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Abstract

A perpetual yearn exists among computational scientists to scale-down the size of physical

systems, a desire shared as well with experimentalists able to track single molecules. A question

then arises whether averages observed at small systems are the same as those observed at large,

or macroscopic, systems. Utilizing statistical-mechanics formulations in ensembles in which the

total numbers of particles are fixed, we demonstrate that properties of binding reactions are not

homogeneous functions. That means averages of intensive parameters, such as the concentration

of the bound-state, at finite-systems are different than those at large-systems. The discrepancy

increases with decreasing temperature, volume, and to some extent, numbers of particles. As

perplexing as it may sound, despite variations in average quantities, extracting the equilibrium

constant from systems of different sizes does yield the same value. The reason is that correlations in

reactants’ concentrations are ought be accounted for in the expression of the equilibrium constant,

being negligible at large-scale but significant at small-scale. Similar arguments pertain to the

calculations of the reaction rate-constants, more specifically, the bimolecular rate of the forward

reaction is related to the average of the product (and not to the product of the averages) of

the reactants’ concentrations. Furthermore, we derive relations aiming to predict the composition

only from the equilibrium constant and the system’s size. All predictions are validated by Monte-

Carlo and molecular dynamics simulations. An important consequence of these findings is that

the expression of the equilibrium constant at finite systems is not dictated solely by the chemical

equation of the reaction but requires knowledge of the elementary processes involved.
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Consider the following association reaction,

A+B 
 AB , (1)

in which N ◦
A gas molecules of A and N ◦

B gas molecules of B are placed in an empty closed container

with fixed volume, V , and temperature, T , to reach equilibrium with the bound product, AB. The

experiment is then repeated at the same conditions but with λN ◦
A, λN

◦
B, and λV instead. Are

the concentrations of AB particles in the two experiments equal? In the thermodynamic limit the

answer is yes, because intensive and extensive properties are homogeneous zero-order and first-order

functions, respectively1,

X(T, λV, λN
◦

A, λN
◦

B) = λ
α

X(T, V,N
◦

A, N
◦

B) , (2)

where α = 0 if X is an intensive property and α = 1 if X is extensive. However, would Eq. 2 hold if

we scale-down the system to a regime not belonging to the thermodynamic limit (hereafter, referred

to as small- or finite-system), for a example that of N ◦
A = N

◦
B = 1? Currently accepted dogma

assumes the validity of Eq. 2 for all system sizes2–12, provided sufficient statistics is collected (yet,

it is understood that relative magnitudes of fluctuations are inversely proportional to the system

size). In this paper we argue that for bimolecular reactions, the homogeneous function character

of the system’s properties stated in Eq. 2 breaks-down at finite systems.

Results

I. Statistical Mechanical Derivation of the Equilibrium Constant for Association

The process in Eq. 1 is chosen to be described by the canonical (N ◦
A, N

◦
B, V , T ) ensemble, where

N
◦
A = NA +NAB and N ◦

B = NB +NAB are the total numbers of A and B particles. The particle

labels are arranged to satisfyN ◦
A ≤ N

◦
B. All three components on both sides of Eq. 1 are assumed to

be gases with ideal behavior, that means, apart from the reaction described they are not interacting
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with one another (this also excludes interactions between three or more particles). Upon formation

of one bound AB particle, the potential energy of the system changes by an amount of εAB (i.e.,

εAB is negative). In this model, the energy states of the system due to interparticle interactions

can be uniquely mapped onto NAB. Thus, the canonical partition function of the system can be

written as,

Q =

N
◦
A∑

i=0

q
N

◦
A−i

A

(N
◦
A − i)!

· q
N

◦
B−i

B

(N
◦
B − i)!

·
qi
AB

i!
=

N
◦
A∑

i=0

W i
N

◦
A,N

◦
B
qN

◦
A−i

A
qN

◦
B−i

B
qi
AB

, (3)

where the summation over index i (i ≡ NAB) includes all possible numbers of bound AB particles

and thereby all possible energy states. q
A
and q

B
are single-particle partition functions of unbound

A and B particles (hence, obtained by summing only internal energies) and qAB is the pair-particle

partition function of one bound AB particle (which includes the Boltzmann factor e−βεAB). These

partition functions can be expressed in different forms and they are described in details in section SI-

1 of the Supporting Information. Given that A and B, each, being indistinguishable particles,

W i
N

◦
A,N

◦
B

in Eq. 3,

W i
N

◦
A,N

◦
B
≡ 1

(N
◦
A − i)!(N

◦
B − i)!i!

, (4)

corrects the over-counting when raising the partition functions to the power of the particle num-

bers. Alternatively, the value of W i
N

◦
A,N

◦
B

can be obtained by first correcting all particles to be

indistinguishable, i.e. dividing by N ◦
A!N

◦
B!, and then multiplying by the number of ways to form

from N
◦
A and N ◦

B distinguishable particles, i pairs (where the order in each of the formed groups

is not important), that is N ◦
A!N

◦
B!/
[
(N

◦
A − i)!(N

◦
B − i)!i!

]
.

The equilibrium constant is defined by,

K = e−∆G∅/RT , (5)

where ∆G∅ is the standard Gibbs free energy change of the association reaction. This means,

∆G∅ is the change in Gibbs energy when one mole of A react with one mole of B to form one

mole of AB, given all components are at their standard reference conditions. Here we choose
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the reference state of component x to be the concentration c∅x at temperature T . Measurements

of ∆G∅ are normally not performed on exactly one mole of particles, NAvogadro, but are scaled to

correspond to this number. For generality, we set the volume of the macroscopic reference system

to V ∅ from which the numbers of particles undergoing the association reaction in the reference

system can be obtained by N∅
x = V ∅c∅x . In writing the partition function of the reference system,

Q∅, we can still use Eq. 3 but substitute N ◦
A with N∅

A and N ◦
B with N∅

B . Additionally, because V ∅

is not equal to V , the single- and pair-particle partition functions in the reference system, q∅
x
, are

different than those in our system, qx . The dependency of these functions on volume is due to the

translational partition function and is therefore linear. Thus the following equality,

q∅
AB
/V ∅

q∅
A
/V ∅ · q∅

B
/V ∅ =

q
AB
/V

q
A
/V · q

B
/V

, (6)

between the particle partition functions in the two systems, having the same temperature, exists

and will be used below.

We start by expressing the Gibbs free energy change, ∆G0→N∅
A
, when N∅

A particles of A

associate with N∅
A (out of N∅

B ) particles of B, i.e., when all components are at their reference

conditions. Then, we will obtain ∆G∅ by scaling ∆G0→N∅
A
to the stoichiometric number of moles

of the reaction. The corresponding change in Helmholtz free energy, ∆F0→N∅
A
, can be calculated

from the ratio of the probability to find the system in the bound state, pAB (i.e., the fraction of the

state i = N∅
A in the sum of the partition function for the reference system, Q∅), to the probability

of the unbound state, pA+B (the fraction of the state i = 0). Thus, ∆G0→N∅
A
can be written as,

∆G0→N∅
A
≡ Gi=N∅

A
−Gi=0 = ∆F0→N∅

A
+ V ∅∆P0→N∅

A
= −k

B
T ln

pAB

pA+B
+ V ∅∆P0→N∅

A

= −k
B
T ln

(q∅AB)N∅
A
(
q∅
B

)N∅
B−N

∅
A

N∅
A !(N∅

B −N∅
A )!

N∅
A !N∅

B !(
q∅
A

)N∅
A
(
q∅
B

)N∅
B

+ V ∅∆P0→N∅
A

, (7)

where ∆P0→N∅
A

is the change in the pressure of the system accompanied the reaction. Almost

without exception, the reference concentrations are chosen to be the same for all components
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(c∅x = c∅ for all x), thus, Eq. 7 reduces to,

∆G0→N∅
A

= −N∅
AkBT ln

q∅
AB

q∅
A
q∅
B

− k
B
T lnN∅

A ! + V ∅∆P0→N∅
A

. (8)

Applying Stirling’s approximation to evaluate lnN∅
A !, thus, requiring N∅

A to be large, as is always

the case for the standard state realized by a macroscopic measurement of ∆G∅, and subsequently

substituting N∅
A with V ∅c∅ gives,

∆G0→N∅
A

= −N∅
AkBT ln

q∅
AB
/V ∅

q∅
A
/V ∅ · q∅

B
/V ∅ −NAkBT ln c∅ +N∅

AkBT + V ∅∆P0→N∅
A

. (9)

Now we will evaluate the ratio inside the first logarithm in Eq. 9. Given the equality in Eq. 6, we

can do that using a different system, convenient for us to study, at the same temperature but with

arbitrary numbers of particles N ◦
A, N

◦
B and volume V , thus at arbitrary concentrations, as long as

the ideal behavior of the system is maintained. That means, we chose the system for which the

partition function in Eq. 3 was written for. We begin by multiplying and dividing this ratio by the

term,
N

◦
A−1∑
i=0

(i+ 1) W i+1

N
◦
A,N

◦
B

qN
◦
A−i

A
qN

◦
B−i

B
qi
AB

, (10)

and obtain,

V ∅ q∅
AB

q∅
A
q∅
B

= V
q
AB

q
A
q
B

= V

∑N
◦
A−1

i=0 (i+ 1) W i+1

N
◦
A,N

◦
B

q
N

◦
A−(i+1)

A q
N

◦
B−(i+1)

B qi+1
AB∑N

◦
A−1

i=0
(i+1)

[N
◦
A−(i+1)]! [N

◦
B−(i+1)]! (i+1)!

q
N

◦
A−i

A q
N

◦
B−i

B qi
AB

. (11)

We change the index of the sum in the numerator to j = i + 1 and rewrite the factorials in the

denominator,

V
q
AB

q
A
q
B

= V

∑N
◦
A

j=1 j W j

N
◦
A,N

◦
B

q
N

◦
A−j

A q
N

◦
B−j

B qj
AB∑N

◦
A−1

i=0 (N
◦
A − i)(N

◦
B − i) W i

N
◦
A,N

◦
B

q
N

◦
A−i

A q
N

◦
B−i

B qi
AB

. (12)

Without changing the value of the sum in the numerator, we can let index j start from zero. The

same is true if we let index i in the denominator end at N ◦
A. This yields,

V
q
AB

q
A
q
B

= V

1
Q

∑N
◦
A

j=0 j W j

N
◦
A,N

◦
B

q
N

◦
A−j

A q
N

◦
B−j

B qj
AB

1
Q

∑N
◦
A

i=0 (N
◦
A − i)(N

◦
B − i) W i

N
◦
A,N

◦
B

q
N

◦
A−i

A q
N

◦
B−i

B qi
AB

= V
〈NAB〉
〈NANB〉

=
〈c
AB
〉

〈c
A
c
B
〉

,

(13)
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where the sum in the numerator is identified as the ensemble average of the number of bound

particles, 〈NAB〉, and the sum in the denominator is the average of the product of the numbers

of unbound particles, 〈NANB〉, both in our chosen arbitrary system under equilibrium conditions.

Inserting this result into Eq. 9 gives,

∆G0→N∅
A

= −N∅
AkBT ln

〈c
AB
/c∅〉

〈c
A
/c∅ · c

B
/c∅〉

+N∅
AkBT + V ∅∆P0→N∅

A
. (14)

For ideal gases, the term V ∅∆P0→N∅
A

equals −N∅
AkBT , so the last two terms in Eq. 14 cancel

each other. In addition, the value of ∆G∅ is reported per mole of chemical equation,

∆G∅ =
NAvogadro

N∅
A

∆G0→N∅
A

. (15)

Considering the definition of K in Eq. 5 we obtain,

K =
〈c
AB
〉

〈c
A
c
B
〉
· c∅ =

〈P
AB
〉

〈P
A
P
B
〉
· P∅ , (16)

stating the equilibrium constant of binding reactions must include cross correlations in the reactants’

concentrations. The second equality relates K to the corresponding ratio of the partial pressures

of the different components where P∅ = c∅k
B
T is the standard reference pressure.

Notice that during the entire derivation there were no conditions imposed specifying a finite

system. In fact the definition of K implies a reference system with stoichiometric numbers of moles

of particles, justifying the application of Stirling’s approximation. It is only for convenience that we

might use a small system to evaluate the ratio of the partition functions (of single- and pair-particle

natures) encountered in Eq. 9. Yet it is in particular then, that the resulting equilibrium constant

expressed in Eq. 16, is substantially different than an analogous expression neglecting correlations,

K ′,

K ′ =
〈c
AB
〉

〈c
A
〉 〈c

B
〉
· c∅ . (17)

It is also essential to note that in statistical mechanics textbooks13–15, the equilibrium constant

is derived using an ensemble at constant NA, NB, NAB, V, T , where the numbers of particles are

identified as those at equilibrium upon imposing the macroscopic condition of chemical equilibrium.
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Fixing the numbers of particles of all components in the system, and inevitably their corresponding

chemical potentials (conjugated parameters), render the description of chemical equilibrium of the

reaction macroscopic. Not surprisingly, the resulting equilibrium constant is obtained in its ther-

modynamic form, K = c
AB
c∅/(c

A
c
B

), even if along the derivation statistical mechanics relations

were applied.

II. Computational Validation

To test our derivation we constructed a simple system of Lennard-Jones A and B molecules able

to establish the equilibrium binding reaction of Eq. 1. Three out of the four parameters specifying

the system in the canonical ensemble, N ◦
A, N

◦
B, and V , were changed systematically at constant

temperature, producing three different series of simulations, R1, R2, and R3. The first two series

were subject to three different simulation methods; Monte-Carlo (MC), molecular dynamics with

Nosé-Hoover thermostat (MD-NH), and molecular dynamics with velocity-rescaling thermostat

(MD-VR). The third series of simulations (R3) was conducted only by MC. Section SI-2 provides

further details on the model system and computational methodologies.

Figure 1 displays the equilibrium constant, K, calculated by Eq. 16, as well as, the value of K ′

defined in Eq. 17. Clearly, inclusion of cross-correlations in the reactants’ concentrations are crucial

for the equilibrium constant to stay constant at finite systems. In contrast, K ′ depends on the

numbers of particles and/or volume of the system studied, where its deviation from K increases

with decreasing the size of the system. For systems large enough, where correlations become

negligible, K ′ approaches K. The fact that K is constant for all sizes of the system, even for the

smallest system possible, indicates the law of mass action16 holds not only for macroscopic- but for

finite-systems as well, contrary to arguments found in the literature17,18. In Section SI-1 we consider

even a simpler model system, of single-site reactants, to facilitate an easy comparison between the

value of K obtained by Eq. 16 and analytical/numerical calculations. Excellent agreements, with

all three simulations methods, are attained.
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As might be expected, the extent of divergence of K ′ from K is also a function of temperature.

To demonstrate this, we conducted additional simulations of R1 series at different temperatures.

Figure 2, as well as Fig. SI-3.1 in Section SI-3, indicate this divergence of K ′ increases with

decreasing temperature (or with increasing −εAB/kBT ). For example, for N ◦
A = N

◦
B = 1, K ′ is

larger than K by a factor of 300 at T = 200 K, whereas it is nearly equal to K at T = 1200 K.

A direct consequence of taking the average of the product of reactants’ concentrations in

calculating K, and not the product of their averages, is on the condition for equilibrium. Using the

relation between the chemical potentials of component x at cx and at c∅ at the same temperature,

µx = µ∅
x

+ RT ln (cx/c
∅), and identifying ∆G∅ with µ∅

AB
− µ∅

A
− µ∅

B
, it follows from Eq. 16 that

the condition for equilibrium is,

〈µ
AB
〉 − 〈µ

A
+ µ

B
〉 = 0 , (18)

and not that expressed by the stoichiometric sum of the average of each component,

〈µ
AB
〉 − 〈µ

A
〉 − 〈µ

B
〉 = 0 , (19)

unless the system is large enough to render the correlations negligible.

The statistical thermodynamics expression of the equilibrium constant (Eq. 16) can also be

rationalized from dynamics. At equilibrium, the average (over replica or over time) net change in

the product’s and reactants’ concentrations is zero, thus we have,〈
dc

AB

dt

〉
=

〈
−dcA
dt

〉
=

〈
−dcB
dt

〉
= 〈kfwcAcB − kbwcAB〉 = 0 , (20)

where kfw and kbw are the rate constants of the forward and backward reactions, respectively. The

backward reaction is a simple unimolecular process, while the forward reaction is a bimolecular

process and its rate is proportional to the collision probability between A and B. In turn, this

collision probability at each point in time is proportional to the product of the corresponding

instantaneous concentrations. That is, averaging the rate of the forward reaction in finite systems

requires the cross-correlations of the two reactants’ concentrations. By defining K as the ratio

9



Binding Reactions at Finite Systems Results

between forward and backward rate constants, and rendering its value dimensionless via c∅, we

recover Eq. 16. We calculated kfw and kbw from the MD simulations (Section SI-2) and the results

corroborate kfw at finite systems must include correlations between c
A
and c

B
(Fig. 3). Clearly,

ignoring these correlations will produce rate constants that depend on concentrations (Fig. 3b) as

evidenced when analyzing single-molecule fluorescence binding experiments19.

In constructing R1 series of simulations, we multiplied all extensive parameters specifying the

system by the same factor, exactly as described by Eq. 2. This means, intensive properties are

expected to have the same average values for all system sizes if the system’s properties were ho-

mogeneous in character. However, Fig. 4 demonstrates this is not the case at finite systems. In

particular, the concentration of the bound state, as well as the inter-particle energy per particle,

exhibit rising divergence from a horizontal line as the number of particles decreases. We also plot

the radial distribution function between a and b sites. Again Eq. 2 predicts overlapping curves

for all system sizes, however, different distributions are obtained where the maxima describing the

bound state for small-sized systems are higher in accordance with their larger concentrations. It

is worth mentioning, these changes in average properties at finite systems are not emerging from

artefacts due to neglected concentration fluctuations in small simulations20 or application of peri-

odic boundary conditions in finite simulation boxes17,21–23, but are a consequence of incompatibility

between two-body interactions and linear scaling.

III. Calculating Concentrations from Fluctuations

It is well known that fluctuations are related to susceptibilities. In our system, the incessant

transitions at equilibrium between reactants and product force the number of particles of each

component to fluctuate. We now show that the composition of the system (particle numbers, or

concentrations) can be determined only from the magnitudes of these fluctuations.

Adopting the notation of Lebowitz et al.24, we define the cross fluctuations between quantities
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ζ and η as,

L(ζ, η) = 〈ζη〉 − 〈ζ〉〈η〉 , (21)

and their relative magnitude by,

l(ζ, η) =
L(ζ, η)

〈ζ〉〈η〉
. (22)

We now look at the following difference,

l(NAB, NAB)− l(NAB, NANB) =
1

〈NAB〉

[
〈N2

AB〉
〈NAB〉

− 〈NABNANB〉
〈NANB〉

]
, (23)

and concentrate on evaluating the term inside the square brackets. We start by evaluating the

term,

〈N2
AB〉

〈NAB〉
=

1
Q

∑N
◦
A

i=0 i2 W i
N

◦
A,N

◦
B

q
N

◦
A−i

A q
N

◦
B−i

B qi
AB

1
Q

∑N
◦
A

i=0 i W i
N

◦
A,N

◦
B

q
N

◦
A−i

A q
N

◦
B−i

B qi
AB

=

∑N
◦
A−1

j=0 (j + 1)2 W j+1

N
◦
A,N

◦
B

q
N

◦
A−j

A q
N

◦
B−j

B qj
AB∑N

◦
A−1

j=0 (j + 1) W j+1

N
◦
A,N

◦
B

q
N

◦
A−j

A q
N

◦
B−j

B qj
AB

,

(24)

where we skipped the terms corresponding to i = 0 and changed the index of the summation to

j = i− 1. In the second equality we also multiplied and divided the ratio by q
A
q
B
/q

AB
. Similarly,

we can express the second term inside the square brackets in Eq. 23 by,

〈NABNANB〉
〈NANB〉

=

1
Q

∑N
◦
A

i=0 i(N
◦
A − i)(N

◦
B − i) W i

N
◦
A,N

◦
B

q
N

◦
A−i

A q
N

◦
B−i

B qi
AB

1
Q

∑N
◦
A

i=0
(N

◦
A−i)(N

◦
B−i)

(N
◦
A−i)!(N

◦
B−i)!i!

q
N

◦
A−i

A q
N

◦
B−i

B qi
AB

=

∑N
◦
A−1

i=0 i(i+ 1) W i+1

N
◦
A,N

◦
B

q
N

◦
A−i

A q
N

◦
B−i

B qi
AB∑N

◦
A−1

i=0 (i+ 1) W i+1

N
◦
A,N

◦
B

q
N

◦
A−i

A q
N

◦
B−i

B qi
AB

. (25)

The second equality is realized by letting index i in the sum end at N ◦
A− 1 and rewriting the coef-

ficients of the single/pair-particle partition functions in terms of W i+1

N
◦
A,N

◦
B

. Note the denominators

of Eq. 24 and Eq. 25 are the same, so the difference of the two terms inside the square brackets in

Eq. 23 can be easily evaluated,

〈N2
AB〉

〈NAB〉
− 〈NABNANB〉

〈NANB〉
=

∑N
◦
A−1

i=0 (i+ 1) W i+1

N
◦
A,N

◦
B

q
N

◦
A−i

A q
N

◦
B−i

B qi
AB∑N

◦
A−1

i=0 (i+ 1) W i+1

N
◦
A,N

◦
B

q
N

◦
A−i

A q
N

◦
B−i

B qi
AB

= 1 , (26)
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which actually reduces to one. This means Eq. 23 becomes,

l(NAB, NAB)− l(NAB, NANB) =
1

〈NAB〉
, (27)

from which the average concentration of the bound AB particles can be expressed by,

〈cAB〉 =
1

[l(NAB, NAB)− l(NAB, NANB)]V
. (28)

Equation 27 can also be derived by a more conventional procedure, i.e. by partially differentiating

the partition function of the system with respect to temperature. However in this case we need to

assume K is given by Eq. 16 (see Section SI-4).

It is interesting to comment that whereas l(NAB, NAB) is necessarily positive, the relative

fluctuations in l(NAB, NANB) measure correlations between two quantities that are anti-correlated

and hence always negative. Thus, the quantity inside the square brackets of the denominator in

Eq. 28 is a summation of two positive terms with magnitude that reduces with increasing system

size. For large systems, this reduction is proportional to the reciprocal of the volume so that 〈cAB〉

approaches a constant.

The relation in Eq. 27 was tested for all simulations performed. In Fig. 5a we plot results at

T = 300 K, and in Fig. SI-3.2 results of the R1 series at different temperatures. All data points,

independent of temperature, fall on the same straight line as predicted. The correlation coefficients

of the linear regressions turned-out perfect, within the accuracy of the analyzing software, likely

because comparison is made between two quantities calculated from the same simulation allowing

elimination of certain errors.

IV. Calculating Concentrations from K

A drawback of Eq. 27 or Eq. 28 is when the system simulated or studied experimentally is not

of the same size as the target system. In this case, relative fluctuations of the target system are

needed in order to compute composition. Thus it would be more practical if we can determine the

concentrations from K and the parameters defining the target system.
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We start by rewriting the expression of K,

〈NAB〉 =
K

V c∅
〈NANB〉 =

K

V c∅
〈(N ◦

A −NAB)(N
◦

B −NAB)〉

=
K

V c∅
[
N

◦

AN
◦

B − (N
◦

A +N
◦

B)〈NAB〉+ L(NAB, NAB) + 〈NAB〉2
]

, (29)

and solve the quadratic equation to obtain,

〈c
AB
〉 =

(
c◦
A

+ c◦
B

+ c∅

K

)
−
√(

c◦
A

+ c◦
B

+ c∅

K

)2 − 4 [l(NAB, NAB) + 1] c◦
A
c◦
B

2 [l(NAB, NAB) + 1]
. (30)

If we performed simulations at a finite size and wish to know the concentrations in the thermo-

dynamic limit (V,N ◦
A → ∞), we simply set l(NAB, NAB) = 0 and recover general chemistry

textbooks’ result25,

〈c
AB
〉∞ =

1

2

c◦
A

+ c◦
B

+
c∅

K
−

√(
c◦
B
− c◦

A

)2
+

2c∅
(
c◦
A

+ c◦
B

)
K

+
c∅2

K2

 , (31)

and because L(NAB, NAB) = L(NA, NB), we can substitute the correlated reactants’ concentra-

tions appearing in the expression for K with the uncorrelated concentrations, i.e. K ′ −→ K.

Another important case, especially for simulation studies and single-molecule experiments, is

that of N ◦
A = 1 (where N ◦

B ≥ N
◦
A). Here it is easy to show the relation, 〈NANB〉 = N

◦
B(N

◦
A −

〈NAB〉), is satisfied which leads to,

〈c
AB
〉
N

◦
A

=1
=

N
◦
AN

◦
BK

V (V c∅ +N
◦
BK)

. (32)

In addition, the relative fluctuations obey,

l(NAB, NAB)
N

◦
A

=1
=

V c∅

KN
◦
B

, (33)

by noting that in this case (N ◦
A = 1), l(NAB, NANB) = −1 and 〈N2

AB〉 = 〈NAB〉. R2 and R3

series of simulations fall within this special case, therefore, in Fig. 5b and Fig. 5c we predict 〈c
AB
〉

as stated by Eq. 32, and in Fig. SI-3.3 we predict l(NAB, NAB) according to Eq. 33. In both cases,

the agreement is almost perfect.

13
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In contrast to the thermodynamic limit and systems with N ◦
A = 1, predicting 〈c

AB
〉 from the

value of K for other finite systems, thus with N ◦
A > 1, is less simple because of the difficulty of

predicting l(NAB, NAB). Obviously, the magnitude of l(NAB, NAB) for N ◦
A > 1 must be smaller

than that for N ◦
A = 1. A plausible guess can be that it is inversely proportional to the system

size. We therefore express l(NAB, NAB) for N ◦
A > 1 by scaling the corresponding value at N ◦

A = 1

according to,

l(NAB, NAB)
N

◦
A

≥1
= l(NAB, NAB)

N
◦
A

=1
· 1

(N
◦
A)

λ
=

V c∅

KN
◦
B

· 1

(N
◦
A)

λ
, where 0 ≤ λ ≤ 1 . (34)

When λ = 0, Eq. 34 reduces to Eq. 33, whereas for the thermodynamic limit it turns out from the

simulations that λ = 1. Empirically we find λ can be approximated by,

λ ' 1

1 +K/(V c∅ lnN
◦
B)

. (35)

This approximation is investigated in Fig. SI-3.4 for the R1 series of simulations. Very good

agreement with simulation data is obtained where the accuracy of the prediction increases with

temperature. Armed with the ability to estimate l(NAB, NAB), we proceed to predict the concen-

trations via Eq. 30 in Fig. SI-3.5. Although not perfect at lower temperatures, the approximation

yields satisfactory agreement with concentrations observed in the simulations. Due to the asym-

metric roles of N ◦
A and N ◦

B in Eq. 34, we examined the approximation also on another series of

simulations, R4, in which N ◦
A and N ◦

B are not equal (Section SI-2). Here the accuracy of the pre-

diction, shown in Fig. SI-3.6, is even better. Moreover, we scale gab(r) obtained at finite systems

to the corresponding distribution of a macroscopic system, as shown in Fig. SI-5.1 and discussed

in Section SI-5.
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Discussion

An Example

We now exemplify and discuss the calculation of K for the association reaction in Eq. 1 for the

smallest system possible, N ◦
A = N

◦
B = 1. In this case, there are only two possible macroscopic

states in the system, one corresponding to a bound AB particle and the other to unbound A+B

particles. Suppose the fraction of independent configurations in which the bound state is observed

is fAB (thus, the fraction of the unbound state is fA+B = 1 − fAB). Applying the expression of

K with uncorrelated reactants’ concentrations defined in Eq. 17 yields,

K ′ =
fAB/V

[(1− fAB) /V ]2
· c∅ . (36)

Although this is currently the most employed expression in the literature3–12, it provides erroneous

results at finite systems as demonstrated throughout the manuscript. This is because correlations

in reactants’ concentrations, that must be taken into account, are augmented as the system size

is decreased. Yet, for this system it is possible to calculate K from the ratio of fAB to fA+B.

However application of the plain ratio,

K ′′ =
fAB

1− fAB
, (37)

which equal the ratio of probabilities to find this particular system in the bound and unbound

states, does not correspond to K. The reason is that this ratio is size-dependent. There are

many more possible microstates for the unbound state than for the bound state, and scalings

with system-size follow different power-laws for the two states. In our derivation (Eq. 7), this is

expressed in the corresponding translational partition functions; the number of possible states is

proportional to the volume for the bound particles whereas it is proportional to the square of the

volume for the unbound particles. It is only when q
A
, q

B
, and q

AB
are, each, divided by V that the

ratio becomes size-independent as argued in Eq. 6. Thus normalizations of the probabilities (or

number of configurations) in Eq. 37 by a factor of V and V 2, to obtain probability densities, are
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necessary, albeit the introduction of a dimension of volume to the ratio. It is therefore for these

cases, i.e. when the number of particles on the reactant side is not equal to that on the product

side, that a reference to a standard system is necessary to render K dimensionless. In Eq. 9 the

standard concentration, c∅, emerged from the term N
∅
A ! that was not canceled-out in the ratio of

probabilities of the two states (in Eq. 7). Dividing the probabilities in Eq. 37 by the normalization

factors and eliminating the dimension of the ratio by c∅ gives,

K =
fAB V

1− fAB
· c∅ , (38)

an expression identical to that obtained had we used Eq. 16. Obviously this simple direct counting

of configurations of the two states to obtain K, or even just the free energy difference ∆G for

the studied system26, can only work for N ◦
A = N

◦
B = 1. The reason is, in this case 〈NANB〉 =

〈NA〉 = 〈NB〉 and the value of the term W i
N

◦
A,N

◦
B

, defined in Eq. 4, is the same for the different

macroscopic states.

The Difference with Unimolecular Processes

It is important to emphasize the arguments presented in this paper are pertinent to bimolecular

reactions or two-body properties. Consider the chemical equation,

A+B 
 2C , (39)

representing, for example, the recombination of hydronium and hydroxide ions to form two water

molecules. As it is a bimolecular process, the expression of the equilibrium constant is,

K =
〈c2
C
〉

〈c
A
c
B
〉

. (40)

Another process that can also be represented by exactly the same chemical equation is, for example,

the transitions between different conformations of a peptide, where A, B, and C denote α-helix,

β-sheet, and random-coil. In this case, Eq. 39 is actually a sum of two chemical equations (A
 C

and B 
 C) in which α-helix and β-sheet, separately, form equilibrium with coil conformation.
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The transitions between the different conformations are unimolecular in nature and the expression

of K in Eq. 40 is not appropriate. As no correlations exist between the α-helix and β-sheet

conformations, the equilibrium constant should be computed by,

K =
〈c
C
〉2

〈c
A
〉〈c

B
〉

, (41)

that is, the product of the equilibrium constants of the two unimolecular reactions. The outcome

of these two examples contradicts the principle upon which chemists view chemical equilibrium,

that is, K is dictated only by the chemical equation of the reaction, irrespective of its nature. This

is indeed true as long as the system is macroscopic or large enough. However at finite systems, the

expression of the equilibrium constant of two reactions with the same chemical equation can be

different. The distinction emerges because different averaging applies for calculating K depending

on the order of the elementary process(es) involved, as is the case when determining rate constants.

Magnitude of the Two-Body Correlations

As pointed-out above, the magnitude of correlations between the reactants, which can be repre-

sented also by the deviation of the ratio K ′/K from 1, is influenced by temperature (or by the

’reduced’ temperature, k
B
T/εAB). Figure 2 shows this clearly, yet it indicates the correlations are

affected as well by the numbers of particles and/or volume, because in R1 series when N ◦
A = N

◦
B

increases, V increases by the same factor to keep c◦
A
= c◦

B
constant. In R2 series, the volume is

the only parameter changing and from Fig. 1b it is evident it affects the magnitude of correlations.

Given the well-known expression of fluctuations in the number of particles in the grand-canonical

ensemble, it is tempting to assume the correlations in our system would decay inversely with the

numbers of the particles. In Fig. SI-3.7a we plot K ′/K for R4 series where all simulations had the

same T , V , and N ◦
B and only N ◦

A was increased from 1 to 8. However, this increase in the value of

N
◦
A did not have an effect on the ratio of K ′/K. In contrast, the value of N ◦

B does influence the

correlations. This can be seen in Fig. SI-3.7b where we compare R1 and R2 series. In both series,

N
◦
A = N

◦
B, however in R2 these numbers equal 1 for all simulations whereas in R1 they vary. The
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curves, plotted as a function of V , indicate the value of K ′/K at fixed V is lower for R1 where

the numbers of particles are larger, however, the decay is much smaller (less strong) than 1/N
◦
B.

Conclusions

In this paper we demonstrated that equilibrium constants, as well as rate constants, of binding

reactions at finite systems must include correlations in reactants’ concentrations. That being the

case, equilibrium is achieved when the average chemical potential of the bound product is equal

to the average of the sum, and not to the sum of the averages, of the chemical potentials of the

unbound reactants. This point has never been considered in the literature before, likely because

the working assumption followed an outcome presented in statistical mechanics textbooks based

on an ensemble, claimed here inappropriate, which leads only to the well-known expression appli-

cable for macroscopic systems. Instead, a different derivation is offered in which the constructed

ensemble fixes only the total number of each particle-type in the system. This allows the numbers

of reactants and product(s) of the reaction to experience fluctuations, with magnitude dictated

by the parameters specifying the system. Accordingly, the resulting expression of K provides in-

formation on how to perform averaging over the ensemble utilized. A key step in the derivation

is the evaluation of the ratio V q
AB
/(q

A
q
B

). By applying a sequence of algebraic operations, we

showed this ratio to be equal to 〈c
AB
〉/〈c

A
c
B
〉, where the brackets indicate ensemble average un-

der equilibrium conditions. This inclusion of correlations in calculating the equilibrium constant,

can produce values that differ by few orders of magnitude compared with those neglecting them.

Because correlations become less important with increasing system size, for macroscopic systems,

the statistical mechanical expression of K reduces to that obtained from thermodynamics.
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Figure 1: The equilibrium constant K defined by Eq. 16 (c∅ ≡ 1 M) for three series of simulations

at: (a) constant c◦
A
= c◦

B
= 0.026 M (R1), (b) constant N ◦

A = N
◦
B = 1 (R2), and (c) constant

N
◦
A = 1 and c◦

B
= 0.026 M (R3), all performed in the canonical ensemble at T = 300 K. The

value of K ′ defined by Eq. 17 is shown in red for comparison. The lower panels are magnified

plots around the value of K. The simulations were performed by three methods: Monte-Carlo

(MC), molecular-dynamics with a Nosé-Hoover thermostat (MD-NH), and molecular-dynamics

with a Velocity-Rescaling thermostat (MD-VR). The left-most point in all series represents the

same system (N ◦
A = N

◦
B = 1, Lbox = 4 nm). The estimated errors for the values of K are smaller

or about the size of the symbols. Results from simulations at lower and higher temperatures are

shown in Fig. SI-3.1 in the Supporting Information.
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different temperatures.
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Figure 3: The rate constants of the binding reaction for simulation series R1 (a) and R2 (b)

obtained from molecular dynamics simulations. The top panels show the rate constant in the

forward direction, kfw, whereas the lower panels the rate constant in the backward direction, kbw.

For comparison we present also k′fw calculated by uncorrelated reactants’ concentrations.
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Figure 4: Results exhibiting the inhomogeneous character of properties of bimolecular reactions

upon scaling-down system size. The analyzes were performed on R1, i.e. the series of simulations

generated by scaling all extensive parameters specifying the system (N ◦
A = N

◦
B, V ) by the same

factor. (a) The concentration of bound molecules, 〈cAB〉, (b) the inter-particle energy per particle,

and (c) the radial distribution function between a and b sites for different system sizes. (a) and (b)

are almost perfect mirror-image of each other, and the estimated errors are smaller than the size of

the symbols. In (c), only results from MC simulations are shown, however, very similar figures are

obtained for MD-NH and MD-VR. If average quantities of the system were homogeneous functions,

the data points in (a) and (b) would follow the horizontal dashed line, and the pair-distribution

functions in (c) would collapse on the curve of the largest system.
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Figure 5: (a) A relation between two relative fluctuations and the reciprocal of average number

of bound particles. All simulations results (here displayed for T = 300 K, for other temperatures

see Fig. SI-3.2) fall on a linear line crossing the origin with a slope of one as described in Eq. 27.

Results obtained from linear regression (using xmgrace) of all data points are indicated. All points

of R3 have the same x, y values. (b) The concentration of bound particles as a function of box

length for R2 series. The results obtained from simulations are shown along predictions based on

the value of the equilibrium constant (Eq. 32). (c) Same as (b) but for R3 series of simulations,

in which case, the concentration is plotted as a function of the total number of B particles.
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