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One of the fundamental limitations of accurately modeling biomolecules like DNA is the inability
to perform quantum chemistry calculations on large molecular structures. We present a machine
learning model based on an equivariant Euclidean Neural Network framework to obtain quantum-
accurate electron densities for arbitrary DNA structures that are much too large for conventional
quantum methods. The model is trained on representative B-DNA base pair steps that capture
both base pairing and base stacking interactions. The model produces accurate electron densities
for arbitrary B-DNA structures with typical errors of less than 1%. Crucially, the error does not
increase with system size, which suggests that the model can extrapolate to large DNA structures
with negligible loss of accuracy. The model also generalizes well to other DNA structural motifs such
as the A- and Z-DNA forms, despite being trained on only B-DNA configurations. We show that this
machine learning electron density model can be used to calculate electrostatic potentials of DNA
with quantum accuracy. These electrostatic potentials produce more accurate results compared to
classical force fields and do not show the usual deficiencies at short range. Lastly, the model is
used to calculate electron densities of several large-scale DNA structures, and we show that the
computational scaling for this model is linear.

INTRODUCTION

Quantum molecular modeling is a powerful tool for
predicting and understanding the properties of molecu-
lar systems from first principles. Despite advances in
methodologies and computing power, however, the broad
application of quantum modeling to biological systems
of interest remains hindered by the steep computational
scaling of solving Schrödinger’s equation. [1] Large bio-
logical macromolecules such as DNA typically consist of
thousands to tens of thousands of atoms or more, making
them far too large for traditional quantum calculations.

Nevertheless, quantum density functional theory
(DFT) calculations have been used in numerous DNA
studies. In particular, they have been useful for un-
derstanding the energetics of various DNA binding com-
plexes with proteins [2] and metals. [3, 4] Benefits from
studying these complexes range from a deeper under-
standing of fundamental biological processes to the de-
velopment of technologically advanced biomedical appli-
cations. However, due to the high computational cost
of DFT, complexes tend to be modeled in a limited ca-
pacity, restricted to modeling a few DNA base pairs or
including only small portions of the complex. A DFT
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benchmarking study was able to accurately investigate
DNA stacking interactions at the base pair step level. [5]
In addition, a recent DFT study was able to model a
full turn of A-DNA in a vacuum environment at the hy-
brid functional level. [6] But given the steep scaling of
DFT, calculations on larger DNA structures would be
extremely costly if not unfeasible. As such, molecular
simulations of full DNA structures typically rely on clas-
sical force fields [7–9] or coarse-grained methods. [10–13]

Recently, machine learning approaches have been de-
veloped to sidestep the prohibitive scaling of quantum
chemistry methods. These approaches aim to construct
an alternative model to solving Schrödinger’s equation,
making them a promising avenue for studying large bi-
ological systems that would typically fall outside the
range of quantum simulations. To date, machine learn-
ing methods have been applied to predict accurate ener-
gies [14–16], forces [17, 18], and electron densities [19–23]
on mostly small molecules and crystals. For DNA in par-
ticular, machine learning has been used to develop a DFT
functional that correctly describes charge delocalization
in base pairing. [24] But a machine learning model has
not yet been developed to predict properties for arbitrary,
large-scale DNA structures.

Out of the properties that can be predicted, we focus
on the electron density. The central problem to be solved
by any machine learning electronic structure method is
the ability to train on small fragments without losing ac-
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curacy when evaluating the model on larger structures.
Recent work has shown that learning the electron den-
sity offers a promising way to solve this conundrum. [25]
Moreover, the electron density is a fundamental property
from which useful quantities such as energies, forces, and
electrostatic potentials can be derived.

Accurate modeling of large DNA structures provided
by quantum calculations would be especially useful in
the burgeoning field of DNA nanotechnology, which uti-
lizes a repeated four-way junction motif [26, 27] to pro-
gram large-scale synthetic DNA assemblies often referred
to as “DNA origami.” [28–33] An understanding of how
to control these customized, scaffolded DNA structures
has led to applications such as biological light-harvesting
and energy transfer [34–37], biomedical sensing [38, 39],
and molecular-scale memory storage. [40–42] However,
the sheer sizes of these DNA origami structures restrict
their theoretical and computational study to coarse-
grained methods [12] or classical all-atom molecular dy-
namics, [43–48] which are both dependent on the accu-
racy of the underlying force fields. In fact, a recent study
has shown that commonly used DNA force fields often
give incorrect results in describing the folding mecha-
nisms of four-way junctions. [49] It is now easier than
ever to sequence and build novel DNA origami structures
using available strand routing and structural design soft-
ware, [50–52] but a straightforward tool to accurately
analyze these DNA structures at the molecular and elec-
tronic level does not yet exist.

As previously mentioned, the electrostatic potential is
a useful property that can be derived from the electron
density. The electrostatic potential is a key component
for studying binding and solvent interactions and is a
particularly important property of DNA due to its neg-
atively charged phosphate groups. [53] The electrostatic
potential is strongly linked to the DNA base sequence
and has been used to explain the site-specific binding of
proteins [10, 11, 13, 54–57] and counterions [58, 59] that
are essential for maintaining DNA structure. However,
electrostatic potentials are often not calculated from first
principles due to system size limitations and may there-
fore neglect important physics, such as screening and po-
larization effects. [59, 60]

In this article, we present what is to our knowledge
the first machine learning model that produces accurate
electron densities for large scale DNA structures with-
out having to run costly–or in many cases, unfeasible–
quantum simulations. A key factor to proving the utility
of the model is developing an effective training protocol
and carefully quantifying and contextualizing its error.
Finally, with the groundwork of the model established,
we present an application to calculate quantum-accurate
electrostatic potentials from the machine-learned densi-
ties, which can be useful for characterizing DNA-protein
binding and solvent interactions.

METHODS

The training protocol for constructing the DNA ma-
chine learning model involves four steps that can be sum-
marized as follows (Fig. 1):

1. The training set is constructed from every possible
combination of base pair step in a B-DNA structure
(10 combinations total).

2. Molecular dynamics is used to obtain representa-
tive snapshots of base pair steps that make up the
main training unit for the DNA model.

3. Static quantum calculations are run on these rep-
resentative base pair steps to produce ground-state
electron densities for training the model.

4. The quantum electron densities are used to train
a Euclidean neural network, a type of graph con-
volutional neural network that can understand and
exploit the properties of Euclidean symmetry for
more efficient learning. Once the network has been
trained, it can take as input an arbitrary DNA
structure and output an electron density without
directly performing a quantum calculation.

Selection of training data for the machine learning
model

In order for a machine learning model to make pre-
dictions with any accuracy, it must be properly trained.
Practically speaking, to make predictions for a large
biomolecular structure such as DNA, the training data
must be small enough to calculate quickly yet complex
enough to capture the interesting physics that undergird
the larger structure. In principle, the machine learning
model learns generalizable features about atomic envi-
ronments, such as bonding interactions, that can be thor-
oughly sampled by the training set. With these consid-
erations, we decided on the base pair step of B-DNA as
the fundamental training unit. The base pair step is well-
suited for training DNA because it is the smallest unit
that captures three key physical interactions: the hydro-
gen bonds between complementary base pairs (A/T and
G/C) that hybridize the two strands, the base stacking
interactions between adjacent bases along a strand that
stabilize the DNA double helical structure, and the cova-
lent linkages between nucleotide components that form
the DNA backbone.
The strategy behind choosing the base pair step as

the fundamental training unit is that any arbitrary DNA
structure can be broken down into a sequence of over-
lapping base pair steps. A model that understands the
features of every possible base pair step should be able
to reasonably reconstruct the electron density for any
DNA sequence. This training protocol is validated by
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FIG. 1 Schematic for training a machine learning model for

DNA. Illustrations were made using Discovery Studio

Visualizer [61] and VESTA. [62] (a) Molecular dynamics

simulations are run on B-DNA 12-mers. Quantum calculations

are performed on representative snapshots extracted from the

central two base pairs to obtain training densities. (b) The

e3nn model takes atomic coordinates as input, converts them

into a graph which is fed through the network, and outputs the

electron density for the given input coordinates. The model is

trained on all ten combinations of base pair steps that make up

a full DNA base sequence.

comparing model predictions to quantum calculation in
a test set of B-DNA structures. In the test set, arbi-
trary structures ranging from two to five base pairs in
length were included (referred to as 2-mers, 3-mers, and
so on). For 2-, 3-, and 4-mers, every possible combina-
tion of base pairs (10, 32, and 136 combinations, respec-
tively) was included. For 5-mers, the sheer number of
base pair combinations as well as the size of the struc-
tures makes exhaustive sampling costly. Therefore, we
selectively sampled the 5-mer space using ten randomly
generated base sequences. Table I summarizes the con-
tents of the test set (see the ESI† for details on the 5-mer
base sequences which are located in Table S1). We em-
phasize that the training and test sets are both based off
of the B-form of DNA. We later demonstrate the abil-
ity of the model to extrapolate to other structural motifs
such as A- and Z-DNA.

TABLE I Contents of the B-DNA test set for various base

sequence lengths. Combinations refer to unique sequences of

base pairs for a given sequence length. For 2, 3, and 4 base

pairs, combinations are sampled exhaustively

sequence length base pair
combinations

samples per
combination

total samples

2 10 30 300
3 32 10 320
4 136 2 272
5 10 3 30

Molecular dynamics sampling of DNA
configurational space

To sample representative geometries of all base pair
steps, molecular dynamics (MD) simulations were run
with Amber 20 [63] using the BSC1 force field. [9] An
initial 12mer B-DNA structure was placed in a periodic
truncated octahedral box with a 10 Å buffer and solvated
with TIP3P water. [64] Mg2+ counterions were added to
neutralize the structure, and then an excess of Mg2+ and
Cl- at about 100 mmol/L were added to the simulation
box. Since we are only interested in the dynamics of
the central base pair step, restraints were added to keep
intact the base pairs at both ends of the DNA.
Prior to MD production runs, structures were first min-

imized then allowed to heat up from 0 K to 300 K for 40
ps. Production runs were done with the NPT ensemble
at 300 K. We ran three 50 ns simulations with different
starting trajectories for a total simulation time of 150
ns. Snapshots from these simulations were taken every
2 ps, and all atoms were stripped away apart from the
central two base pairs (Fig. 1a). Dangling bonds were
capped with hydrogens. To ensure representative sam-
pling of the DNA configurational space, snapshots were
processed using K-means clustering with a cluster size of
five and a metric of distance-RMSD. The samples closest
to the cluster centers were included in the training data.
Given that there are four DNA bases (A, C, G, and T)
and taking directionality into account, there are a total
of ten unique combinations of base pair steps, requiring
ten independent 12-mer molecular dynamics runs.

Quantum electron density of DNA configurations

Ab initio quantum calculations were performed on
the MD sampled base pair step configurations to ob-
tain the ground-state electron densities used for training
the model. Quantum calculations were performed us-
ing psi4 [65] with the DFT hybrid functional PBE0 [66]
and the aug-cc-pvdz basis. [67] The outputs from the
machine learning model should reflect the same level of
theory used to calculate the training data. In principle,
the model can be trained on any level of theory.
Typically, electron densities from quantum calcula-
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tions are constructed from the wave functions of the oc-
cupied states. This so-called one-particle density matrix,
however, grows as the square of the system size. To keep
the size of the density representation linear, we chose to
express the density in terms of an atom-centered, auxil-
iary, “density fitting” basis: [68, 69]

ρ(r) =

Natoms∑
i=0

Nbasis∑
k=0

lmax∑
l=0

+l∑
m=−l

CiklmYlme−αikl(r−ri)
2

,

(1)
where αikl control the Gaussian widths, Ylm are the
spherical harmonics, and Ciklm are the coefficients for
the auxiliary basis. These coefficients are the data from
which the model is trained and are also the outputs of the
model. We used the def2-universal-jfit auxiliary ba-
sis for this study. [69] Expressing the density in this form
has been shown to be highly efficient in previous machine
learning studies. [14, 20–22]

Choice of machine learning algorithm (e3nn)

A key property of molecular systems is that they are
equivariant with respect to Euclidean symmetry. Intu-
itively, what this means is that when a molecule is trans-
lated, rotated, or reflected in 3D space, it behaves as an
equivalent molecule. The symmetries are thus extended
to properties of the molecule. For the sake of neural net-
work training efficiency, it is advantageous to use an ar-
chitecture that can understand and exploit these symme-
tries. As such, we use the e3nn machine learning frame-
work, which is structured as a graph convolutional neural
network that has equivariance in three dimensions built
in. [25, 70, 71] Because e3nn understands that a rotated
form of a molecule is the same molecule, it learns much
faster than a model that does not account for this sym-
metry. In fact, it has been shown that e3nn can reduce
the amount of training data needed by a factor of 1000
compared to models without built-in equivariance. [18]

For the task of learning electron densities represented
in an auxiliary basis, equivariance is an essential prop-
erty. Each Ciklm coefficient corresponds to a different
spherical harmonic function of degree l and orderm. This
means that the coefficients for all functions with l > 0
will change under rotation or reflection of the molecule.
Equivariance is required to perform this transformation
correctly. The e3nn framework implements equivariance
by representing learned features in the hidden layers of
the network as combinations of irreducible representa-
tions of 3D space. These features can themselves be in-
terpreted as spherical harmonics. The networks trained
in this work use learned features in the hidden layers up
to lmax = 3.

A detailed description of e3nn can be found in the lit-
erature [25, 70, 71] or online: https://e3nn.org/ . A
brief, non-technical explanation of the model is given
here (Fig. 1b). The e3nn model is initialized with a

structure’s atomic coordinates. The coordinates are con-
verted into a three-dimensional graph that gets passed
as the input layer to the neural network. Each node
in the graph represents an atomic position that marks
the center of a gated radial convolution that learns geo-
metric features (such as bonding interactions) about its
environment. The learned features are stored as combi-
nations of irreducible representations in the hidden layers
of the network. After passing through the hidden layers,
the model produces as output the coefficients Ciklm that
make up the 3D charge density. Because e3nn has equiv-
ariance built in, a molecule that is translated, rotated, or
reflected in space will produce the same charge density–in
fact, a translated, rotated, or reflected form of the orig-
inal charge density. Prior to training the e3nn model,
network hyperparameters were tuned using a 2-mer val-
idation set independent from the training and test sets.
The network hyperparameters can be found in the ESI†.

RESULTS

Assessing the accuracy of the machine learning
model

We first show that the training protocol described in
the Methods is effective and produces an accurate model
for predicting DNA electron densities. Specifically, we
test if a machine learning model trained only on base pair
steps can make accurate predictions for arbitrary DNA
structures. We evaluate the fit of the model by directly
comparing to a test set of electron densities calculated
from ab initio quantum calculations. Since quantum cal-
culations are restricted by system size, the test set was
limited to DNA structures with sequence lengths ranging
from two to five base pairs.

A quantitative measure of the density prediction error
can be given by the equations:

ϵρML
(%) = 100×

∫
dr|ρQMprojected

(r)− ρML(r)|∫
drρQMprojected

(r)
, (2)

or

ϵρtrue
(%) = 100×

∫
dr|ρQMtrue(r)− ρML(r)|∫

drρQMtrue
(r)

. (3)

ρQM is the density calculated from quantum mechanics,
where the subscript indicates whether the density is in
its true form or projected form in the “density fitting”
basis (Eq. 1). ρML is the machine learning predicted
density, which is always expressed in the density fitting
basis and so does not need a subscript. ϵρML

is the error
that comes from fitting the trained model, whereas ϵρtrue

includes the “density fitting” contribution to the error
and so will always be higher than ϵρML

. For all tests
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with the def2-universal-jfit basis, the density fitting
error was essentially constant, at around 0.73%.

The learning curve for training the model with increas-
ing numbers of training samples is plotted in Fig. 2a.
The reported error ϵρML

is calculated against the test
set of 2-mers. For a functional machine learning model
that meaningfully learns from training data, this learn-
ing curve must be linear on a log-log scale. [72] The lin-
ear trend of our data proves that our proposed training
protocol produces a functional machine learning model.
The model trained on 4000 samples predicts 2-mer test
set densities with an average error of ϵρML

= 0.62%. In-
cluding the “density fitting” error, the total prediction
error averages to ϵρtrue

= 1.00%.

FIG. 2 Training and test results for the DNA machine learning

model. (a) Learning curves for increasing numbers of training

samples. Dashed lines show the linear regression curves. The

errors are calculated against the test set of 2-mers. (b) Error

ϵρtrue with respect to increasing base sequence length in the

test set. The same model, trained on 4000 samples, was used

in each case.

Recall that the training set contains only configura-
tions with two base pairs. For the model to predict accu-
rate densities for arbitrary DNA structures longer than
two base pairs, the error must not significantly increase

for longer base sequences. Figure 2b shows the model
prediction error against the complete test set with DNA
sequence lengths up to five base pairs. Because it is com-
putationally burdensome to project quantum mechanical
densities on to the density fitting basis for the larger sys-
tems in the test set, we compare all results to the true
quantum mechanical densities using ϵρtrue in Eq. 3, not-
ing that the machine learning error ϵρML

would be lower
as in Fig. 2a. The error increases slightly from the test
set of 2-mers but flattens out as DNA sequence length is
increased, reaching an average error of ϵρtrue = 1.06% for
the test set of 5-mers.

Machine-learned quantum electrostatic potentials

As described in the Introduction, the electrostatic po-
tential is a property that can be derived from the elec-
tron density and has been used to explain the site-specific
binding of proteins and counterions. [10, 11, 13, 54–
57] To assess the accuracy of model-calculated DNA
electrostatic potentials, single base pair structures of
both the A/T and G/C base pairs were investigated,
as the electrostatic potentials for these base pairs are
well-studied. [13, 73, 74] The major and minor grooves
carry electronic signatures that distinguish the base pairs
and make them uniquely recognizable to interacting
molecules. On the major groove side, the G/C pair shows
a strong polarity across the hydrogen bond (Fig. 3b)
whereas the A/T base pair has a positive amine group in
its center, resulting in an overall neutral to weakly nega-
tive potential (Fig. 3a). On the minor groove side, while
both base pairs have negative potentials, the A/T base
pair is more strongly negative since it lacks the positive
amine group.
For a more quantitative assessment, the 2-mer test set

was used to calculate the root-mean-square-deviations
(RMSDs) of machine-learned electrostatic potentials
compared to reference ab initio quantum calculations at
varying isovalues of the density (Fig. 3c). During this as-
sessment, the averages of the electrostatic potentials were
aligned for better comparison. By changing the isovalue,
the distance of the potential surface from the molecule
changes as well, which is quantified here as the average
distance of the potential from the nearest atom. Smaller
or larger isovalues of the density result in a potential
surface farther away from or closer to the molecule, re-
spectively. For comparison, the RMSDs for the electro-
static portion of the Amber BSC1 classical force field, [9]
which consists of parameterized partial atomic charges,
are shown alongside the machine-learned potentials. At
longer distances from the molecule, the machine learn-
ing and classical potentials agree closely. Conversely, at
shorter distances the model performs much better as the
error in the classical potential increases sharply. This be-
havior is expected since at short distances, the classical
potential enters the region of the electron cloud, which is
approximated here using the van der Waals radius of hy-
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FIG. 3 Electrostatic potentials derived from the machine learning density model. Electrostatic potentials for the (a) A/T and (b)

G/C base pairs. Units for the potential are given in a.u. The dark red portions at the ends of the structures are the negatively

charged phosphate groups. (c) RMSDs against quantum reference calculations on the 2-mer test set for the machine learning

electrostatic potential and the classical BSC1 force field. [9] To get a sense of the range of interaction, the van der Waals radius for

hydrogen is plotted at r = 1.2 Å (dotted line), and one half of the distance for DNA base stacking is plotted at r = 1.7 Å (dashed

line). (d) Machine-learned electrostatic potentials on the major and minor groove sides of a DNA structure with an A-tract (PDB

code: 264d [75]). The isovalue of the density is set such that the potential is calculated at an average distance of 1.7 Å from the

nearest atom. Electrostatic potential plots were made using Plotly. [76]

drogen at r = 1.2 Å. Classical force fields do not contain
direct information about the electron density distribu-
tion and only approximate it with partial atomic charges,
so they tend to show deficiencies at short-ranges. [77]
Since machine-learned electrostatic potentials are calcu-
lated directly from electron densities, they should pro-
duce accurate short- and long-range interactions, as re-
flected by the stable RMSD curve in Fig. 3c.

Moving beyond the test set, we demonstrate that the
model can produce a machine-learned electrostatic po-
tential for a full size DNA structure. Figure 3d shows a
machine-learned electrostatic potential for a DNA struc-
ture with an A-tract (PDB code: 264d [75]). A-tracts
have received considerable attention due to their unique
structural properties, including an unusually narrow mi-
nor groove with an enhanced negative electrostatic po-
tential. Both the shape and the negativity of the po-
tential are thought to enable site-specific binding of cer-
tain proteins. [10, 13, 56] Although most computational

studies on DNA A-tracts were carried out in solvent en-
vironments, the machine-learned electrostatic potential
for DNA in a vacuum environment was also able to cap-
ture the enhanced negativity in the narrow minor groove
(Fig. 3d).

DISCUSSION

Contextualizing the machine learning error

In the Results, we reported that the model trained on
4000 samples gave a density prediction error of ϵρML

=
0.62% on the 2-mer test set (Fig. 2a). To get a better
sense of what this error means, we compare this value
to other density prediction errors in the literature. We
caution that an exact comparison is difficult to make due
to differences in methodologies, neural network architec-
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tures, and types of systems studied. For example, in the
study that reported the lowest error of 0.3%, the test sys-
tems were simple dimers that did not exceed 25 atoms.
By comparison, a structure in our DNA 2-mer test set
contains around 126 atoms. Given that reported errors
in the literature ranged from 0.3% to 2.5%, [19–23] the ac-
curacy of our DNA machine learning model is consistent
with the most accurate machine learning density studies.

Another way to contextualize the density prediction
error is to compare it to the error from an isolated atom
model in which the density is obtained as a superposi-
tion of non-interacting, isolated atoms. Representative
electron densities produced by the machine learning and
isolated atom models (Fig. 4a) for a randomly selected
4-mer in the test set are shown alongside density differ-
ences with the true ab initio densities (Fig. 4b). The true
density prediction error in the machine learning model is
ϵρtrue = 1.02% compared to ϵρtrue = 9.68% in the isolated
atom model. An important point about these figures is
that even though the machine learning and isolated atom
densities appear very similar at a glance, the differences
are actually drastic, judging from the disparity of the
true errors and the density difference plots.

FIG. 4 Comparing machine learning predicted densities to an

isolated atom model for a representative test set 4-mer (base

sequence: ATCT). Illustrations were made using VESTA. [62]

(a) Machine learning predicted and isolated atom densities at

an isovalue of 0.15 a.u. The density prediction errors are

ϵρtrue = 1.02% and 9.68%, respectively. (b) Density differences

with the true quantum density at an isovalue of 0.005 a.u.

Yellow and cyan surfaces represent positive and negative values,

respectively.

The fact that the machine learning error shows only
a slight increase when testing on longer DNA sequences
(ϵρtrue

= 1.00% for a sequence length of 2 vs. ϵρtrue
=

1.06% for a sequence length of 5) suggests that the cur-

rent machine learning model can make accurate predic-
tions on arbitrary DNA structures of any length. In
this sense, it is assumed that the base pair step used
for training the model encompasses the majority of the
interactions–particularly the base pairing and stacking
interactions–that affect a DNA structure’s electron den-
sity. Still, the slight increase in error may be attributable
to longer-range interactions that are not sampled in the
two base pair training unit. These longer-range interac-
tions could be accounted for by expanding the test set to
include 3-mers, 4-mers, and so on. However, note that
both the number of base pair combinations and the size of
the training unit will increase for larger DNA sequences,
which would greatly increase the computational effort for
building the training set.
Another possible source for the small increase in error

when testing on longer DNA sequences is that the atomic
configurations themselves might not be represented as
well by the training set. Recall that the training struc-
tures were sampled from the center of a DNA strand
(Fig. 1a). Longer DNA chains might adopt configura-
tions that are more similar to those at the edges of DNA,
farther from the training data of only central base pairs
used for this model. Again, this could be accounted for
by including “edge” base pair configurations in addition
to the “center” configurations that are currently in the
training set.
Of course, the machine learning error could also be

improved by simply including more training samples. As
long as the learning curve in Fig. 1a stays linear, the
model will meaningfully learn when more data is added
to the training set. If the current trend holds, doubling
the size of the training set from 4000 to 8000 samples
would reduce the machine learning density error from
ϵρML

= 0.62% to 0.52%. Whether this increase in accu-
racy is worth the extra cost of building up the training
set depends on the application at hand.

Additional applications for the machine learning
model

Along with predicting electrostatic potentials, we sug-
gest additional applications for the machine learning elec-
tron density model. One application is to use the model
to develop more accurate classical force fields to simulate
processes such as DNA self-assembly that cannot be ad-
equately captured by more general DNA force fields. [33]
Partial charges in classical force fields are typically pa-
rameterized from quantum calculations using techniques
such as RESP, [78] but the underlying quantum calcula-
tions are often restricted in size and might not best re-
flect the macromolecule as a whole. The machine learn-
ing density model would allow larger reference calcula-
tions on a wider variety of relevant conformations to be
used for charge fitting, making it possible to fit partial
charges much more accurately. In addition, the model
could be used for “on-the-fly” charge reassignment simi-
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lar to QM/MM approaches. [79] This would enable force
fields to more accurately model the diversity of confor-
mations that large DNA molecules can sample.

In addition to parameterizing classical force fields, it is
also possible to directly calculate forces from the electron
density itself using the Hellmann-Feynman theorem. [80]
An advantage for using machine learning models to do
this is that long-range forces calculated from density-
based machine learning models converge much quicker
with respect to training cluster size compared to force-
based models. [25] While the aug-cc-pvdz basis set used
to train the model in this work is not large enough to
fulfill the requirements for accurate Hellmann-Feynman
forces, [81, 82] the accuracy of the machine learning elec-
tron densities suggests that with more complete basis sets
the model could be directly applied for ab initio molecu-
lar dynamics.

Finally, the machine learning model could be used to
aid experimentalists in the area of X-ray crystal structure
refinement. Refinement techniques typically involve iter-
atively improving the agreement between experimental
reflection data and some structural model. Due to com-
putational limitations, most structural models rely on
crude approximations such as the isolated atom model,
which we have discussed does not accurately represent a
structure’s true electron density (Fig. 4). The isolated
atom model works reasonably well at intermediate reso-
lutions but starts to show deficiencies for high-resolution
images (better than 1.0 Å). [83] Because computational
scaling is less of an issue for machine learning models,
they can be efficiently used to replace crude models with
more sophisticated ones. The need for more sophisticated
models in refinement will only become more prevalent as
experimental techniques continue to improve and high-
resolution images become the standard.

Extrapolating the trained model to other forms of
DNA

So far, the density prediction model has only been ap-
plied to structures in the canonical B-DNA form, which
seems appropriate since the model was trained on data
from B-DNA structures. To get a sense for how well
the model can extrapolate to the other structural forms
of DNA, the model was additionally tested on A- and
Z-DNA structures. Experimentally resolved DNA struc-
tures from the Protein Data Bank (PDB) were trimmed
into 6-mers to make them tractable for quantum refer-
ence calculations. The error in the model-predicted den-
sities was quantified using ϵρtrue

in the same way as be-
fore. The results are summarized in Table II. The pre-
dicted densities of these structures can be found in the
ESI† as Fig. S1.

As expected, the lowest error is reported for the B-
DNA structures. As a test case, we included a B-DNA
structure with an A-tract. With its base sequence of
AAAAAA, the A-tract represents a structural extreme

TABLE II Machine learning model performance on various

DNA structural motifs

PDB code Description ϵρtrue (%)
251d [84] B-DNA 1.15
1fzx [85] B-DNA w/ A-tract 1.24
440d [86] A-DNA 1.73
4fs5 [87] Z-DNA 1.77

for B-DNA. It is, therefore, not surprising that the model
error is slightly higher (ϵρtrue

= 1.24%) although it
remains close to that of the regular B-DNA structure
(ϵρtrue

= 1.15%). For the A- and Z-DNA structures, the
error increases to ϵρtrue

∼ 1.75%. Considering that A-
and Z-DNA have significantly different structural mo-
tifs (Z-DNA features a left-handed helix, for instance),
the increase in error is expected. Even so, because of
the relatively small errors, we conclude that the model
trained only on B-DNA structures can reasonably ex-
trapolate to other forms of DNA. The error is compa-
rable to the ϵρML

= 1.5% reported in another extrapo-
lation study, which predicted polypeptide densities from
a model trained on a database of biofragments. [20] Of
course, the error can be decreased by broadening the
training set to include samples from A- and Z-DNA
forms. The modest increase in error for A-DNA and
Z-DNA suggests that the amount of additional training
data necessary to accurately model these structures is
likely to be small.
Finally, we showcase the capability of our constructed

density prediction model and point the way toward future
machine learning studies by presenting model-predicted
densities for a handful of extremely large DNA struc-
tures. These include the Drew-Dickerson dodecamer [88]
(Fig. 5a), a stacked four-way junction [89] (Fig. 5b), a nu-
cleosome core particle [90] (Fig. 5d), and an example of
a 2D wireframe DNA origami structure [47, 52] (Fig. 5e).
The largest of these structures contains 108,654 electrons,
placing it far beyond the scope of traditional quantum
methods. The times to compute a density for these struc-
tures with the model are presented in Fig. 5c. Plotted
on a log-log scale, the slope of the trendline should cor-
respond to the order of scaling O(N). Based on a slope
of N = 1.17, the scaling for the machine learning model
is essentially linear.

CONCLUSIONS

We constructed a machine learning model based on
the equivariant e3nn neural network framework that
can calculate electron densities for arbitrary DNA struc-
tures that well exceed the scope of traditional ab ini-
tio quantum calculations. The model is trained on B-
DNA base pair steps and shows a remarkably low error
(ϵρML

= 0.62% on the test set of 2-mers) comparable
to the most accurate machine learning electron density
studies. This error does not significantly increase with
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FIG. 5 Machine learning densities for large DNA structures. (a)

Drew-Dickerson dodecamer, 758 atoms, 3780 electrons, (PDB

code: 4c64 [88]). (b) Stacked four-way junction, 1260 atoms,

6280 electrons (PDB code: 1dcw [89]). (c) Timings for

running the machine learning models. The machine learning

model scales linearly, N = 1.17. (d) Nucleosome core particle,

147 base pairs, 9346 atoms, 46980 electrons (PDB code:

1kx5 [90]). (e) DNA origami triangle [47, 52], ∼ 340 base

pairs, 21658 atoms, 108654 electrons. Illustrations were made

using VESTA. [62]

base sequence length but tends to flatten out, which sug-
gests the model can predict densities for larger DNA
structures with negligible loss of accuracy. The model
also extrapolates reasonably well to structural forms be-
yond B-DNA such as the A- and Z-DNA forms, giving
errors of around ϵρtrue

= 1.75%. The learning curves for
this model indicate that the error can be systematically
decreased by expanding the training set. To demonstrate
the power of the model, we computed electron densities
for structures ranging from a DNA duplex to a large
DNA origami object containing over 100k electrons on
timescales of seconds to minutes.

Having a tool that can obtain accurate electron
densities for DNA in all its forms opens the door for
applications that were previously restricted by com-
putational scaling. In principle, any application that
requires an electron density should be able to make use
of the model. The model has a direct application for
calculating quantum-accurate electrostatic potentials,
which have been used to study DNA binding interactions
with proteins and counterions. When comparing model-
derived electrostatic potentials to classical force fields,
the machine learning potentials do not show deficiencies
at short range. Lastly, this machine learning electron

density model has exciting future uses in molecular
dynamics. The model could be used to develop more
accurate force fields for classical molecular dynamics, or
applied directly to calculate Hellmann-Feynman forces
for ab initio molecular dynamics.
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