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ABSTRACT: C-H amination chemistry promises to streamline access to nitrogen-containing fine chemicals. The typical need for N-activating
substituents — such of N-sulfonyl groups, which are challenging to remove and difficult to engage in synthetic elaboration — limits synthetic
utility. Here, we demonstrate that N-benzylaminopyridinium species, generated by C—H aminopyridylation, provide a platform for synthetic

elaboration via reductive N-N bond activation to unveil electrophilic N-
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pyridinium intermediates and demonstrates a new approach to C-H ami-
nation with synthetically addressable, bifunctional reagents.
The presence of amines and other nitrogen-based functional (&) current methods for electrophilic C-H amination
groups can profoundly impact the chemical and biological proper- y L SO "
ties of organic small molecules and thus C-N bonds are ubiquitous e —— — ’
. ) . . 1 . R™ R subvalent R™ R deprotection R™ R
in pharmacologically active organic scaffolds.' In both biology and nirogen ree
intermediates i
synthetic chemistry, installation of C-N bonds typically requires , , amines
substrate pre-oxidation, which inherently limits the efficiency and (b) G=H amination, functionalization cascades via N-aminopyridiniums
versatility of synthetic approaches to these important molecules.” A I
variety of C-H amination methods, based on either nitrene or nitro- )H\ C-H amination with  H-- N
gen-centered radical intermediates, have been advanced to install N- AT "R N-aminopyridinium 5.~ deprotecition R
containing functional groups without the need for substrate prefunc- P e h e N
tionalization (Figure la).** In practice, electron-withdrawing R( ] @ ﬂ NN activation o
groups, such as N-sulfonyl substituents, are typically required to ac- R
tivate aminating reagents for C—H functionalization and methods to Jit NTs s 9
. . . TMSO™ "R — A'YN\APh
elaborate the resulting sulfonamides to more complex nitrogen-con- AT TR I
taining molecules are limited.”* HG diversifiable
) ) g . nitrogen fragment HsC
We recently introduced N-aminopyridinium salts as bifunc- 4 — L. = )
tional reagents in C-H amination chemistry.” The combination of a Boc Ar_<N N
R Boc

nucleophilic N-amino group and a reductively activatable N-N
bond® provided a platform to couple C-H amination with C-N
cross coupling to achieve formal nitrene transfer to benzylic C-H
bonds. Here, we demonstrate that reductive activation of the same
N-N bonds allows derivatization of the products of C~H amination
via electrophilic N-centered radicals (Figure 1b).? We highlight the
amination/derivatization sequence in (1) the synthesis of tetrahy-
droisoquinolines, which are important heterocycles in medicinal
chemistry and can be challenging to prepare by existing methods,"
and (2) the synthesis of oi-aminoketones via formal aza-Rubottom
chemistry." These protocols enable conversion of benzylic C-H
bonds to an array of nitrogen-containing products and significantly
expand the utility of N-aminopyridiniums as lynchpins of molecular
synthesis.

During our initial studies of C-H aminopyridylation, we de-
veloped conditions that promoted selective benzylic C-H

Figure 1. (a) Direct C-H amination via nitrene transfer or radical-mediated
processes typically requires activation of the amine fragment with electron with-
drawing substituents, which can be removed to ultimately generate free amines.
(b) Here, we demonstrate C—H amination with N-aminopyridinium which pro-
vides the opportunity to diversify the products of C-H amination via amidyl rad-
icals generated by reductive N-N cleavage.

functionalization of a variety of ethyl and alkylbenzene derivatives.”
We envisioned that oxidative quenching of the excited state of an ap-
propriate photoredox mediator would promote reductive cleavage
of the N-N bond of these compounds to release pyridine and unveil
an electrophilic aminyl radical. The generated aminyl radical could
be engaged with exogenous substrate, such as an olefin, with the po-
tential for additional C-C bond formation through cyclization in the
presence of pendant phenyl moiety (vide infra). Initial attempts to
photolyze a solution of 1a in the presence of aryl olefins and a variety
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Figure 2. Visible-light promoted functionalization of N-benzylaminopyridiu-
nium 2a in presence of styrene afforded carboamination product Sa while analo-
gous functionalization of N-H substrate 1a was not productive. The dichoto-
mous observations are presumably due to stabilization of incipient N-centered
radical via tosyl substitution. Conditions: [Ir(ppy).(dtbbpy)][PFs] (4, 1 mol%),
blue LED, CH,Cl, 0 °C..

of photoredox mediators were unsuccessful. We observed complete
recovery of starting materials with no desired N-N cleavage. We rea-
soned that the inability to achieve N-N cleavage may arise from the
instability of the aminyl radicals that would result from reductive ex-
trusion of pyridine from 1a and hypothesized that the installation of
a sulfonyl group would stabilize the incipient N-centered radical
(Figure 2). Tosylation of 1a by treatment with TsCl, K.COs, and
DMAP (10 mol%) afforded sulfonamide 2a. Consistent with the hy-
pothesis that tosylation would enable reductive activation of the N-
benzylaminopyridinium: The cyclic voltammograms (CVs) of com-
pound 1a and 2a reveal that onset potential for reduction for com-
pound 1a and 2a are -1.31 V and -0.86V vs. Ag/AgNO:s, respec-
tively (Figure S1).

Photolysis (A 463 nm) of sulfonamide 2a with
[Ir(ppy)2(dtbbpy)][PFs] (4, 1 mol%) in the presence of styrene

(3a) resulted in the evolution of tetrahydroisoquinoline 5a in 71%
yield (1.4:1 ratio of cis:trans diastereomers).

Tetrahydroisoquinoline Sa represents the product of anti-Markov-
nikov carbonamination of styrene. Control reactions in the absence
of light and/or photocatalyst did not yield any deaminative product.
For details of the carboamination optimization, including the impact
of solvent, photocatalyst, reaction stoichiometry, and reaction tem-
perature, see the Supporting Information (Tables S1-S4).

The developed carboamination chemistry tolerates substitu-
tion on both the aminopyridinium and styrene reaction partners. Re-
action of 4-fluorostyrene with differently substituted amino-
pyridinium salts resulted in the formation of tetrahydroisoquino-
lines Sb-Sd. Reaction of differently substituted halostyrenes with 2a
affords the corresponding tetrahydroisoquinolines (Se-Sg) as dia-
stereomeric mixtures in 68-78% yield. The relative stereochemistry
of the tetrahydroisoquinoline products was assigned based on sin-
gle-crystal X-ray diffraction analysis of chlorinated tetrahydroiso-
quinoline Se (for crystallographic details, see Figures $2-S3 and Ta-
bles $5-S6 in the Supporting Information). Electron-donating sub-
stituents such as 4- and 3-methylstyrenes afforded tetrahydroiso-
quinolines Sh and $i with trans- and cis-diastereomers being major
products, respectively. Deaminative carboamination of 4-ace-
toxystyrene provided tetrahydroisoquinoline §j in 76% yield with
the trans diastereomer being major product. Tetrahydroisoquino-
lines Sk-Sn, derived from electron-deficient styrenes, were accessed
in 47-61% yield with cis diastereoselectivity. Reaction with weakly
withdrawing 4-vinyl-1,1'-biphenyl afforded tetrahydroisoquinoline
So in 48% yield with a mixture of 1:2.2 cis: trans diastereoisomers.
Deaminative carboamination of 4-(chloromethyl)styrene yielded
Sp in 76% yield with cis isomer as the major product. It should be
noted that no significant side-reaction via hydrogen atom abstrac-
tion (HAA) at the benzylic position of 4-(chloromethyl)styrene was
observed. Bulky olefinic substrate such as 2-vinylnaphthalene
yielded 5q in 53% yield with trans isomer as the major component.
The reaction is also tolerant to substitution on the N-benzylamino-
pyridinium coupling partners. For example, coupling of 2d, the N-
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Figure 3. Photocatalytic carboamination promoted by deaminative functionalization of 2 in presence of olefins provides access to a family of 1,4-subsituted tetrahydroi-

soquinolines 5. Conditions: 2 (1.0 equiv), 3 (1.6 equiv), CH2Cl, 0 °C, 16 h. dr cis:trans
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Figure 4. Functionalization of N-benzylpyridiunium 4 with (a) nucleophilic het-
erocycles (conditions: 2a (1.0 equiv), 6 (3.0 equiv), CH2Cl, 35 °C, 16 h), and
(b) silyl enol ethers (conditions: 2a (1.0 equiv), 8 (2.0 equiv), CH.Cl, 0°C, 16
h). *4 equivalents of 8 were used; with 2 equivalents the yield of 9e was 61%.
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Figure S. (a) Potential carboamination catalytic cycle. Electron transfer from the
excited state of [Ir(ppy).(dtbbpy)][PFs] to 2a results in reductive N-N cleavage
to unveil amidyl radical 10 and Ir(IV). Addition to olefin § generates benzylic
radical 11. Oxidation by Ir(IV) generates a benzylic cation 12, which alkylates
the pendent arene to afford tetrahydroisolinolines S. (b) EPR spectra for photo-
chemical deaminative functionalization of 2a in presence of PBN was obtained in
acetonitrile. The observed triplet of quartet in the photolyzed spectrum is at-
tributed to PBN-trapped amidyl radical with ax(psn) = 13.85 G, au = 3.20 G, and
aN@midyl) = 2.52 G; (—) experimental spectrum with blue light irradiation, and
(—) simulated spectrum.

benzylaminopyridinium derived from 1-ethylnaphthalene, with 4-
fluorostyrene yielded the corresponding benzo-fused tetrahydroiso-
quinoline Sr in 51% yield with a mixture of 1:1.5 cis: trans diastere-
omers. The diastereoselectivity does not appear to vary systemati-
cally with the electronic properties of the substituents on the olefin

partners. Bulky substituents on the N-aminopyridinium partner give
rise to preferential formation of the trans diastereomer (i.c., Sr). Re-
action with non-aromatic olefins such as 1-octene or cyclohexene of-
ten resulted in the formation of imine from in situ generated N-cen-
tered radical 10, presumably via HAA from aliphatic olefins (see the
Supporting Information for additional details).

In addition to olefinic substrates, the electrophilic radicals
generated by reductive activation of the N-N bonds in N-benzyla-
minopyridiniums engage in amination reactions with nucleophilic
heterocycles, such as N-Boc-indole 6 to afford 2-aminated indole 7
in 47% yield (Figure 4a), and silyl enol ethers (8) to afford ci-amino
carbonyls 9 (Figure 4b). The amination of silyl enol ethers via N-
aminopyridiniums,'> which represents a formal aza-Rubottom reac-
tion, tolerates both substitution of the nucleophilic partner 8 (i.c.,
preparation of 9a-9e) as well as variation of the benzylic substituents
on the N-benzylpyridinium partner 2 (i.e., preparation of 9fand 9g).

Reductive functionalization of N-benzylaminopyridiniums
(2) can be envisioned as arising from the mechanism illustrated in
Figure Sa (illustrated for olefin carboamination to generate tetrahy-
droisoqunolines).” Electron transfer from an excited state of the Ir
photocatalyst to 2 results in N-N cleavage to an amidyl radical (10),
pyridine, and an Ir(IV) intermediate. Reaction of the generated
amidyl radical 10 with olefin 3 generates benzylic radical 11. Oxida-
tion of 11 by Ir(IV) would afford cationic intermediate 12 and re-
generate the photocatalyst. Electrophilic addition to the arene to the
cation in 12 furnishes tetrahydroisoquinoline $. In support of this
scheme, addition of N-tert-butyl-a-phenylnitrone (PBN) to the car-
boamination of 2a resulted in observation of the PBN adduct of
amidyl radical 10 by both X-band EPR spectroscopy and high-reso-
lution APCI-MS (Figure Sb and $S4).* '* In addition, deaminative
functionalization of 2a in the presence of 1,1-diphenylethylene
yielded the corresponding olefinic product $s in 87% yield as op-
posed to the expected tetrahydroisoquinoline (Figure 3), which is
presumably due to elimination from stabilized carbocation 12s in
preference to arene alkylation to generate the corresponding tetra-
hydroisoquinoline. Similarly, the benzylic carbocation 12 can be
trapped with water as nucleophile in a mixed solvent of acetone/wa-
ter to form [B-aminoalcohol (See supporting information page 35).
The quantum yield for the deaminative olefin functionalization was
found to be 15.8%, which is consistent with a non-radical chain path-
way for the generation of tetrahydroisoquinolines (See supporting
information Section F for additional details).

In summary, here we described utilization of benzyl C-H ami-
nopyridylation products in olefin carboamination and formal aza-
Rubottom oxidation of silyl enol ethers. The nucleophilicity of N-
aminopyridinium allows these reagents to engage in C—H amination
chemistry, and reductive N-N cleavage unveils electrophilic amidyl
radical intermediates as diversifiable nitrogen synthons. The realiza-
tion of C-H functionalization chemistry with N-aminopyridinium
reagents both significantly expands the structural complexity that is
available to this burgeoning class of bifunctional reagents and signif-
icantly expands the synthetic utility products accessible via C-H
amination.
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