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Abstract

Photosensitization is the indirect electronic excitation of a molecule with the aid of a photosensitizer and

is a bimolecular nonradiative energy transfer. In this study, we have attempted to elucidate its mechanism,

and we do this by calculating rate constants of photosensitization of oxygen by thiothymines (2-thiothymine,

4-thiothymine and 2,4 dithiothymine). The rate constants have been calculated using two approaches: (a) a

classical limit of Fermi’s Golden Rule (FGR), and (b) a time-dependent variant of FGR, where the treatment

is purely quantum mechanical. The former approach has previously been developed for bimolecular systems

and has been applied to the photosensitization reactions studied here. The latter approach, however, has so

far only been used for unimolecular reactions, and in this work, we describe how it can be adapted for

bimolecular reactions. Experimentally, all three thiothymines are known to have significant singlet oxygen

yields, which are indicative of similar rates. Rate constants calculated using the time-dependent variant of

FGR are comparable across all three thiothymines and with experiment. While the classical approximation

gives reasonable rate constants for 2-thiothymine, it severely underestimates them for 4-thiothymine and

2,4 dithiothymine, by several orders of magnitude. This work indicates the importance of quantum effects

in driving photosensitization.
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I. INTRODUCTION

Photosensitization is a light mediated physical reaction, where the molecule irradiated with

light is not the final target of electronic excitation. Here, a photosensitizer (PS), is photoexcited

and then transfers its excitation energy to the target molecule, leading to its excitation, while the

PS returns to its ground state. A common target of photosensitization is the oxygen molecule since

direct photoexcitation from its ground triplet state, 3O2, to its singlet state, 1O2, is spin-forbidden,

and this reaction (Eq. 1) is the focus of this study.

3PS+3 O2→1PS+1 O2 (1)

Photosensitization of O2 is widely made use of in organic synthesis [1–5], photovoltaics [6],

and is also a key step in photodynamic therapy [7–9]. While photosensitization has been the sub-

ject of several theoretical studies [10–17], a detailed mechanistic understanding of the process is

still lacking. Our aim, in this study, is to better understand photosensitization, using thiothymines

as the photosensitizers, since all three thiothymines (shown in Fig. 1) – 2-thiothymine (2tThy),

4-thiothymine (4tThy) and 2,4-dithiothymine (dtThy) – are known to have significant singlet oxy-

gen yields [18]. Moreover, the thiothymines are known to have ultrafast intersystem crossing

(ISC) lifetimes [18] and near unity triplet yields with long long triplet lifetimes, of the order of

microseconds [19, 20], making them excellent photosensitizers. Specifically, we wish to calculate

the rate constant at which they photosensitize O2, and thereby obtain physical and mechanistic

insights into photosensitization.

Generally, photosensitization is a nonradiative bimolecular energy transfer reaction (Eq. 1).

While the spins of the individual components change, if the composite system, PS–O2, is consid-

ered, its spin multiplicity remains singlet (Eq. 2). Therefore, photosensitization can be thought of

as internal conversion (IC) [15, 16]. The critical difference from IC, however, is that while con-

ical intersections, which mediate IC, are characterized by large couplings between the electronic

states, the couplings between the electronic states in PS–O2 are relatively low. Therefore, Fermi’s

Golden Rule (FGR), derived using time-dependent perturbation theory, can be used to calculate

the rate constant of photosensitization [21, 22].

(3PS+3 O2)
1→ (1PS+1 O2)

1 (2)
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FIG. 1. The three thiothymines, 2-thiothymine (2tThy), 4-thiothymine (4tThy), and 2,4-dithiothymine (dt-

Thy), with 2tThy showing the numbering scheme in the thiothymines. The numbers shown below are the

respective singlet oxygen quantum yields of the molecules, taken from Ref. [18]

A simple means to model photosensitization, without considering potential energy surfaces,

involves looking at the thermodynamics of the entities in Eq. 1 [10–13]. Without commenting on

mechanistic insights or kinetics, this approach can help determine if the process is thermodynam-

ically favourable. Dumont et. al. have considered the structures of the reactants and products

of Eq. 1 and have calculated the energy along the interpolated path between the two [14], thus,

obtaining an approximate potential energy surface of photosensitization. Going one step further,

Serrano-Andres and co-workers have calculated the photosensitization rate constants of molecules

in the furocoumarin family using FGR [15]. They calculate the coupling in a perturbative manner,

and use the value of density of states explicitly computed in earlier studies [23]. More recently,

Bai and Barbatti, have developed the Divide-to-Conquer method, a classical approach to calcu-

late photosensitization rate constants [16]. This method was used to estimate rate constants in

6-aza-2-thiothymine and found to match well with experimental values [17].

As stated above, owing to photosensitization being a weak-coupling mediated reaction, FGR

[21, 22] can be used, which gives the rate constant of nonradiative transition between an initial

state to a continuum of final states, due to a weak perturbation, and is given as

kIF =
2π

h̄ ∑
f
| 〈ΨIi| Ĥ |ΨF f 〉 |2δ (EIi−EF f ) (3)

where, Ĥ couples the initial and final states ΨIi and ΨF f with energies (EIi) and (EF f ), respec-

tively. The uppercase and lowercase variables are used to label electronic and vibrational states,

respectively. The Dirac delta function in Eq. 3 ensures conservation of energy. Within the Born-

Oppenheimer approximation, ΨNn = ψNφn, and since the coupling to a good approximation does
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FIG. 2. Schematic showing the ordering of first four singlet states for the PS–O2 composite system in (a) R-

space, at two significant geometries of the PS: T1 minimum and minimum energy crossing point (MECP),

and in (b) D-space. Note that in R-space, value of D is kept large, and in D-space, the internal coordinates

of the PS is kept at its T1 minimum.

not depend on the vibrational part of the wave function Eq. 3 becomes,

kIF =
2π

h̄
|VIF |2 FCWD

FCWD = ∑
f
| 〈φi|φ f 〉 |2δ (∆EIF +Ei−E f ) (4)

where, |VIF |2 = | 〈ψI|V̂ |ψF〉 |2 is the square of the diabatic coupling, ∆EIF = EI−EF is the elec-

tronic energy gap, and | 〈φi|φ f 〉 |2, is the square of the overlaps of the initial and final vibrational

wavefunctions and are called Franck-Condon Factors (FCF). The FCFs along with the delta func-

tion is called Franck-Condon weighted density of states or FCWD. Handling the delta function in

FCWD poses a computational difficulty. This can be handled by either taking a classical approxi-

mation of FGR [16, 24], or by using the time-dependent variant of FGR [25–27].

Taking the classical approximation of FGR greatly simplifies FCWD and Eq. 4 reduces to the

Marcus expression [24],

kMT
IF =

2π

h̄
|VIF |2

1√
4πλkBT

e
−∆G‡
kBT (5)

where, λ is the reorganization energy and ∆G‡ is the free activation energy of the reaction. By

neglecting entropy contributions, ∆G‡ can be replaced with the activation energy, ∆E‡. In this

work, this approach is abbreviated as Marcus Theory FGR (MT-FGR).

Implementation of MT-FGR (Eq. 5) for bimolecular energy transfer was proposed by Bai and

Barbatti who suggested dividing the space of the PS–O2 system into an R-space where the internal
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coordinates of PS change, and a D-space where the distance between the PS and O2 is varied

(Fig. 2) [16]. This separation is made on the basis of the strong covalent interactions within the PS

having a different role in the reaction as compared to the weak van der Waals interaction between

the PS and O2. The ordering of the first four singlet states of the PS–O2 at the T1 minimum

geometry of the PS (Fig. 2a) is dominated by the energetics of the PS, since its absolute electronic

energy is significantly larger in magnitude compared to O2. Therefore, despite the geometry being

the T1 minimum, its S0 energy will be lower than its T1 energy. At the minimum energy crossing

point (MECP) geometry of the PS, however, the S0 and T1 states are degenerate and the ordering of

the first four singlet states will be dominated by O2, and thus, the ground triplet state of O2 will be

lowest in energy. Since, the ordering of the first four singlet states for the PS–O2 system in R-space

are different at the T1 minimum and MECP geometries of the PS (Fig. 2a), this mode promotes

a crossing between the reactant (3PS–3O2(
3Σ−g )) and the product states (doubly degenerate 1PS–

1O2(
1∆g) and 1PS–1O2(

1Σ+
g )). In the present study, these states are labelled TT0, SS0, SS1, and

SS2, respectively, and we only focus on the transition from the TT0 to SS2 state. The diabatic

coupling is assumed to be independent of changes in the internal coordinates of the PS and only

depends on the distance between the PS and O2 and is hence calculated as a function of changing

coordinates in the D-space (Fig. 2b).

For the time-dependent variant of FGR, using δ (∆EIF +Ei−E f ) =
1

2π

∫
∞

−∞
eiτ(∆EIF+Ei−E f )dτ ,

the following form, in atomic units, is obtained,

kIF = |VIF |2
∫

∞

−∞

G(τ)eiτ(∆EIF+Ei)dτ

G(τ) = ∑
f
| 〈φi|φ f 〉 |2e−iτE f (6)

Here, G(τ) is the generating function for the vibrational wavefunctions, which within the harmonic

approximation are the eigenfunctions of the harmonic oscillator. Since this approach transforms a

function of energy to a function of time, it is termed the time-dependent variant of FGR (TD-FGR)

[25].

In this work, we calculate and compare the photosensitization rate constants obtained from MT-

FGR and TD-FGR. We find that the rate constants from MT-FGR (classical approximation) are

severely underestimated as compared to experimental values, but the rate constants from TD-FGR

are in reasonable agreement with experiment. Our results point to the significance of quantum

effects in photosensitization.

In the subsequent section, we describe how TD-FGR can be adapted to model a bimolecular
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reaction. This is followed by the computational methods used and the details of our calculations.

The rate constants of photosensitization are then presented for the three thiothymines using both

MT-FGR and TD-FGR, followed by a discussion on how the two approaches fare. Finally, the

conclusions of our study are presented.

II. ADAPTING TD-FGR FOR BIMOLECULAR ENERGY TRANSFER

TD-FGR has been used to calculate rate constants in quantum processes such as ISC [25, 28]

and IC [29–32] and calculated values are known to be in agreement with experiment. However,

it has only been applied for unimolecular reactions so far. Despite considering photosensitization

as IC of the PS–O2 composite system, there are several complexities that arise since PS–O2 is, in

fact, a bimolecular system. In this section, we highlight these intricacies and how to tackle them.

A. Duschinsky relation and imaginary modes

The infinite sum in N dimensions in Eq. 6, G(τ), can be reduced to a closed-form expression

using Mehler’s formula [33].

G(τ) = (
√

2π)−N(det(S−1
ΩIΩF))

1
2×∫

e−
1
4 ((QF+Q̄F )

†ΩF B(QF+Q̄F ))×

e−
1
4 ((QF−Q̄F )

†ΩF B−1(QF−Q̄F )+2Q†
I ΩIQI+2Q̄†

I ΩIQ̄I)dQIdQ̄I (7)

Here, ΩI is a diagonal matrix with elements Ωii = ωi, and ωi corresponds to the frequencies of

the initial state. ΩF , S and B are diagonal matrices with elements Ωii = ωi, Sii = sinh(iωiτ) and

Bii = tanh(iωiτ/2), respectively, and ωi corresponds to the frequencies of the final state. QI and

QF are column vectors composed of the mass-weighted normal mode coordinates of the initial

and final states, respectively. The integration in Eq. 7 is over the two sets of mass weighted normal

mode coordinates (one barred and one unbarred) of the initial state. The normal coordinates of

the final states, QF , are related to the normal coordinates of the initial state, QI by a Duschinsky

transformation [34]:

QF = JQI +D
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where, J = Q†
FQI , is the Duschinsky rotation matrix, and D = Q†

F(RI−RF), is the displacement

vector. Including Duschinsky effects accounts for changes in normal coordinates of different elec-

tronic states. We have also ensured that the vibrational displacements satisfy the Eckart conditions

[35, 36].

Using the Duschinsky transformation, Eq. 7 reduces to,

G(τ) = 2
N
2

√
det(S−1ΩIΩF)

det(J†ΩFBJ+ΩI)det(J†ΩFB−1J+ΩI)

×eD†(ΩF BJ(J†ΩF BJ+ΩI)
−1J†ΩF B−ΩF B)D (8)

Finally, the photosensitization rate constant, kT D
IF , is calculated using (Eq. 9), the origin of which

is explained below.

kT D
IF = e∆Eiβ kIF = e∆Eiβ |VIF |2

∫
∞

−∞

G(τ)eiτ(∆EIF+Ei)dτ (9)

The rate constant, kIF in Eq. 6, being quantum mechanical, considers the microscopic transition

rate. For a macroscopic equivalent of this rate, a thermally equilibrated manifold of the initial

vibrational states, {i}, needs to be considered [24, 25]. Therefore, the rate constant kT D
IF in Eq. 9,

is kIF given in Eq. 6, along with a Boltzmann factor, where β = 1/kBT and ∆Ei is the energy of

the vibrational state of TT0 electronic state with respect to its ground vibrational state. A more

detailed derivation to obtain Eqs. 7, 8 and 9 from Eq. 6 can be found in the supporting information

of Reference [25].

To implement Eq. 8, we need to calculate optimized geometries and normal modes of PS–

O2 on TT0 and SS2 states for various D values. Since these states are repulsive with respect to

decreasing D (Fig. 2b), we need to perform constrained optimization of the PS–O2 complexes,

with D as the constraint, to prevent the PS and O2 from moving apart. This sometimes leads to

imaginary eigenvalues along modes that have not been optimized. While a simple solution might

be to eliminate these modes, the number of such imaginary modes for the TT0 and SS2 states

are unequal. To avoid the mathematical difficulty associated with imaginary frequencies, which

correspond to unbound potentials, we have replaced them with a low value of 100 cm−1.

B. Damping factor

A time integration of the complex function in Eq. 9, needs to be carried out to calculate FCWD.

Conveniently, the imaginary part of the complex function is an odd function and therefore its
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integral is zero. Further, the real part is an even function, and its integral can be taken as twice

the value of the integral over positive time. However, the time interval over which the integration

needs to be performed also has to be determined. The real part of the function over positive time

is an oscillating function (Fig. S1a) and we find that the function does not get damped even after

3 ps. The inset of Fig. S1a, however, suggests that the bulk of the area under the curve is within

the first few oscillations and integration over the rest of the function would cancel each other out.

In this case, the value of the integral should start converging after some τ . However, we see from

Table S1 that the value does not converge for different time intervals.

Therefore, we have chosen to damp FCWD(τ) using a Gaussian damping function [25]. This

damping factor is chosen such that the function gets damped between 100 and 200 fs. The reason-

ing here is that the rate calculation is carried out for a certain configuration of O2 and the PS, at a

particular D. However, since the timescale of nuclear motion is a few fs, the O2 is likely to change

its position with respect to the PS. Essentially, 100-200 fs is all the time that the PS has to trans-

fer its energy to the O2 molecule. Moreover, the damping factor also accounts for any radiative

damping that the system may undergo, and damping due to the solvent [25]. We also see that the

rate constants do not change significantly on using various damping parameters as seen in Table

S2. Based on this, we have used a damping parameter of 0.1 cm−1 for all the thiothymines and

carried out the time integration till 200 fs, by which time, the function most certainly gets damped

(Fig. S1b) [25].

C. Diabatic coupling and orientation directions

Diabatic couplings can be calculated from various properties including nonadiabatic coupling,

density matrix, and dipole or quadrupole moments. Here, we calculate the diabatic coupling start-

ing with the nonadiabatic coupling between only the two states of interest (TT0 and SS2). The

diabatic states are obtained by a unitary transformation of the adiabatic states such that the trans-

formation minimizes the nonadiabatic coupling projected along ~D, which is the vector between the

PS and O2 [16, 37]. Therefore, the diabatic coupling strongly depends on the orientation of the PS

with respect to O2 as the two approach each other. Typically, the diabatic calculation would have

to be performed for several orientation directions [17]. Serrano-Andres and coworkers showed that

diabatic coupling is maximized with orbital overlap.[15] Further, the nature of the lowest triplet

state in all 3 thiothymines was found to be ππ∗ [38]. Therefore, we have chosen three approach
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FIG. 3. The 3 approach directions along which the diabatic couplings and rate constants are calculated in

this study.

directions (shown in Fig. 3), labelled as ‘to56’ (when O2 approaches the C5 and C6 double bond

in the PS), ‘to2X’ and ‘to4X’ (when O2 approaches the carbonyl or thione at the 2nd and 4th posi-

tions, respectively). In all 3 approaches, the O2 is kept parallel to the PS, as this maximizes orbital

overlap [15].

To obtain the diabatic coupling, the nonadiabatic coupling is projected along ~Dto56, ~Dto2X and

~Dto4X vectors for the to56, to2X and to4X directions, respectively, which are given by Eqs. 10

~Dto56 =
~QPS

C5 +
~QPS

C6
2

−
~QO1 + ~QO2

2

~Dto2X =
~QPS

C2 +
~QPS

X2
2

−
~QO1 + ~QO2

2

~Dto4X =
~QPS

C4 +
~QPS

X4
2

−
~QO1 + ~QO2

2
(10)

where, ~QPS and ~QO denote the position vector of the atoms in the PS and O2, respectively. The

initial magnitude of ~D is taken to be 3.8 Å, since the PS–O2 energy was found to be the sum of

the energies of the PS and O2 at this distance, implying zero to negligible coupling. The final D

considered was 2.2 Å, because by this distance, the energy of the TT0 state increases to such an

extent that the rate constant is all but extinguished due to the Boltzmann factor, e∆Eiβ , in Eq. 9.

Here, we make the assumption that the diabatic coupling is only dependent on the D coordinate

and mostly independent of the internal coordinates of the PS, since the nature of the states do

not change significantly for a fixed D. This assumption is evaluated by comparing the calculated

couplings with those obtained by a more direct, although cumbersome, method. This is done by

changing the internal coordinates (keeping the D fixed) till the crossing is reached between the TT0

and SS2 states. The diabatic coupling is then calculated as half the energy gap between the states

at the crossing geometry [37]. Such a crossing is seen in Fig. S2 for the T ring
1 conformer of 4tThy

along the to4X approach direction, with the D fixed at 2.5 Å. The diabatic coupling here (inset in
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Fig. S2) is found to be 58.2 cm−1 while the calculated diabatic coupling between these states is

27.6 cm−1. Such a comparison was done for the other two thiothymines as well: for 2tThy (along

to56 direction with a D of 2.8 Å) and dtThy (along to4X direction with a D of 2.4 Å), and the

diabatic coupling was calculated to be 6.6 cm−1 and 189.5 cm−1, respectively, while that obtained

by changing their internal coordinates was found to be 1.0 cm−1 and 115.9 cm−1, respectively. In

all three cases, the diabatic coupling obtained with two different methods are similar and of the

same order of magnitude.

III. COMPUTATIONAL METHODOLOGY

Multi-reference electronic structure methods are necessary due to the open-shell characters of

PS and O2 in the photosensitization reaction. In this work, geometry optimizations, frequency,

nonadiabatic couplings and single-point energy calculations of the composite PS–O2 system were

carried out at the SA-CASSCF [39, 40] level of theory with a state-averaging that included the

first 4 singlet states. The active space consisted of 10 electrons in 8 orbitals, denoted as 10,8, of

which 6,4 belonged to the O2 and 4,4 belonged to the PS. The orbitals for O2 included its 2 π and

2 π∗ orbitals. The PS (the three thiothymines) all have 3 π and 3 π∗ orbitals. Out of these only

the 2 highest energy π and 2 lowest energy π∗ orbitals were included to save computational cost.

Further, we have confirmed that the chosen orbitals are involved in the transitions of the T1 state

in each respective molecule. The 6-31G** basis set was used for all calculations. All calculations

were performed using the Molpro 2012 [41, 42] quantum chemical software package, and molec-

ular orbitals were visualized using Molden [43]. The FCWD, diabatization of the nonadiabatic

couplings, and rate constants were calculated using an in-house code.

IV. RESULTS AND DISCUSSION

A. Rate constants using MT-FGR and TD-FGR

The PSs considered in this study include the family of thiothymines (Fig. 1), all of which have

considerable singlet oxygen quantum yields. The starting energy and geometry for photosensi-

tization corresponds to their respective T1 minimum energy structure. Note that the bond length

of O2 is always kept at its ground state minimum (1.21 Å). Based on previous studies which find
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FIG. 4. Photosensitizing rate constants as a function of D calculated using MT-FGR for (a) T ring
1 and (b)

T pyr
1 minima of 2tThy.

one of the thiothymines, 2tThy, to have a double well in its T1 potential energy surface, we con-

sider 2 triplet minima for this molecule (structures denoted as T ring
1 and T pyr

1 ) and the one relevant

minimum for 4tThy and dtThy, which is the T ring
1 structure (Fig. S3) [38, 44–46]. The main

structural difference between T ring
1 and T pyr

1 is strong pyramidalization of the carbonyl or thionyl

group at C2. For 4tThy and dtThy, the T pyr
1 minimum is considerably high in energy and inac-

cessible, whereas a small energy difference exists between T ring
1 and T pyr

1 in 2tThy, making both

structures relevant [38, 47]. As noted earlier, since ISC rates are fast [18] and triplet lifetimes are

long [19, 20], ISC will not be a determining factor in calculating photosensitization rate constants.

The procedure to calculate photosensitization rate constants from the MT-FGR method, kMT
IF

in Eq. 5, including the calculation of reorganization energies, λ , is outlined in detail in Reference

[16]. These rate constants are shown in Fig. 4, for all three approach directions for both triplet

minima of 2tThy. However, rate constants for 4tThy and dtThy were calculated to be extremely

low and the highest rate constants obtained for 4tThy and dtThy are 4.7× 10−3 s−1, and 4.2×

10−11 s−1, respectively, and along the to4X direction for both molecules (Fig. S4).

The photosensitization rate constants, kT D
IF , calculated from TD-FGR, are shown in Fig. 5. The

highest rate constants for 2tThy T ring
1 , 2tThy T pyr

1 , 4tThy and dtThy, are 8.53× 108s−1, 8.64×

104s−1, 1.29× 107s−1, and 3.08× 107s−1, respectively. Further, the orientation direction along

which these maximum rate constants appear are also different: to56 for 2tThy T ring
1 , to2X for

2tThy T pyr
1 and to4X for both 4tThy and dtThy.

Experimentally, the rate constants at which molecular O2 quenches the T1 state of 2tThy [19]

and 4tThy [20] is found to be (5.1± 0.1)× 109 M−1s−1 and (6.4± 1.0)× 109 M−1s−1, respec-
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FIG. 5. Photosensitizing rate constants as a function of D calculated using TD-FGR for (a) T ring
1 and (b)

T pyr
1 minima of 2tThy, and T ring

1 minimum of (c) 4tThy and (d) dtThy. Filled circles indicate values where

FCWD is calculated explicitly and unfilled circles indicate values where FCWD is interpolated. Note that

the diabatic coupling and Boltzmann factor are explicitly calculated for all points. Rates along to4X in (b)

are not seen as they are very low.

tively. These values can be thought of as a proxy for experimental photosensitization rate constants

and are higher than those calculated in this work. Importantly, experiment suggests that both these

molecules have similar photosensitization rates. Note however, that these experimental quenching

rates are calculated in solvent (acetonitrile) at high concentrations of O2, while the rates modelled

in this study are calculated between 1 PS and 1 O2 molecule, in the gas phase.

We see that rate constants calculated using MT-FGR are severely underestimated for 4tThy and

dtThy. On the other hand, rate constants calculated from TD-FGR for the T ring
1 minimum of all

three thiothymines are similar and correctly depict the trend in the experimental observations. Sig-

nificantly, rate constants in 4tThy and dtThy differ by 9 and 17 orders of magnitude, respectively,

between the two methods, clearly indicating the significance of quantum effects in photosensitiza-

tion. While this acute difference between the two methods is surprising, rate constants estimated

from Marcus theory are known to underestimate experimental values by 3–6 orders of magnitude

[48]. In the forthcoming subsection we examine the reason for the large differences in calculated
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rate constants between MT-FGR and TD-FGR.

B. Comparison of MT-FGR and TD-FGR

Diabatic coupling, which is a key component in the rate constant calculation, is a common

factor between both MT-FGR and TD-FGR (Eqs. 5 and 9) approaches. It increases as the PS and

O2 come close and depends strongly on the overlap between the π∗ orbitals of O2 and the PS [15].

The diabatic couplings, as a function of D are shown in Fig. S5, and the orbitals which define the

nature of the T1 minimum of the thiothymines are shown in Fig. S3 and the relationship between

the diabatic coupling and molecular overlap is clearly illustrated in all cases.

The T ring
1 minimum in all 3 thiothymines have very little diabatic coupling along the to2X

direction and this can be directly correlated with the little to no electron density over the C2=X

region in all these molecules. The only conformer to have significant electron density along this

region (T pyr
1 of 2tThy) is accordingly seen to have the highest diabatic coupling along the to2X

direction. Among the T ring
1 minimum orbitals of all 3 thiothymines, 4tThy and dtThy have sig-

nificant electron density along the C4=S bond, while 2tThy only has density along the C5=C6

bond. This is manifested in the highest diabatic coupling being present along the to4X direction

in 4tThy and dtThy and along the to56 direction in 2tThy. Overall, the highest coupling in 4tThy

and dtThy (along to4X) is about 2 orders of magnitude higher than the highest coupling in 2tThy

(along to56), and this trend can also be tied back to the extent of orbital overlap. In 4tThy and

dtThy, the π∗ orbitals of O2 overlap with π∗ orbitals which involve the larger S atom as opposed

to the smaller C in 2tThy. While one can argue that the S atom is involved in the orbitals of T pyr
1

of 2tThy, and therefore the coupling in this case should be similar to the coupling values along

the to4X direction of 4tThy and dtThy, the low coupling is likely because of the C2=S bond being

weaker due to strong pyramidalization and bond elongation, and hence, lower electron density.

The remarkable role of diabatic coupling in photosensitization rate constants is evident when we

see that the directions which have the highest diabatic coupling (to56 for 2tThy T ring
1 , to2X for

2tThy T pyr
1 and to4X for both 4tThy and dtThy) are the same along which the calculated rate

constant is the highest.

While the rate constant, kT D
IF in (Eq. 9), has a square dependence on the diabatic coupling,

the Boltzmann factor can quench the rate with an exponential scaling. This is present in kMT
IF

as well since ∆E‡ in Eq. 5 (if entropy contributions are neglected) is composed of two terms:
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∆E‡ = ∆Ei +E‡
a , where ∆Ei is the same energy difference which is considered in the Boltzmann

factor in Eq. 9, and E‡
a is the energy barrier for PS–O2 to reach the crossing between its reactant

and product state (see Fig. 2a). Therefore, ∆Ei is also common for both rate constants, kMT
IF and

kT D
IF . The Boltzmann factor (with ∆Ei) as a function of D, along all 3 orientation directions, for all

the thiothymines is shown in Fig. S6. The Boltzmann factor falls off faster in 4tThy and dtThy as

compared to 2tThy. Paradoxically, this is for the same reason that the diabatic coupling in 4tThy

and dtThy was higher than in 2tThy: as the O2 approaches a double bond which involves the

S atom, the greater orbital overlap enhances diabatic coupling while the steric hindrance is also

greater due to the larger size of S (as compared to O).

The key difference between kMT
IF and kT D

IF is that the former has a negative exponential depen-

dence on E‡
a , while the latter is proportional to FCWD. The FCWD values as a function of D for

all three thiothymines are found to fall within the same range (see Fig. S7). E‡
a , however, is very

different among the thiothymines. The calculated E‡
a in 2tThy (both conformers) is about 0.2 eV,

while that in 4tThy and dtThy is about 0.8 eV and 1.1 eV, respectively. Note that E‡
a depends on

D, and these values are for a D when the diabatic coupling is significant and ∆Ei is still small.

The high barrier in 4tThy and dtThy essentially extinguishes any rate that may arise because of

the diabatic coupling. This is due to the inherent classical interpretation of MT-FGR. Unlike a

quantum process, where the state transfer can take place at any geometry, not just the crossing,

within the classical regime, state transfer can take place only after the crossing is reached.

The MT-FGR approach works well when kBT << h̄ω for all vibrational frequencies [16, 24].

While modeling photosensitization, it is adequate that the mode that is responsible for the deacti-

vation of the isolated PS satisfy this condition, i.e., the mode along which the T1 minimum moves

to reach the MECP with the ground state, to be less than 200 cm−1 (this values corresponds to

∼ 1kBT at 298 K) [16]. This is essentially the mode along which the TT0 surface of the PS–O2

composite system crosses with the SS2 state. Therefore, we have evaluated if MT-FGR is a suit-

able approach for the thiothymines by calculating the frequency of the mode which is responsible

for deactivation of the PS from its T1 minimum to its MECP with the ground state. This has been

done by expressing the difference in geometries between the MECP and T1 minimum structures in

terms of the normal modes of the T1 minimum. Finally, the total resultant frequency of the mode is

calculated as a linear combination of the frequency of each mode multiplied by the contribution of

that mode. This procedure has been followed since the geometry changes between the MECP and

T1 minimum were too diverse to be assigned to any one normal mode of the T1 minimum through
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visual inspection. These resultant frequencies for 2tThy (T ring
1 ), 2tThy (T pyr

1 ), 4tThy (T ring
1 ) and

dtThy (T ring
1 ) were calculated to be 199 cm−1, 141 cm−1, 379 cm−1 and 358 cm−1, respectively.

Since the frequency of the deactivating mode is required to be less than 200 cm−1, the calculated

values suggest that MT-FGR is unsuitable for 4tThy and dtThy. This high frequency of this mode

can also be tied back to high E†
a values. Consequently, the classical treatment in MT-FGR is

inadequate and suggests the need for a quantum approach.

V. CONCLUSIONS

In this study we have developed a general approach for calculating the rate of photosensitization

of oxygen to give singlet oxygen by a PS. We have obtained mechanistic insights into photosensiti-

zation, and in particular, the importance of quantum effects. We have calculated photosensitization

rate constants for thiothymines as the PSs using two approaches: MT-FGR and TD-FGR. MT-FGR

is the classical limit of FGR, and its implementation for bimolecular systems was proposed by Bai

and Barbatti [16]. While TD-FGR retains the quantum nature of FGR, it has so far only been used

for unimolecular photophysical reactions like IC and ISC. In this study, we have adapted TD-FGR

for bimolecular reactions. We describe the complexities that arise in the case of bimolecular sys-

tems and how to circumvent them. Using TD-FGR treats the reaction quantum mechanically and

allows rigorous treatment of FCWD.

Relative rate constants obtained from TD-FGR are in reasonable agreement with experimental

results, while those from MT-FGR are severely underestimated for 4tThy and dtThy by several

orders of magnitude. It is worth noting that the MT-FGR formalism fails for 4tThy and dtThy

because the mode responsible for triplet deactivation in these molecules has a very high frequency,

and MT-FGR is only valid if the opposite is true. This high frequency also translates to a high

energy barrier for ISC in 4tThy and dtThy (∼0.8-1.1 eV). Essentially, the physical interpretation

of MT-FGR requires the PS–O2 complex to surmount the barrier to reach the crossing, while

TD-FGR allows the formation of the product if the diabatic coupling is sufficiently high.

It is interesting that 2tThy and 4tThy, two very similar molecules, have such different electronic

properties so as to warrant different approaches to calculating the rate at which they photosensitize

O2. Also, 4tThy and dtThy are similar to each other, while being different to 2tThy, pointing to a

position-dependent effect at play [38, 47].

In conclusion, we have adapted the TD-FGR approach for bimolecular reactions, and the suc-
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cess of this method with all three thiothymines, while MT-FGR fails for 4tThy and dtThy, demon-

strates the generality of this approach. More importantly, this study finds that a method to calculate

photosensitization rate constants, must necessarily describe the inherent quantum effects that drive

the process.
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