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Abstract7

SMILES is the most dominant molecular representation used in AI-based chemical applications,8

but also responsible for certain issues associated with its internal structure. Here, we exploit the idea9

that structural fingerprints may be used as efficient alternatives to unique molecular representations.10

For this purpose, we assessed the conversion efficiency of fingerprints back to the molecules. We11

successfully reconstructed molecules with the NMT approach, achieving a high level of accuracy.12

Our approach therefore brings structural fingerprints into play as strong representational tools in13

chemical NLP applications by restoring the connectivity information that is lost during the fingerprint14

transformation. This comprehensive study addresses the major limitation of structural fingerprints15

which precludes their implementations in NLP models. Our findings should enhance the efficiency16

of the models in generative and translational fields.17

1 Introduction18

SMILES [1] string is the most widely used linear representation describing chemical structure information.19

It uses several simple rules to convert a chemical structure into a character string. The notation allows20

multiple unique SMILES strings to be used to represent molecules. Since its inception, SMILES has21

undergone various extensions [2–5]. Among them, canonicalization algorithms, integration of isotopism22

and stereochemistry information (isomeric SMILES) can be highlighted [6–9].23

Whereas this simplified line notation is superior to other one-dimensional representation schemes such24

as WLN [10], SLN [11], and IncHi [12], its internal structure leads to number of problems when using25

in NLP applications [13–16]. SMILES-based deep learning NLP models are prone to generate invalid26

SMILES strings [17–20] The invalidity errors can be attributed to the fragile structure of SMILES27

(strong dependence between tokens). Because language models formulates predictions one character at28

a time, a single character alteration often suffices to invalidate an entire SMILES string. In addition,29

predicted valid SMILES are not guaranteed to be chemically valid. Several attempts have been proposed30

to ensure syntactic and chemical validity of SMILES predictions [21–24]. In fact, the challenges that31

SMILES syntax poses prompted the development of alternative syntaxes such as DeepSMILES [25] and32

SELFIES [26].33

Text generation and machine translation are among the mostly used NLP methods in chemistry. Their34

aim, by definition, is to generate meaningful sequences from meaningful tokens. Tokenization is therefore35

a pivotal preprocessing step in many NLP tasks. SMILES strings are merely meaningful as a whole so36

that any type of tokenization procedure must dissect them in an arbitrary fashion. From a chemist per-37

spective, atom-wise or character-wise tokenization of SMILES do not produce fully interpretable tokens38

because many characters in SMILES strings are used to represent the topological characteristics, such39

as ring-closure or branches which do not correspond to physical atoms. Also, most SMILES tokens are40

indistinguishable due to the repetitiveness. Considering that the primary design purpose of SMILES was41

to serve as a universal exchange format, being unable to derive interpretable insights from tokenization42

is understandable. Nevertheless, despite the abovementioned challenges, SMILES has a prominent role43

to play in AI-based chemical models since these models require precise molecular descriptions in their44

output structures.45

Model interpretability is crucial to both developers and users. Yet, it is often difficult to attribute46

meaning to the outcomes of deep learning methodologies due to their black box nature. The downside of47
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NLP methods in chemistry is their lack of interpretability [27]. An accurate interpretation requires careful1

consideration of both the molecular representation and the means of explaining the model. Although2

looking inside the model is easier with the state-of-the-art NLP models using attention mechanism via3

attention weight matrices, recent studies showed that the learned attention weights may not fully reflect4

the feature importance [28, 29]. In this regard, attribution maps such as integrated gradients [30] help5

us explain the important features contributing to the prediction.6

Interpretability necessitates the existence of meaningful tokens since NLP models tend to learn the7

relationships between them. Interpretability of individual tokens is therefore highly desired. The chemical8

interpretability of conventional methods is hampered by the fact that SMILES tokens are not fully9

interpretable in a chemical sense. This fact contradicts the recent statement by Tu et al. [31], SMILES10

is indeed a highly efficient representation for capturing information about molecular structures, whereas11

issues only arise when SMILES are tokenized. Molecular fingerprints and substructural keys can be12

employed as an alternative to SMILES representation. They are designed to capture either chemical13

features, concepts or structural patterns which together yield interpretable set of tokens suitable for14

NLP applications.15

Construction of molecular fingerprints is a lossy procedure. This is the main reason why fingerprints16

lead to stand-alone interpretable tokens. The fact that attention is a permutation-invariant opera-17

tion [32], fingerprints fit well into attention mechanism. Regarding the representation itself, attention-18

based models such as Transformers can handle unconnected features of fingerprints [33, 34]. Thus, to19

address the major limitation of structural fingerprints which precludes their implementations in NLP20

models, we assessed the conversion efficiency of fingerprints back to the molecules. To accurately decode21

fingerprints back to lossless molecular representations we used a translation-based system, the Trans-22

former architecture. In this study, we show that reconstruction of molecules is a practically plausible23

approach which delivers very high-accuracy needed for chemical applications. We illustrate our approach24

through 13 structural fingerprint examples, classified into five main categories, and show that certain25

fingerprints can be used directly in a NLP setting as alternatives to SMILES.26

2 Method27

2.1 Structural fingerprint representations28

Structural fingerprints tested were taken from RDKit [35] implementations. They can be classified29

into five main groups which are reported in Table 1 along with corresponding sequence lengths and30

vocabulary size information. We generated a total of 13 different fingerprints to carry out our analyses.31

Binary variants of selected fingerprints are hashed to a fixed size of 2048, except Avalon. Fingerprints32

are optimized by its parameters to yield similar sequence lengths when necessary. We omitted sparse33

versions of atom-pair and ECFP4 from this calculation as the vocabulary space covered was huge, thus34

the token size.35

1. Predefined substructure MACCS keys [36] converts a molecule into a bit vector with a fixed36

size of 166, in which each bit records the presence of a feature taken from a predefined dictionary37

of SMARTS patterns [37].38

2. Paths and feature classes The Avalon enumerates paths and feature classes. We refer the reader39

to study of Gedeck et al. [38] for a thorough explanation of paths and feature classes covered.40

3. Path-based The RDKit fingerprint is very similar to the Daylight fingerprint [37]. Hashed41

branched and linear subgraphs of size 4 is used. In both cases, minPath and maxPath parameters42

were set to 2 and 4 respectively. Hashed variant of atom pair fingerprint encodes all pairs of atoms43

with their environments as well as their bond distance [39]. Here it is used with the following44

parameters minLength=1, and maxLength=6.45

4. 4-atom-paths Topological torsion [40] encodes sequences of four bonded atoms such that the46

generated set of substructures have local character. It is used along with its hashed variant.47

5. Circular The extended-connectivity fingerprint [41] ECFPx enumerates circular atom environ-48

ments defined as topological neighborhood fragments up to a selected radius. The sparse and49

hashed variants are used separately. Feature-class fingerprints FCFPx include pharmacophoric50

features as invariants.51
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Table 1: Translation related statistics about domain-specific datasets generated by structural fingerprints
used for the performance analysis are presented together with the targeted molecular representations,
SMILES and SELFIES.

Abbreviations Description Dim Sequence length Token size

Ave. Max

Predefined substructures

MACCS 166 50 107 160

Paths and feature classes

Avalon Hashed 512 182 470 516

Path-based

HashAP Atom pair - hashed 2048 92 273 1998

RDK4 RDkit fingerprint - hashed 2048 83 288 2052

RDK4-L RDK4 - with no branch 2048 58 209 2052

4-atom-paths

TT Topological torsion sparse 32 124 54973

HashTT TT - hashed 2048 31 118 2052

Circular

AEs Morgan radius 1 sparse 29 65 54076

ECFP0 Morgan radius 0 - hashed 2048 10 25 100

ECFP2 Morgan radius 1 - hashed 2048 28 64 2052

ECFP4 Morgan radius 2 - hashed 2048 47 103 2052

FCFP2 Feature-class of ECFP2 2048 20 51 1576

FCFP4 Feature-class of ECFP4 2048 36 86 2052

Unique Representation

SMILES Tokenized atom-wise 51 125 109

SELFIES Generic tokenization 44 127 205
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2.2 Model overview1

In this study, we employed Transformer [42], a model architecture with a multi-head attention mechanism2

on each unit. Attention units allow the model to learn global dependencies between input and output.3

Transformer-based models can reach a high level of success in translation quality compared to generic4

seq-2-seq methods [13, 15, 17, 34]. In addition, the attention mechanism eliminates the dependence on5

the order of the input sequence. Therefore, models yield the same sequence of outputs regardless of the6

spatial connections between tokens. This property of attention mechanism makes Transformer-based7

models suitable for investigating fingerprint to molecule conversions.8

Translation-based algorithms necessitate a huge corpus of diverse translation pairs for effective trans-9

lation. For this purpose, we selected ChEMBL [43] (2.08M) dataset and added PubChem [44] compounds10

by maximizing the diversity of atom types based on atomic environments. This led to a total of 5 million11

training compounds. The dataset contains small and medium-sized molecules, 50 atom or less. Support-12

ing Figure 1 illustrates the sequence length distribution of the dataset in terms of atom types. We tested13

our model against a diverse external test set consisting of 50K molecules. To have more realistic results,14

we preferred a more challenging dataset by not removing the stereochemical information though most15

fingerprints do not account for stereochemistry in RDKit.16

2.3 Training and evaluation17

We used Pytorch [45] Distributed Data-Parallel Training (DDP) module to train our models. Each18

model was trained with two GPUs up to 500K step which denotes the number of times the optimizer19

updates the parameters of the model. The hyperparameters of models were set the same as with the base-20

model of the original Transformer paper [42]. We employed Zero Redundancy Optimizer [46] (ZeRO)21

with Adam algorithm to optimize parameters of the models, ZeRO was developed to improve training22

speed by eliminating memory redundancies in data- and model-parallel training. The details of our key23

hyperparameters and hyperparameter space are described in Supplementary Table 1.24

We set the number of tokens in one batch as 8000 per GPU. Due to our hardware limitations we could25

not set more than 8000. For fair comparison of fingerprints, the batch size was specified based on the26

average number of tokens in one batch, provided that the number of sentence pairs in one batch will vary27

in accordance with the sequence length of a fingerprint. We experimented several learning rate schedulers28

to extend the vanilla implementation [42]. We applied cyclic [47] learning rate, its decayed variant, and29

stochastic gradient descent with warm restarts [48] so as to see if scheduling algorithms affect the model30

performance (see Supplementary Figure 2). Among them, we selected the cyclic learning scheduler,31

provided a slightly better performance than the other techniques.32

We evaluated the conversion efficiency with Tanimoto similarity matching. A further breakdown of33

the results were achieved by introducing simple string matching. The widely used Tanimoto coefficient34

operated on sparse Morgan fingerprint is selected as the similarity metric to represent the main results.35

Pairwise similarities between predictions and ground truths are computed at the end of each 25K step for36

every pair present in the test set. We used top-1 predictions to report conversion accuracy. We utilized37

the Python package named ccbmlib [49] to facilitate the generation of similarity value distributions of38

the all fingerprints.39

3 Results and discussion40

Conversion accuracy of each structural fingerprint to a unique molecular representation is illustrated in41

Figure 1 . As is apparent from Figure 1, SMILES conversion demonstrated favorable results in accuracy42

than SELFIES. In both translation attempts, top performing molecular representation became ECFP4,43

whereas the worst performance is observed in MACCS, omitting the ECFP0. ECFP0 tries to represent44

5 million molecules by using only 100 tokens that are overgeneral and did not work in this translation45

context. Also, sparse versions perform better than hashed variants of the same fingerprints.46

The performances of the structural fingerprints separately for SMILES and SELFIES prediction47

showed different dynamics during training. Convergence has achieved relatively at lower steps at SMILES48

translations than SELFIES. SMILES grammatical structure is easily learned, which allowed to compen-49

sate the fragility of the representation. On the other side, the drop in overall accuracy and the necessity50

of larger step size to reach convergence indicated that the correlations between fingerprint and SELF-51

IES tokens are weaker than SMILES tokens. The Avalon’s performance in SELFIES prediction broke52
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the general performance trend that might be attributed to the unusual cumulative distribution function1

(CDF) of Avalon.2

Figure 1: Conversion accuracy of each structural fingerprint to SMILES and SELFIES is demonstrated
in cumulative column-stacked bar plot. The results are based on the Tanimoto exactness computed
periodically during training with ECFP of radius 1 and dimension 2048.

Mean Tanimoto score is quite critical since it reveals the overall conversion quality. However, simi-3

larity metrics in general indicate different meanings in different fingerprints. It is therefore unlikely to4

rationalize a specific similarity value as a performance evaluation indicator for various fingerprints. A5

global comparison of all fingerprints within a fair framework is only possible when the similarity value6

corresponding to a reference significance score is also presented. For this purpose, we generated the CDFs7

of each fingerprint and found Tc values having a significance of 0.99. The Figure 2 illustrates mean Tc8

scores (vertical lines) within the training step interval [25K-500K] coupled with a fixed significance score9

(horizontal lines).10

Figure 2: Mean Tanimoto coefficients are given for each type of conversion along with the reference
significance score to assess the real performance of structural fingerprints. Horizontal lines represent
similarity values of each fingerprint corresponding to a p-value of 0.01. Vertical lines show the continuum,
which starts at 25K step and ends with convergence.

Lower Tc values relative to reference significance score, and higher mean Tc values at convergence were11
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the characteristics of high-performing fingerprints. Based on the Figure 2, ECFP4-SMILES conversion1

yielded the best overall result. Atomic environments was the runner-up high-performing fingerprint,2

having a mean Tc of 0.97. The performance of HashAP, TT, and HashTT were comparable to AEs,3

with mean Tc scores 0.96, 0.96, and 0.95, respectively. RDKit variants-SELFIES conversion performed4

poorly relative to the other path-based fingerprints.5

Each prediction might have introduced a bias to the results if Tanimoto score is computed with6

the same fingerprint used in the original model. For this reason, multiple fingerprints, as described in7

Table 1, are utilized, to minimize the selection bias fingerprints provide. Tanimoto exactness of each8

model is computed across 15 different fingerprints, and presented as a matrix in Figure 3. This approach9

was important to our assessment, as it decoupled the robustness of the models from the effectiveness and10

bias of the fingerprints. The enhanced prediction accuracies of MACCS, RDK4, RDK4-L, and ECFP211

fingerprints clearly confirm the existence of fingerprint dependency of results. The Figure 3 highlighted12

the high performance and the robustness of ECFP4-SMILES model. The true performance of each13

model, averaged over 15 fingerprints, is presented in Table 2. Ultimately, our top performing models14

such as ECFP4, TT and hashed variant, HashAP, ECFP2 and AEs remain neutral regardless of the15

choice of similarity metric.16

Figure 3: Tanimoto exactness (%) of each fingerprint transformation to SMILES computed across 15
different fingerprint encodings. The results show the robustness and the effect of selection bias.

Table 2: Overall performance (%) of fingerprint decoders computed as the average Tanimoto exactness
score across 15 fingerprints.

MACCS Avalon RDK4 RDK4L HashAP TT HashTT ECFP0 ECFP2 ECFP4 FCFP2 FCFP4 AEs

SMILES 0.40 0.67 0.65 0.52 0.85 0.87 0.85 0.02 0.81 0.94 0.20 0.72 0.81

SELFIES 0.31 0.47 0.57 0.44 0.73 0.79 0.76 0.02 0.74 0.86 0.16 0.65 0.75

A complete breakdown of top-1 accuracy results over 50K test set for the top performer structural17

fingerprints are presented in Table 3. Total accuracy is given based on Tanimoto exactness. We further18

breakdown the accuracy by simple string comparison. Identical structures based on Tanimoto metric can19

be categorized, depending on whether they are sourced from identical strings, stereochemistry, canonical-20

ization, or others related to chain length and symmetry properties. Invalidity rates and mean Tanimoto21

scores are also reported in Table 3.22
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A large fraction of our test set, approx. %30, incorporates stereochemistry. The results indicate that1

the models account for stereochemical information, yet struggle to achieve accurate picture of relative2

atom orientations. Stereochemistry errors on the test set was about 20 percent for the best performing3

fingerprints. We examined stereochemically inconsistent predictions to see if they are string exact to4

the ground truths by removing stereochemical information. We found that in most cases models treat5

stereochemistry in reverse forms as cis/trans or clockwise/anti-clockwise. There were also predictions6

featuring stereochemistry even though ground truths had no stereo-center, or vice versa.7

Our dataset was not subjected to canonicalization prior to training to ensure full capacity of the8

SMILES representation. Our models were able to produce non-canonical instances of the ground truth9

SMILES. The rates of predicting chemically-equivalent SMILES vary from 1.6 to 4.8 percent depend-10

ing on the fingerprint type. Kekule forms play an important role in non-canonical predictions since11

switches in kekule representations can alter the SMILES enumerations. With regard to invalidity rates,12

SELFIES, as expected, provided a totally robust conversions with no invalid cases. SMILES performed13

comparably well with invalidity rates of about %0.2-0.3. Representative predictions displaying changes14

in stereochemistry, kekule forms, and enumerations are given in Supplementary table 2.15

Table 3: A detailed breakdown (%) of top-1 accuracy on 50K test set for the top performer structural
fingerprints belong to five sub-categories. All components are given..

Representation Components MACCS Avalon HashAP TT AEs ECFP4

SMILES

Tc = 1.0 34.7 65.6 83.1 85.2 83.5 93.1

String exact 22.3 44.7 58.7 57.8 52.1 64.6

Stereo 8.2 14.9 19.2 19.2 18.0 21.2

Non-canonical 1.6 3.5 4.3 4.2 3.7 4.8

Others 2.6 2.6 0.8 4.0 9.6 2.5

Invalid 0.2 0.4 0.3 0.3 0.3 0.2

Tc 81.9 90.5 95.5 96.3 96.7 98.1

SELFIES

Tc = 1.0 27.2 45.2 70.7 78.0 76.6 85.6

String exact 17.7 31.3 50.9 54.0 49.1 60.5

Stereo 5.9 9.3 15.2 16.7 19.9 18.5

Non-canonical 1.5 2.8 4.0 4.1 3.6 4.7

Others 2.2 1.7 0.6 3.3 8.0 1.9

Invalid no invalid predictions

Tc 77.8 81.5 90.7 93.9 94.4 95.1

Translation-based models require the studying of relationships between translated pairs in more16

precise quantitative ways. In order to establish a thorough explanation of the model, we evaluated17

the correlated features obtained by both integrated gradients and attention weights as illustrated in18

Figure 4. As a form of gradient-based feature importance measure, integrated gradients reveal relevant19

features more reliably than the attention weights. Recent findings showed that attention weights are often20

uncorrelated with gradient-based methods [50, 51]. Thus, we recognized attention weights as valuable21

stand-alone supplementary tool for addressing the interpretability problem. Interpreting attribution22

matrices for each combination is highly intricate, however, there is an explainable path between the AEs23

and the reconstruction of SMILES string.24

The matrices in Figure 4 can be interpreted in two ways. Firstly, the column-wise approach reflects25

the effect of an input feature over the whole prediction. The high-attribution AEs at positions 9 and26

11 were the most salient fragments for predicting the SMILES sub-string of nitro group. Especially, the27

AE at position 11 with a radius 0 made decisive contribution specifically to the oxygens of nitro group28

because, here, the negatively charged oxygen is in resonance with the geminal oxygen. Secondly, the29

row-wise approach reflects the salient input features attributing to a specific part of the prediction. For30

example, the higher attention values at the row of chlorine atom (Figure 4c) highlighted three atomic31
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environments, all containing chlorine, including as central atoms at radius 0 and 1.1

Figure 4: Correlated features of the a) predicted SMILES obtained by b) integrated gradients and c)
attention weight matrices are illustrated.
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We have exploited the idea of structural fingerprints as alternatives to unique molecular representa-1

tions. We have successfully rebuild molecules with a high level of precision, precisely higher than 90% for2

top performing fingerprints. As a result, structural fingerprints come into play as strong representational3

tools in chemistry related NLP applications after restoring the connectivity information which is lost4

during the fingerprint transformation. Our diverse selection of fingerprints have provided an unbiased5

examination of the overall conversion performance. Atom environments, ECFP4, topological torsion and6

atom-pairs fingerprints have been presented as ideal candidates for developing NLP tools with molecules.7

A complete breakdown of accuracies per fingerprint class has been presented in detail. Such an8

analysis provided invaluable insights into critical factors effecting the conversion process such as stere-9

ochemistry as a noticeable limitation. Since the model have struggled to treat stereochemistry, more10

research is required to fully address this issue. We have assessed the interpretability of our conversion11

approach by evaluating methods that compute and extract the most salient features for a prediction. At-12

tribution maps have revealed that the model focuses on the right fragments to reconstruct the molecule.13

We believe our findings could help improve the quality of the outcomes by offering ways to develop more14

efficient chemical models in generative and translational fields.15

4 Data Availability16

The data that support the findings of this study are generated by using RDKit software tools and17

are available in the MolForge GitHub repo: https://github.com/knu-lcbc/MolForge. Source data are18

provided with this paper.19

5 Code Availability20

The source code of this work and associated trained models are available at the MolForge GitHub repo:21

https://github.com/knu-lcbc/MolForge22
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