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Abstract

In optically excited states in molecules and materials, coupling between local electron

spins plays an important role for their photoemission properties and is interesting for

potential applications in quantum information processing. Recently, it was experi-

mentally demonstrated that the photogenerated local spins in donor–acceptor metal

complexes can interact with the spin of an attached radical, resulting in a spin-coupling

dependent mixing of excited doublet states, which controls the local spin density dis-

tributions on donor, acceptor, and radical subunits in optically excited states. In this

work, we propose an energy-difference scheme to evaluate spin coupling in optically

excited states, using unrestricted and spin-flip simplified time-dependent density func-

tional theory (sTDDFT). We apply it to three platinum complexes which have been

studied experimentally to validate our methodology. We find that all computed cou-

pling constants are in excellent agreement with the experimental data. In addition,

we show that the spin coupling between donor and acceptor in the optically excited

state can be fine-tuned by replacing platinum with palladium and zinc in the struc-

ture. Besides the two previously discussed excited doublet states (one bright and one

dark), our calculations reveal a third, bright excited doublet state which was not con-

sidered previously. This third state possesses the inverse spin polarization on donor

and acceptor with respect to the previously studied bright doublet state and is by an

order of magnitude brighter, which might be interesting for optically controlling lo-

cal spin polarizations with potential applications in spin-only information transfer and

manipulation of connected qubits.
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1 Introduction

Exchange spin coupling in optically excited states is relevant for understanding and

controlling the optical and magnetooptical properties in a variety of nanostructured

systems ranging from molecules [1–4], nanoparticles [5, 6], and quantum dots [7–9], to

solids [10]. Nanoscopic systems in which spin coupling can be controlled by laser pulses

[11, 12] have potential applications in spin-only information transfer, storage [11, 13],

and quantum information processing [14–16]. While many studies have contributed to

the understanding of spin coupling in the ground state, both theoretically [17–19] and

experimentally [20,21], little is known on spin coupling in optically excited states [10].

A particularly interesting class of molecules showing spin coupling in optically excited

states is based on donor–acceptor molecules substituted with radicals, where spins

are created on the donor and acceptor subunits upon photoexcitation and subsequent

charge transfer (see Figure 1) [16,22–25]. As for the electronic ground states, the phe-

nomenological Heisenberg-Dirac-van Vleck (HDvV) Hamiltonian is usually employed

for interpreting experimental data on the spin coupling in optically excited states [4,9],

ĤHDvV =
∑
A<B

−2JABŜAŜB, (1)

with JAB referring to the spin coupling between the spins on different centers A and B,

and ŜA/ŜB being the corresponding local spin vector operators. The central quantity

of interest is the exchange spin coupling constant, JAB. Its magnitude descibes the

strength and its sign the preferred kind of coupling between the spins, antiferromagnetic

(antiparallel) or ferromagnetic (parallel).
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Figure 1: Example for the creation of local spins on donor and acceptor by photoexcita-

tion: Ligand-to-Ligand-Charge-Transfer (LLCT) excited state in a (t-Bu2bpy)M(Cat-

NN) complex (Cat=3-tert-butyl-ortho-catecholate; bpy=bipyridine; NN=nitronyl-

nitroxide; t-Bu=tert-butyl) and resulting excited doublet states (arrows in the struc-

tures represent the orientation of local spins on radical, donor and acceptor), as inves-

tigated experimentally in Ref. [4].

In order to understand spin coupling in optically excited states in such donor–acceptor

complexes with radical substituents, much research effort has been dedicated to ground-

state analogues of their charge-separated excited states [26–31]. Recently, Stein and

coworkers [4] have investigated a series of (t-Bu2bpy)Pt(Cat-R) (R=-NN, -ThNN,

-PhNN; Cat=3-tert-butyl-ortho-catecholate; bpy=bipyridine; NN=nitronylnitroxide;

Ph=phenyl; Th=thiophenyl) complexes (see Figure 2), for which they carried out

low-temperature circular magnetic dichroism (CMD) measurements to extract spin

coupling constants for optically excited states. They employed the HDvV Hamiltonian

within an effective spin formalism to calculate the mixing between two photoexcited

doublet states (for more details see Section 2.4 and Section S2 of the Supporting Infor-

mation) [4,32]. This mixing depends on the spin coupling between donor and acceptor,

and between donor and radical. Based on this mixing, they could also calculate the
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spin populations on the donor, acceptor, and radical fragments that vary in their mag-

nitude depending on the mixing strength. One of the excited doublet states taken into

account by Stein and coworkers can be obtained from the doublet ground state (left

part of Figure 1) by a spin-allowed (bright) charge-transfer (CT) excitation between

the donor and the acceptor group, while a second one is a spin-forbidden (dark) excited

CT state forming a local triplet state on the donor–acceptor fragment (right side of

Figure 1). The remaining spin on the radical is then aligned with the photoexcited

spins in such a fashion that global doublet states are obtained.

Figure 2: Five complexes under investigation in this work, consisting of bpy(M) ac-

ceptors (red), Cat donors (black), and NN radicals (blue) fragments. This chemical

structures differ in the radical groups and in the metal centers.

Our first goal is to establish a methodology to calculate the excited states and spin

coupling constants for optically excited states based on energy differences between

excited-state energies computed with simplified time-dependent density functional the-

ory (sTDDFT) [33]. We use sTDDFT in the unrestricted formalism [34] to calculate

the spin-conserving (bright) doublet states and spin-flip sTDDFT (SF-sTDDFT) [35]

for the dark excited doublet states. In a next step, we apply our methodology to

a series of donor–acceptor–radical complexes (Figure 2). The Pt(II)-containing com-
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pounds investigated experimentally by Stein and coworkers [4] give us the possibility

to validate our methodology for calculating spin coupling constants. The Pd(II) and

Zn(II) complexes were not studied experimentally yet and are taken into account as

a potential way to fine-tune the spin coupling between the bpy(M) acceptors and the

Cat donor. In the following, we will use the abbreviations for the different fragments

introduced in Figure 2. We will refer to the red fragment as bpy(M) (with M=Pt(II),

Pd(II), Zn(II); bpy=bis-tert-butyl-bipyridine), to the black fragment as Cat, and to

the to blue fragment as R (with R= -NN, -ThNN, -PhNN; NN=nitronylnitroxide;

Ph=phenyl; Th=thiophenyl).

Apart from the two excited doublet states mentioned in the work of Stein and cowork-

ers [4] (Figure 1), we investigate a third bright (spin-allowed) charge-transfer excited

doublet state which is a few thousand wavenumbers (few hundred meV) higher in en-

ergy with respect to the other two. This doublet state was not previously taken into

account because it was not required for evaluating the spin coupling between donor and

acceptor experimentally. However, this state might be of interest because it may differ

in the local spin polarizations on donor, acceptor, and radical subunits with respect to

the previously known bright doublet state. Further, it is an order of magnitude larger

brighter (Section S6 in the Supporting Information) than the experimentally studied

bright doublet state. This would offer the possibility to switch local spin polarizations

with light. While the spin-coupling dependent spin polarizations on the subunits in

the two excited doublets states in Figure 1 were calculated previously [4] from the

experimental coupling constants based on the HDvV formalism [32], the spin polariza-

tion effects in the third excited doublet state have not been studied yet. This is done

in this work by applying a Löwdin local spin analysis to the optically excited states

obtained from sTDDFT which to the best of our knowledge has not been reported

before. Further, we adress the spin polarization in the remaining two doublet states

and compare them to those from the HDvV formalism [32] in order to see if doublet

mixing and thus spin polarization effects are fully covered by our methodology.
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2 Extracting Magnetic Properties from Excited-State

Calculations

In this section, we discuss the qualitative nature of the optically excited spin states

obtained with sTDDFT (Section 2.1), the calculation of Löwdin local spin polarizations

for optically excited states (Section 2.2), and the spin coupling constants for optically

excited states (Section 2.3). Finally, we discuss the spin coupling dependent mixing

between doublet spin states in three-spin systems (Section 2.4).

2.1 Optically Excited Spin States

The scheme introduced here for evaluating excited-state spin coupling is applicable to

any excited-state electronic-structure method such as TDDFT [36–38] and configura-

tion interaction singles (CIS) [39,40]. Here, we discuss the excited spin states and which

single-particle configurations are mainly contributing to these using SF-sTDDFT and

unrestricted sTDDFT calculations. The sTDDFT approach was formulated based on

TDDFT in the Tamm-Dancoff approximation (TDA) by neglecting the response of the

exchange–correlation functional to the excitation, evaluating the two-electron integrals

based on damped Coulomb interactions between charge density monopoles, and re-

stricting the configuration space to a selected energy range (10 eV in this work) [33]. We

use sTDDFT because the excited-state wavefunctions are constructed as linear combi-

nations of excited Slater determinants, which allows for the construction of proper spin

states in contrast to DFT [41–43]. Furthermore, we restrict ourselves to the magnetic

properties of the lowest excited state being dominated by single-particle charge-transfer

excitations from the Cat-centered highest occupied molecular orbital (HOMO) to the

bpy(M)-centered lowest unoccupied molecular orbital (LUMO), for which we can di-

rectly compare with the experimental findings in Ref. [4].
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Figure 3: Frontier orbitals of the bpy(Pt)-Cat-NN donor-acceptor-radical system in the

ground state obtained with CAM-B3LYP/def2-TZVP (bottom-left), dominant singly-

excited spin configurations in the sTDDFT calculations (bottom-left). The arrows

refer to the spins in the singly excited configurations (left arrow: bpy(M); middle

arrow: Cat; right arrow: NN). The ↓↓↑ configuration possesses more down-spin than

up-spin electrons because SF-sTDDFT is only implemented for spin-flip excitations

from occupied up-spin to unoccupied down-spin MOs (being equivalent to ↑↑↓ in the

absence of spin-orbit coupling) [35] and the excitation occurs from the doublet ground

state with up-spin density (following the usual convention) on the radical group. The

excited quartet and the three excited doublet states derived from these configurations

are given on the right with the characterization as singlets and triplets being derived

from the local spin configuration on the donor–acceptor subunit (red box in figure; T1

referring to a parallel alignment of spins and S1 to an antiparallel alignment of spin in

the first excited spin-state manifold), and the number referring the total spin of the

excited state (blue box in figure; 3/2 for quartet, and 1/2 for doublet).
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Without loss of generality, we focus in this section on the MOs and excited states

of the bpy(Pt)–Cat–NN system, because a qualitatively similar electronic structure is

obtained for the remaining systems treated in this study (see Figures S1-S4 in the

Supporting Information). Figure 3 shows the frontier orbitals (bottom-left) for up-spin

and down-spin electrons calculated with the range-separated CAM-B3LYP functional

[44] using Ahlrich’s triple-zeta split-valence basis set with polarization functions on all

atoms, def2-TZVP [45] (see Section 3). The HOMO-1↑ can be approximately identified

as the singly occupied molecular orbital (SOMO; for the exact SOMO a corresponding

orbital transformation is required [46]), carrying the spin in the ground state, which

is mainly located on the NN subunit. For the bpy(Pt)–Cat–ThNN and the bpy(Pt)–

Cat–PhNN system, the NN-located SOMOs constitute the HOMO-2↑ (Figure S1 and

S2 in Supporting Information). The HOMOs in both spin orientations are located on

the Cat, and the LUMOs on the bpy(M) subunits for all systems.

Starting from this electronic ground state, we performed sTDDFT calculations to ob-

tain the different excited spin states arising from charge-transfer excitations between

HOMOs and LUMOs. We do not take into account spin-orbit effects, so that transition

to excited states obtained from SF-TDDFT possess no intensity in our calculations.

The dominant singly-excited configurations contributing to these states are depicted

with the colored arrows in Figure 3 (the exact weights of the dominant configura-

tions are given in Figure 8 and discussed later). From these configurations, we can

construct the different excited spin states: one quartet (|T1, 3/2〉) and three dou-

blet states (|T1, 1/2〉′ ,
∣∣S+

1 , 1/2〉′ , and
∣∣S−1 , 1/2〉′ ). The notation employed here follows

Ref. [4], and a similar notation was also used in Ref. [32]. T1 (S1) refers to the case

where the local spins on the donor and acceptor are aligned parallel (antiparallel) in

the first excited state, and the number refers to the spin of the total molecule in the

excited spin state (S=3/2 for quartet and S=1/2 for doublet states). The prime used

in the notation refers to doublet states mixed by spin coupling (while those without

prime refer to the pure doublet states as discussed in Section 2.4). The plus and minus

signs in
∣∣S+

1 , 1/2〉′ and
∣∣S−1 , 1/2〉′ were introduced to distinguish the two doublet states
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with local singlet configurations on the donor–acceptor fragment (and opposite sign

of the local spin polarizations on donor and acceptor). The
∣∣S−1 , 1/2〉′ excited doublet

states addressed in this work were neglected in the work of Stein and coworkers [4]. The

excited |T1, 1/2〉′ and |T1, 3/2〉 states can be constructed from spin-flip single-electron

excitations and are mainly dominated by one configuration (cyan and red arrows in

Figure 3). As a result, these states are spin-forbidden and dark. The bright
∣∣S+

1 , 1/2〉′

and
∣∣S−1 , 1/2〉′ states obtained from spin-conserving, unrestricted sTDDFT calculations

are dominated by two different configurations (depicted with blue and violet arrows

in Figure 3). We find that the contributions of the ↑↓↑ and ↓↑↑ configurations to the

bright
∣∣S+

1 , 1/2〉′ and
∣∣S−1 , 1/2〉′ states are almost the opposite for both excited dou-

blet states with the ↑↓↑ (↓↑↑) configuration always being dominant for the
∣∣S−1 , 1/2〉′

(
∣∣S+

1 , 1/2〉′ ) state (discussed in further detail in Section 4.2).

2.2 Löwdin local spin population analysis for excited states

To further analyze the local spins on the different fragments in the optically excited

spin states from Section 2.1, we implemented and applied the Löwdin local spin analysis

[47,48] to excited states described by sTDDFT. This methodology can also be applied

to similar excited-state electronic structure methods such as TDDFT and CIS, and

was implemented into a development branch of the Artaios program package [49].

We chose Löwdin partitioning because the local projection operators can be properly

defined compared to the pseudo projection operators used in the Mulliken population

analysis [48, 50].

In analogy to the ground state, the local spin expectation values for a given atom (or

fragment) A and excited stateN , 〈ŜNz,A〉, can be obtained as the sum over the differences

between the corresponding elements of the density matrix in the Nth excited state for

↑ electrons, D↑,N , and ↓ electrons, D↓,N ,

〈ŜNz,A〉 =
1

2

∑
µ∈A

(
D↑,Nµµ −D↓,Nµµ

)
, (2)
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where µ refers to a given atomic basis function in a symmetrically orthogonalized

basis located on atom or fragment A (for details on Löwdin orthogonalization, see

Section S1 in the Supporting Information). The elements of the density matrix can be

calculated as the sum over all products of the corresponding elements of the occupation

number vectors, nσ,Ni , with the squared absolute values of the MO coefficients in the

symmetrically orthogonalized basis, cσµi,

Dσ,N
µµ =

∑
i

nσ,Ni
∣∣cσµi∣∣2 , (3)

with i being the index of the ith MO with spin σ. nN is calculated by summing

over all occupation number vectors for different configurations ja (ja referring to a

single-particle excitation from occupied spin orbital j to an unoccupied spin orbital a),

weighted by the absolute squared value of the sTDDFT amplitudes for a given config-

uration and excited state N , CN
ja, obtained from the previous sTDDFT calculation,

nN =
∑
ja

∣∣CN
ja

∣∣2 nja. (4)

2.3 Exchange spin coupling in optically excited states

In this section, we discuss how the exchange spin coupling constants in an excited state

can be calculated employing a HDvV Hamiltonian. All of the systems addressed in

this work possess three spin centers in the optically excited charge-transfer state (see

Figure 3). Under the assumption that the spins on the bpy(M) center and on the NN

group do not interact, the HDvV Hamiltonian includes the spin coupling between the

spins on the bpy(M) and on the Cat subunits, Jbpy(M)-Cat, and between the spins on

the Cat and on the NN subunits, JCat-NN,

ĤHDvV = −2Jbpy(M)-CatŜbpy(M)ŜCat − 2JCat-NNŜCatŜNN. (5)

Applying the strategy developed by Ruiz and coworkers [51], who extended the energy-

difference method orginally proposed for two spin centers [41] to systems with three
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or more spin centers, we obtain equations for the coupling constants in Equation (5).

While Ruiz et al. employed ground-state energies, we employ the excited-state ener-

gies of the states discussed in Figure 3. As in the work of Ruiz and coworkers [51], we

assumed ideal spins of S =1/2 for all three spin centers to simplify the linear equa-

tions. With this, we obtain the following expressions for Jbpy(M)-Cat and JCat-R (the full

derivation is given in Section S7 of the SI):

Jbpy(M)-Cat =
E|S

+
1 ,1/2 〉′ − E|T1,3/2 〉

2
, (6)

JCat-R =
E|T1,1/2 〉′ − E|T1,3/2 〉

2
, (7)

As we deal with non-symmetric systems in this work, the linear equation system is

overdetermined (see Ref. [51]), implying that the coupling constants are not uniquely

determined by Equations (6) and (7) but also two alternative equations can be obtained

also depending solely on the energies of the three doublet states (Section S7 in the SI).

However, the experimental Jbpy(Pt)-Cat was evaluated based on the energy difference

between the |T1, 1/2〉′ and
∣∣S+

1 , 1/2〉′ states in the MCD measurements [4] and the∣∣S−1 , 1/2〉′ state was not addressed. To be consistent with experiment, we will employ

Equations (6) and (7) which only depend on the energies of the doublet states adressed

in experiment.

2.4 Spin-coupling dependent mixing of excited doublet states

As already mentioned in the introduction, pure doublet states in three-spin systems

can undergo a mixing induced by spin coupling which was described in detail within a

HDvV formalism by Bencini et al. [32]. The mixing strength (defined in Equation (10))

for doublet states can be obtained by setting up the HDvV Hamiltonian matrix in the

basis of the pure doublet states and then diagonalizing it to obtain the eigenvectors and

eigenvalues. More details on the derivation of the mixing strength is given in Section SI2

in the Supporting Information, and the full derivation is given in Ref. [32]. Further, it
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is possible to derive expressions for the local spins on acceptor, donor and radical for

the optically excited states within the HDvV model solely depending on the mixing

strength (Equations (14)–(22) in Section S3 of the Supporting Information). Bencini et

al. took into account a three-spin system with two pure doublet states in the absence of

mixing, |S1, 1/2〉 and |T1, 1/2〉 . |S1, 1/2〉 is replaced by
∣∣S+

1 , 1/2〉 and
∣∣S−1 , 1/2〉 in this

work, which according to the HDvV formalism both only possess local spins on the R

unit in optically excited states when no mixing occurs (bottom left in Figure 4), which

is the case if Jbpy(M)-Cat is much larger than JCat-R. For the pure |T1, 1/2〉 doublet state

(bottom left in Figure 4), we expect the spins on the bpy(M) and Cat fragments to be

aligned parallel, while the local spin on the R subunit is antiparallel to the other two

(with a smaller magnitude). These pure doublet states start to mix when exchange

spin coupling between the spins is considered. After setting up and diagonalizing

the HDvV Hamiltonian matrix, the eigenvectors represent the mixed doublet states

(|S1, 1/2〉′ and |T1, 1/2〉′ ; |S1, 1/2〉′ stands for
∣∣S+

1 , 1/2〉′ and
∣∣S−1 , 1/2〉′ ) in the basis of

the pure doublet states,

|S1, 1/2〉′ = cos (λ) |S1, 1/2〉 − sin (λ) |T1, 1/2〉, (8)

|T1, 1/2〉′ = cos (λ) |T1, 1/2〉+ sin (λ) |S1, 1/2〉, (9)

with λ being the mixing strength between the doublet states that depends on the spin

coupling constants JCat-R and Jbpy(M)-Cat (under the assumption that there is no spin

coupling between the bpy(M) acceptor and R radical groups) [32],

λ =
1

2
tan−1

√
3JCat-R

2Jbpy(M)-Cat − JCat-R
. (10)

λ can take values beetween 0◦ and 30◦. The mixing strength itself increases almost

linearly with increasing ratio between JCat-R and Jbpy(M)-Cat (top of Figure 4).

13



Figure 4: Doublet mixing strength λ as a function of the the ratio between JCat-R and

Jbpy(M)-Cat (top) and local spins of the pure doublet states (λ = 0◦; bottom-left) and

the mixed doublet states in the strong mixing limit (λ = 30◦; bottom-right) obtained

from the HDvV formalism as a function of λ (Equations (14)–(22) in the Supporting

Information).

For the maximal λ (30◦), the mixed, bright doublet states (
∣∣S+

1 , 1/2〉′ and
∣∣S−1 , 1/2〉)

both show local spin polarization on the bpy(M) and Cat groups (with opposing sign;

see Section S3 in the Supporting Information for further details), which was absent in

the pure doublet states. For the dark |T1, 1/2〉′ state in the strong mixing limit (when

JCat-R approaches Jbpy(M)-Cat), the local spins on the Cat and R groups vanish, and the

only spin polarization remains on the bpy(M) fragment. The local spins obtained by

Bencini et al. are later compared with the local spins obtained from our Löwdin local
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spin analysis based on sTDDFT (Section 4.2).

3 Computational methodology

All molecular structure optimizations were carried out with the Turbomole 7.4.1

program package [52] for the doublet ground state using Ahlrich’s triple-zeta basis set

with polarization functions on all atoms, def2-TZVP [45] (and employing effective core

potentials for platinum and palladium to take into account scalar-relativistic effects),

and the PBE exchange-correlation functional [53–56]. In these calculations, conver-

gence criteria of 1x10−4 a.u. for the gradient and 1x10−7 hartree for the energy in

the self-consistent-field algorithm were employed. On top of the optimized structures,

single-point calculations with the range-separated hybrid functional CAM-B3LYP [44]

and the def2-TZVP basis set were performed with the same convergence criteria. The

CAM-B3LYP functional was employed because it is known to perform well for charge-

transfer excited states [57] and also provides reasonable results for spin coupling in

organic radicals in electronic ground states [58]. Finally, we carried out unrestricted

sTDDFT [34] and SF-sTDDFT [35] calculations with the open-source sTDA code by

Grimme and coworkers [33] to obtain the excited spin states used for the calculation of

the excited-state local spins and exchange coupling constants employing the parameters

for CAM-B3LYP published in Ref. [59]. In this calculation we took all configurations

up to an energy of 10 eV. Because SF-TDDFT is only implemented for spin-flip excita-

tions occuring from occupied up-spin to down-spin MOs, we interchanged the converged

up-spin and down-spin Turbomole orbital files after the DFT calculation and then

carried out an SF-sTDDFT calculation in order to obtain the optically excited quartet

high-spin excited state. The coupling constants were then calculated by Equations (6)

and (7), and the Löwdin local spins for the different excited states were evaluated with

our in-house implementation of the Löwdin local spin population analysis for opti-

cally excited states (see Section 2.2) in a development version of the Artaios program

package [49] (available upon request), using the sTDDFT amplitudes obtained with
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the sTDA program package.

4 Results and Discussion

In Section 4.1, we validate the methodology for calculating excited-state exchange

coupling constants (Section 2.3) by applying it to the systems in Figure 2. We compare

our results for the Pt(II) complexes with experimental values obtained from circular

magnetic dichroism (CMD) measurements and magnetic measurements on ground state

radical analogues of the excited, charge-separated states [4]. Moreover, we explore the

possibilities of fine-tuning the exchange spin coupling between donor and acceptor by

substituting Pt(II) with Pd(II) and Zn(II) in the complexes. In Section 4.2, we use the

HDvV formalism to calculate the mixing strengths between the excited doublet states

(see Section 2.4) based on the coupling constants obtained with our methodology and

study the Löwdin local spins on acceptor, donor and radical groups for the different

structures. Further, we compare these Löwdin local spins with those obtained from

the HDvV formalism, where the local spins are a function of the mixing strength only

(see Section S3 of Supporting Information), to see if all spin polarization appearing in

HDvV formalism are recovered by our sTDDFT calculations.

4.1 Excited State Energies and Exchange Spin Coupling

In order to understand how the chemical structure of the radical groups (R) and the

transition-metal substitution affect the energy splittings between the excited quartet

and doublet states, these splittings are given in Figure 5 (excited-state energies oscilla-

tor strengths are available in Table S2 in the SI). For all systems, the same qualitative

order of excited spin states is found. The lowest excited state is the |T1, 3/2〉 quartet

state, followed by three doublet states in the following energetic order:
∣∣S+

1 , 1/2〉′ <

|T1, 1/2〉′ <
∣∣S−1 , 1/2〉′. The splitting between the

∣∣S+
1 , 1/2〉′ and the quartet state is
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modified by the choice of the R radical group, but not by the choice of the metal cen-

ter. On the other hand, the energetic difference between the
∣∣S+

1 , 1/2〉′ and |T1, 1/2〉′

doublet states is only sensitive to the substitution of the metal center and increases

from Pt(II) over Pd(II) to Zn(II), but not to the choice of the metal center.

E X
 - 
E |T

1,3
/2

>  [c
m

-1
]

0

2,000

4,000

6,000

0

2,000

4,000

6,000

M=Pt,R=PhNN

M=Pt,R=ThNN

M=Pt,R=NN

M=Pd,R=NN

M=Zn,R=NN

bpy(M)-Cat-R

X=|T1, 3/2> X=|T1, 1/2>'
X=|S-

1, 1/2>' X=|S+
1, 1/2>'

Figure 5: Excited-state energy splittings from sTDDFT for the quartet state and the

three doublet states. All energies are referenced to the energy of the quartet state.

The trends in the energy differences are reflected in the exchange coupling constants

from the excited-state energies employing Equations (6) and (7). The coupling con-

stants are given in Figure 6 along with the experimental coupling constants obtained

by Stein and coworkers [4] for comparison. The experimental Jbpy(Pt)-Cat values were

obtained from low-temperature circular magnetic dichroism (CMD) measurements on

the |T1, 1/2〉′ and
∣∣S+

1 , 1/2〉′ states of the bpy(Pt)-Cat-NN complex. The experimental

JCat-R coupling constants were taken from magnetic susceptibility measurements on
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corresponding ground-state Cat-NN diradical analogues.

bpy(Zn)−Cat−NN

bpy(Pd)−Cat−NN

bpy(Pt)−Cat−NN

bpy(Pt)−Cat−ThNN

bpy(Pt)−Cat−PhNN

Jbpy(M)-Cat [cm-1]
500 1,000 1,500

 sTDDFT (CAM-B3LYP) 
 Exp. 

Titel

JCat-R [cm-1]
200 400 600

Figure 6: Excited-state spin coupling constants between the bpy(M) acceptor and

the Cat donor (left panel), Jbpy(M)-Cat, and Cat donor and R (R=NN, ThNN, PhNN)

radical (right panel), JCat-R, calculated with Equations (6), and (7), along with the

experimental values from Ref. [4].

We find that all calculated coupling constants within this work are ferromagnetic and in

quantitative agreement with the experimental values. It should be noted that Stein and

coworkers assumed that the spin coupling constants between the Cat donor and bpy(Pt)

acceptor (Jbpy(M)-Cat; left panel in Figure 6) are the same for all three experimentally

investigated systems (bpy(Pt)-Cat-NN, bpy(Pt)-Cat-ThNN, and bpy(Pt)-Cat-PhNN),

which is why only the coupling constant for the bpy(Pt)–Cat–NN complex was ex-

tracted from the CMD measurement. In our calculations, the Jbpy(M)-Cat values for

bpy(Pt)-Cat-ThNN and bpy(Pt)-Cat-PhNN (1200 cm−1 and 1183 cm−1) are approxi-

mately 250 cm−1 lower than that of the bpy(Pt)-Cat-NN system (1463 cm−1), which

might be due to the HOMOs being delocalized onto the thiophene and phenyl rings in

the former structures (see Figure S1-S2 in the Supporting Information). This delocal-

ization might lead to an increase in the effective distance between the spins, and thus

to a lower spin coupling strength. The replacement of Pt(II) in the bpy(Pt)-Cat-NN

complex by Pd(II) and Zn(II) leads to a pronounced reduction of the spin coupling
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between the bpy(M) and the Cat subunits, which can be rationalized by a decreasing

overlap between the Cat- and bpy(M)-centered MOs on the metal center. This sug-

gests an effective strategy for fine-tuning the spin coupling between the Cat and bpy(M)

spin centers (Figure 6). The spin coupling constants between the Cat donor and the

R (R=ThNN, PhNN, and NN) radical subunits, JCat-R, are also in good quantitative

agreement with those from experiment [4]. JCat–R decreases as a function of the radical

group R in the following order: NN > ThNN > PhNN. This is in line with the strongly

decreasing energy difference between the
∣∣S+

1 , 1/2〉′ doublet state and the quartet state

in Figure 5. The changes in JCat-R for different metal centers are insignificant because

the metal center is located between the Cat and bpy ligand, not between the Cat and

R subunit.

4.2 Mixing strengths and local spin properties

Due to the quantitative agreement of the theoretical coupling constants with exper-

iment, also the doublet mixing strengths, λ, calculated from their ratio according to

Equation (10) reproduce the experiment [4] well (top-left in Figure 7). The doublet

mixing strengths increase from PhNN over ThNN to NN for the Pt(II) complexes and

also increase for the bpy(M)-Cat-NN radicals when Pt(II) is replaced by Pd(II) and

Zn(II). Both trends can be explained by the fact that the two spin coupling constants

become more similar in magnitude. When changing the radical substituent R, the spin

coupling between the R and the Cat subunit, JCat-R, is increased along the sequence,

while the Jbpy(M)-Cat coupling constants barely change. By contrast, replacing Pt(II) by

Pd(II) and Zn(II) reduces the coupling constant Jbpy(M)-Cat, while JCat-R is only slightly

affected.
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Figure 7: Calculated mixing strengths (λ) for the systems under investigation evaluated

according to Equation (10) along with λ values taken from Ref. [4] (top-left). Local

spins on the three spin centers calculated for doublet states with different mixing

strengths λ: |T1, 1/2〉′ (top-right),
∣∣S+

1 , 1/2〉′ (bottom-left), and
∣∣S−1 , 1/2〉′ (bottom-

right). The lines refer to the local spins from the HDvV formalism, which constitute

λ-dependent functions (Equations (S14)-(S20) in Supporting Information). The dots

refer to values from the Löwdin population analysis (Equation (2)) plotted against the

corresponding λ parameter calculated according to Equation (10) from the theoretical

coupling constants (Equations (6)-(7)).

In a next step, we calculated the Löwdin local spins for the three fragments as defined in

Figure 2 and plotted them together with those obtained from the HDvV formalism (see

Section S2 and S3 in the Supporting Information) for the three different doublet states:
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|T1, 1/2〉′ (top-right in Figure 7),
∣∣S+

1 , 1/2〉′ (bottom-left in Figure 7), and
∣∣S−1 , 1/2〉′

(bottom-left in Figure 7) as a function of the doublet mixing strength, λ, evaluated

according to Equation (10). The magnitudes of the local spins for
∣∣S+

1 , 1/2〉′ and∣∣S−1 , 1/2〉′ on the bpy(M) (black dots) and Cat groups (red squares) strongly increase

with increasing doublet mixing strength and have opposite signs, while the local spins

on the R group (blue triangles) remain rather constant, in agreement with their “arrow”

definitions in Figure 3. While the trends for the local spins on the bpy(M) and Cat

fragments are qualitatively similar to the λ-dependent values from the HDvV model

(red and black lines), we find that the local spins on the R group obtained from both

approaches differ for the
∣∣S+

1 , 1/2〉′ excited state (blue line and triangles; bottom-left

in Figure 7). This difference might be explained by the fact that the Cat-centered

MOs show contributions on the R group (see Section S4), and therefore up-spin is

transferred from the Cat groups to the R groups
∣∣S+

1 , 1/2〉′, increasing the local spin-

up density on the R fragment. Such a behavior is not covered by the underlying HDvV

Hamiltonian, which assumes rotations of perfectly localized spins and does not take

into account changes of the spins’ magnitudes due to delocalization onto neighboring

spin centers [60, 61]. For the |T1, 1/2〉′ excited doublet state, the Löwdin local spins

(top-right in Figure 7) are not affected much by increasing λ, which is in disagreement

with the local spins from the HDvV formalism. According to the HDvV formalism,

the local spins’ magnitudes for the R and Cat fragments are expected to decrease and

the local spins on the bpy(M) fragment should increase as a function of λ.
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Figure 8: Most dominant contributions of single-particle configurations ω (for further

details see Section 2.1) for the three excited doublet states:
∣∣S+

1 , 1/2〉′ (left; optically

bright),
∣∣S−1 , 1/2〉′, (left; optically bright) and |T1, 1/2〉′ (right; optically dark) for the

different systems represented by their λ values given in Figure 7).

In order to rationalize the differences between the HDvV formalism and the Löwdin lo-

cal spins for the |T1, 1/2〉′ state and to gain further insight into the trends for
∣∣S+

1 , 1/2〉′

and
∣∣S−1 , 1/2〉′, we investigated the most dominant contributions from different singly-

excited configurations to these excited states (Figure 8; for details on the definition of

configurations see Section 2.1). For the bright doublet states (
∣∣S+

1 , 1/2〉′ and
∣∣S−1 , 1/2〉′)

we see that the ↓↑↑ (black and blue lines) and ↑↓↑ configurations (red and cyan lines)

contribute almost equally to the excited states for small values of λ. The
∣∣S+

1 , 1/2〉′

(
∣∣S−1 , 1/2〉′) excited doublet state is dominated by the ↓↑↑ (↑↓↑) configuration, and this

domination continues to grow with increasing λ. These massive changes in the config-

uration contributions are in line with the λ-dependent Löwdin local spin polarization

effects observed for
∣∣S+

1 , 1/2〉′ and
∣∣S−1 , 1/2〉′ (Figure 8). The dark |T1, 1/2〉′ excited

state is solely dominated by the spin-flip ↓↓↑ configuration (right side of Figure 8),

which only slightly changes as a function of λ. These small changes in the contribu-

tions can explain the rather constant local spin polarizations for |T1, 1/2〉′ in Figure 7.

The deviations between the HDvV formalism and the local Löwdin spin analysis for the
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|T1, 1/2〉′ state cannot be explained by erroneous coupling constants (energetics), since

these are in excellent agreement with the experimental values. Moreover, problems

with the Löwdin local spin analysis itself can be ruled out as the local spins obtained

from both approaches agree well with each other for
∣∣S+

1 , 1/2〉′ and
∣∣S−1 , 1/2〉′. edThe

problem could potentially be related to the excited-state electronic structure method

employed. A problem might be that the spin-flip and spin-conserving singly excited

configurations are not treated simultaneously in one calculation, which appears not to

influence the energetics much but the local spin properties.

5 Conclusion

In this work, we established a methodology to calculate spin coupling constants from

excited-state energies employing spin-flip simplified time-dependent density functional

theory (sTDDFT) and unrestricted sTDDFT for a series of bpy(M)–Cat–R donor–

acceptor–radical complexes in the lowest LLCT excited state and compared them with

previously published, experimental values [4]. With this methodology, we explore the

possibility to fine-tune exchange spin coupling between the bpy(M) acceptor and the

Cat donor by going beyond the experimentally known structures replacing Pt(II) with

Pd(II), and Zn(II). We also adressed a third doublet state not discussed in previous

work that, like the known doublet states, originates from linear combinations of the

HOMO↑/↓ to LUMO↑/↓ excitations. This spin state is brighter than the previously

studied, bright doublet state and shows inverse spin polarizations on donor and acceptor

with respect to the known bright doublet state, which raises the possibility to optically

control local spin polarizations.

We found that the coupling constants calculated are in excellent agreement with those

from experiment [4] (Section 4.1), showing a decrease of spin coupling between Cat

donor and radical group R from R=NN over R=ThNN to R=PhNN. The substitution

of Pt(II) by Pd(II) and Zn(II) systematically reduces the strength of spin coupling
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between the bpy(M) acceptor and the Cat donor. The mixing strengths between the

excited doublet states from the exchange coupling constants employing the HDvV for-

malism [32] were also in quantitative agreement with the values from literature [4]

(Section 4.2). The reduction of the spin coupling between donor and acceptor by metal

substitution leads to a stronger mixing between the doublet states for the Zn(II) and

Pd(II) compounds compared to the Pt(II) complexes. The third, previously not dis-

cussed (bright) excited doublet state (
∣∣S+

1 , 1/2〉′) possesses an inverse spin polarization

with respect to the other bright excited doublet state
∣∣S−1 , 1/2〉 on the bpy(M) accep-

tor and Cat donor groups (Section 4.2). We find that the Löwdin local spins obtained

for the
∣∣S+

1 , 1/2〉′ and
∣∣S−1 , 1/2〉′ states are in agreement with the spin-coupling de-

pendent local spins obtained from the HDvV formalism [32]. For the |T1, 1/2〉′ state,

we find larger deviations between the HDvV formalism and the Löwdin local spins,

which might be explained by the fact that in SF-sTDDFT, only spin-flip singly excited

configurations enter the calculation. This limitation could be overcome by employing

a more generalized approch including both types of configurations, spin-flipped and

spin-conserving, in one calculation, such as in the windowed Full-CI approach used by

Pfäffle and coworkers [62]. Moreover, to consider the effects of the doublet mixing on

the intensities and on the lifetimes of formally spin-forbidden excited states, it might be

of interest to apply a quasirelativistic, two-component DFT approach in future work.

From the experimental point of view, the inverse local spin polarizations on donor and

acceptor in the
∣∣S+

1 , 1/2〉′ and
∣∣S−1 , 1/2〉 states may be of interest for optically control-

ling the input for all-spin information transfer along spin chains [63–65], or to connect

and to switch molecular spin qubit candidates [66,67].
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