BDE) for the investigated Cl-PFCAs.

Figure S7. The identification of TP110_Cl-C2b (A) and TP77_Cl-2b/TP77_Cl-C2c (B) (Note: MS^2 was not available for the reference standards, the MS^1 spectrum and the isotopic pattern of Cl (${}^{35}Cl{}^{-37}Cl = 3:1$ in nature^{4, 5}) were used for the structure confirmation, instead).

Figure S8. Proposed biodefluorination pathways of Cl-C2c.

Figure S9. The identification of TP144_Cl-C3b (A) and TP127_Cl-C3b/TP127_Cl-C3c (B).

Figure S10. Biotransformation and fluoride formation of H-PFCAs (A & B) and PFdiCAs (C & D) under anaerobic condition.

Figure S11. The identification of TP160_Cl-C3c (Note: the one Cl-substitution in the structure was indicated by the isotopic pattern of Cl, 35 Cl: 37 Cl = 3:1^{4, 5}).

Figure S12. Anaerobic biotransformation and fluoride formation of **Cl-C7a** (A) and **Cl-C9a** (B), the sorption of **Cl-C9a** and its TPs on the active biomass at the end of incubation (C), and the plausible anaerobic biotransformation pathway of **Cl-C7a** (D) and **Cl-C9a** (E) (Note: no significant adsorption shown in autoclaved samples, see **Figure S3I**; the total concentrations of extracellular and biomass-associated **Cl-C9a** and its TPs were shown in panel B due to significant bioadsorption).

Figure S13. TP identification for Cl-C5a (A-B), Cl-C7a (C-D), and Cl-C9a (E-F).

(C)

160

Figure S14. TP identification of **CTFE2** (A – D) and **CTFE3** (E – Q) (Note: for TPs with Cl-substitution, the isotopic pattern of Cl (35 Cl: 37 Cl = 3:1 in nature^{4, 5}) in MS¹ was used for the structure elucidation).

S34

(G)

ТР	Structure Formula ([M-H]⁻)	Actual m/z ([M-H]⁻, error <5ppm)	RT (min)	Confidence level ^a	Change from parent compound (C ₈ Cl₄F ₁₁ O₂ [−])
TP442	F CIF H F CI O CI F F F F F F F F C8HCl3F11O2 ⁻	442.8872	7.15	3	–Cl+H
TP440	$\begin{array}{c} F \\ CI \\ OH \\ F \\ $	440.8915	6.70	3	(–CI+H) + (–F+OH)
TP422	$\begin{array}{c} F \\ CI \\ CI \\ F \\ F \\ F \\ F \\ C_8 \\ CI_3 \\ F_{10} \\ O_2^- \end{array}$	422.8810	7.21	3	–CIF
TP408(1) TP408(2)	$(1) \xrightarrow{F + F + F + F + F}_{F + F + F + F + F} (2) \xrightarrow{F + F + F + F + F}_{F + F + F + F + F} (2) \xrightarrow{F + F + F + F + F}_{F + F + F + F + F} (2) \xrightarrow{F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F + F}_{C 8} (2) \xrightarrow{F + F + F + F + F + F + F + F}_{C 8} (2) F + F + F + F + F + F + F + F + F + F +$	408.9262	(1) 6.78 (2) 6.93	3	(–Cl+H) + (–Cl+H)
TP406	$\begin{array}{c} F & F & CIF & CI & O \\ F & & & & & \\ F & F & F & F & F & F \\ \hline C_8 Cl_2 F_{11} O_2^{-} \end{array}$	406.9105	7.13	3	-2CI
TP404	$\begin{array}{c} F \\ Cl \\ Cl \\ F \\ $	404.9149	6.38	3	(–Cl+H) + (–Cl+OH) + (–HF)
TP402(1) TP402(2) TP402(3)	$\begin{array}{c} F_{O} G_{F} F_{F} F_{F} G_{F} G} G_{F} G_{F} G_{F} G_{F} G} G_{F} G_{F} G_{F} G_{F} G_{F} G_{F} G_{F} G} G_{F} G_{F} G G_{F} G} G_{F} G_{F} G} G_{G} G_{F} G} G_{G} G_{G} G} G_{G} G G} G G G G $	402.9192	(1) 4.17 (2) 4.24 (3) 4.40	3	(–Cl+H) + (–Cl+OH) + (–HF) + (–F+OH)
TP388(1) TP388(2) TP388(3)	$\begin{array}{c} F \\ CI \\ F \\ F \\ F \\ F \\ F \\ C_8 \\ HCl_2 \\ F_{10} \\ O_2^{-} \end{array}$	388.9199	(1) 6.87 (2) 6.99 (3) 7.09	3	(–CI+H) + (–CIF)
TP374 ^b	EHEHEHO CI FEEEFEE C8H3CIF11O2 ⁻	374.9651	6.55	3	(–Cl+H) + (–Cl+H) + (–Cl+H)

TP372	$F = F = F = F = F$ $F = F = F = F$ $C_8 HCIF_{11}O_2^{-1}$	372.9495	6.75	3	(–2Cl) + (–Cl+H)
TP370	$HO \xrightarrow{F} F F F F F F F F F F F F F F F F F F $	370.9130	6.99	2b	(–2Cl+2OH) + (– 2HF) + (–F+OH) + (–CO)
TP368(1) ^b TP368(2) ^b TP368(3) ^b	$\begin{array}{c} F + F + F & G \\ H \\ O \\ F \\ $	368.9582	(1) 3.00 (2) 3.49 (3) 3.91	3	(–Cl+H) + (–Cl+OH) + (–HF) + (–F+OH) + (–Cl+H)
TP356⁵	$\begin{array}{c} F H F H H F O \\ CI \\ F F F F F F F H \\ C_8H_4CIF_{10}O_2^{-} \end{array}$	356.9746	6.39	3	(–Cl+H) +(–Cl+H) + (–ClF) + (+2H)
TP354(1) ^b TP354(2) ^b	$\begin{array}{c} \begin{array}{c} \begin{array}{c} F \\ F $	354.9589	(1) 6.73 (2) 6.79	3	(–Cl+H) +(–Cl+H) + (–ClF)
TP348⁵	$HO \xrightarrow{F} HF CI \xrightarrow{F} O O$	348.9519	3.12	3	(–Cl+H) + (–Cl+OH) + (–HF) + (–F+OH) + (–ClF)
TP341⁵	$F + F + F + O$ $F + F + F + O$ $F + F + F + F + O$ $F + F + F + F + O$ $C_8H_4F_{11}O_2^{-1}$	341.0041	5.91	2b	(–Cl+H) +(–Cl+H) + (–Cl+H) + (–Cl+H)
TP338⁵	$F F F F F F O O^{-1}$ $F F F F F F F F F C_8H_2F_{11}O_2^{-1}$	338.9885	6.41	2b	(–CI+H) + (–CI+H) + (–2CI)
TP336	$HO \xrightarrow{O} F H F CI O \\ HO \xrightarrow{F} F F F F F F F F F F F F F F F F F F $	336.9519	6.55	2b	(–2Cl+2OH) + (– 2HF) + (–F+OH) + (–CO) + (–Cl+H)
TP320(1) ^b TP320(2) ^b TP320(3) ^b	F H F F H O $F F H F F F F$ $F F F F F F F$ $F F F F F H O$ $F F F F F H O$ $F F F H O$	320.9979	(1) 5.96 (2) 6.07 (3) 6.16	3	(–CI+H) + (–CIF) + (–2CI) + (2H)

TP318(1) ^b TP318(2) ^b TP318(3) ^b	F F F F F O F F F F F O F F F F F O F	318.9822	(1) 6.32 (2) 6.50 (3) 6.66	3	(–2Cl) + (–CIF) + (– CI+H)
TP314⁵	F H F H F O HO F F F F F C8H3F8O4 ⁻	314.9909	1.62	3	(–CI+OH) + (–HF) + (–F+OH) + (– 2CI+2H) + (–CIF)
TP306⁵	H F F H H F O CI F F F F F H C7H4CIF8O2 ⁻	306.9778	5.87	3	(-CI+OH) + (-HF) + (-F+OH) + (-CIF) + (2H) + (-CI+H) + (- COO)
TP210	F F F F C4HCIF₅O2 ⁻	210.9591	4.62	3	(–CI+OH) + (–HF) + (–C4CIF5O2) + O + (–CI+H)
TP204 [♭]	F CI O HO F F C4HCIF3O4 [−]	204.9521	0.85	2b	(–2Cl+2OH) + (– 2HF) + (–F+OH) + (–C ₄ ClF ₅ O ₂) + O
TP176 ^ь	H F O F − − H F F F C4H2F5O2 [−]	176.9980	1.72	3	(–CI+OH) + (–HF) + (–C₄CIF₅O₂) + O + (–2CI+2H)
TP174	$\begin{array}{c} F & O \\ F & F & F \\ F & F & F \\ C_4 F_5 O_2^{-} \end{array}$	174.9826	2.59	3	(-CI+OH) + (-HF) + (-C ₄ CIF ₅ O ₂) + O + (-2CI)
TP170 ^b	$HO \qquad F \qquad H \qquad O^{-} \qquad$	170.9911	0.85	1	(-2Cl+2OH) + (- 2HF) + (-F+OH) + (-C4ClF ₅ O ₂) + O +(- Cl+H)
TP138⁵	0 0 H0 F F C ₃ HF ₂ O ₄ −	138.9848	0.83	1	(–CI+OH) + (–HF) + (–C₅Cl₃Fଃ) + OH

^aConfidence level 1: confirmed structure using reference compounds based on RT, MS¹, and MS² (if available); level 2b: probable structure proposed without available reference compounds or library spectrum data and with no other possible structures according to the experimental information including the parent compound information and the MS2 fragmentation profile; level 3: tentative structures, where insufficient information for one exact structure only (e.g., positional isomers).

^bStable or semistable TPs, which were accumulated or very slowly transformed.

Figure S15. (A) Removal and fluoride formation of **CTFE4** in the biotransformation group, the fresh-medium abiotic control, and the heat-inactivated control; (B - F) the formation of **CTFE4** TPs; (G) the list of **CTFE4** TPs; (H) the confirmation of TP138 of **CTFE4** (See **Figure S14D** for the confirmation of TP170).

Figure S16. EC₅₀ values of Cl-PFCA (for Cl-PFCAs, C# = 4, 6, and 8 represent **CTFE2**, **CTFE3**, and **CTFE4**, respectively, and C# = 5, 7, and 9 represent Cl-terminal PFCA; H-PFCA: H-terminal PFCA).

References

1. Lee, H.; Tevlin, A. G.; Mabury, S. A.; Mabury, S. A., Fate of polyfluoroalkyl phosphate diesters and their metabolites in biosolids-applied soil: biodegradation and plant uptake in greenhouse and field experiments. *Environ. Sci. Technol.* **2014**, *48*, (1), 340-349.

2. ISO, I.-. Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test)—Part 3: Method Using Freeze-Dried Bacteria. In International Organization for Standardization Geneva: 2007.

3. Yu, Y.; Zhang, K.; Li, Z.; Ren, C.; Chen, J.; Lin, Y. H.; Liu, J.; Men, Y., Microbial cleavage of c-f bonds in two C₆ per- and polyfluorinated compounds via reductive defluorination. *Environ. Sci. Technol.* **2020**, *54*, (22), 14393-14402.

4. Elsner, M.; Hunkeler, D., Evaluating chlorine isotope effects from isotope ratios and mass spectra of polychlorinated molecules. *Anal. Chem.* **2008**, *80*, (12), 4731-4740.

5. Zhang, X.; Di Lorenzo, R. A.; Helm, P. A.; Reiner, E. J.; Howard, P. H.; Muir, D. C. G.; Sled, J. G.; Jobst, K. J., Compositional space: A guide for environmental chemists on the identification of persistent and bioaccumulative organics using mass spectrometry. *Environ. Int.* **2019**, *132*, 104808.