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Abstract 

Inhibitors of epigenetic writers such as DNA methyltransferases (DNMTs) are attractive compounds for 

epigenetic drug and probe discovery. There are many small molecules tested as inhibitors of DNMTs 

but, overall, they do not have potent enzymatic inhibition. Chemical companies are developing focused 

libraries for epigenetic targets to advance probe and drug discovery. Based on a knowledge-based 

approach, herein, we report the identification of two quinazoline-based derivatives identified in focused 

libraries with nanomolar inhibition of DNMT1 (30 and 81 nM), more potent than the positive control S-

adenosylhomocysteine. The two compounds had low micromolar activity of DNMT3A and did not inhibit 

DNMT3B. The quinazolines reported in this work have low cell toxicity and are potent inhibitors of the 

epigenetic target writer G9a at the enzymatic and cellular levels. Molecular modeling helped rationalize 

the enzymatic inhibitory activity at the molecular level of the two compounds against DNMT1 and 

DNMT3A. The quinazoline-based compounds are attractive as novel potent inhibitors of DNMTs and as 

dual and selective epigenetic agents targeting two families of epigenetic writers. 
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Introduction 

The identification of drug candidates targeting epigenetic targets, including writers, erasers, and 

readers, is of large interest for addressing several therapeutic needs.[1-2] Several epi-drugs currently 
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approved for clinical have been reviewed extensively elsewhere.[3] Similarly, it is attractive identifying 

probes or tools compounds to understand better epigenetic processes. Among the epigenetic drug and 

probe candidates, small molecules targeting epigenetic writers such as DNA methyltransferases 

(DNMTs) and protein lysine methyltransferases (PKMTs) are promising for the treatment of various 

types of cancer such as colorectal, breast, lung, ovarian, pancreatic cancer and acute myeloid 

leukemia,[4-8] neurological disorders,[9-10] autoimmune diseases,[11-12] and metabolic diseases.[13-15] 

DNA methylation is mediated by the enzyme family DNMTs that is responsible for catalyzing the 

covalent addition of a methyl group from S-adenosyl-L-methionine (SAM) to the 5-carbon of cytosine, 

mainly within CpG dinucleotides, yielding S-adenosyl-L-homocysteine (SAH). DNMT3A and DNMT3B 

are maintenance meanwhile DNMT1 is a de novo methyltransferase. DNMT3A is overexpressed in 

vulvar squamous cell carcinoma and pituitary adenoma[16] however, it is mainly associated with 

hematological malignancies such as acute myeloid leukemia, acute lymphocytic leukemia, chronic 

myelogenous leukemia, chronic myelomonocytic leukemia, and myelodysplastic syndromes.[17] 

DNMT3B is overexpressed in lung, ovarian, and breast cancer, hepatocellular carcinoma, and mild 

traumatic brain injury.[17] DNMT1 is associated with colorectal, pancreatic, gastric, lung, and thyroid 

cancer and pituitary adenoma, lupus,[18] and hereditary sensory neuropathy.[19] 

Two drugs 1 (5-azacitidine, Vidaza) and 2 (decitabine, 5-aza-20-deoxycytidine, Dacogen) (Figure 

1a) are approved for clinical use to treat the myelodysplastic syndrome.[5] The two drugs are nucleoside 

analogs that inhibit all three DNMTs (1, 3A, and 3B). Because of the chemical nature of these first-

generation DNMT inhibitors (DNMTi), these drugs are characterized by substantial cellular and clinical 

toxicity, which has driven the development of non-nucleoside, novel, and more specific drugs. 

Currently, more than 400 non-nucleoside compounds have been tested with at least one DNMT (mostly 

DNMT1), and the activity data has been available in public databases.[20] Figure 1 shows representative 

structures of DNMTi and compounds (1-11) associated with the demethylating activity of DNA. Of note, 

there is a limited number of selective inhibitors or tool compounds inhibiting DNMTs undisclosed so far. 

For example, 6 (nanaomycin A) (Figure 1a) is a selective inhibitor of DNMT3B (do not inhibit DNMT1) 

and reactivates silenced tumor suppressor genes in human cancer cells.[21] Recently, 5 (GSK3685032) 

(Figure 1) was disclosed as the first selective inhibitor of DNMT1 that reduces global methylation, 
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increases expression of target genes, and has antitumor efficacy in acute myeloid leukemia xenograft 

models.[22] Also, GSK3482364 is a DNM1-selective inhibitor that reduces global methylation and 

increases HbF expression, offering the potential for use in treating sickle cell disease.[23] Furthermore, 

dual inhibitors of DNMT and other epigenetic targets such as G9a and histone deacetylases (HDACs) 

are emerging as part of a current trend to develop multi-epi-target inhibitors and epi-polypharmacology 

in general.[24-26] 

 

Figure 1. Chemical structures of A) examples of known DNMT inhibitors and compounds with demethylating 

activity; B) dual DNMT1/G9a inhibitors (quinoline- and quinazoline-based derivatives) reported in the 

literature. The dual activity profile as available in the literature for epigenetic targets is indicated.
[27]
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Notably, DNMTi have been identified from different sources such as natural products and synthetic 

small molecule libraries.[28-29] Medicinal chemistry, structure- and ligand-based virtual screening, and 

high-throughput screening of general screening libraries are examples of methodologies that have led 

to the identification of DNMTi.[30] There are other drug discovery approaches that are used to identify 

DNMTi such as de novo design[31] and screening of focused libraries. In this regard, chemical 

companies are developing screening libraries focused on the most therapeutically relevant epigenetic 

targets. The chemical samples of the libraries are commercially available for experiential testing. 

Chemoinformatics contents and chemical diversity analysis of such libraries support their use for drug 

discovery programs.[32] 

The most promising DNMTi developed so far are molecules with long scaffolds, for example, the 4-

aminoquinoline 3 (SGI-027) and its analogs (Figure 1a).[33] Other quinoline-based derivatives such as 

compound 8 (CM-272), where the quinoline ring is the main core scaffold (Figure 1b), have been 

reported as potent dual inhibitors of DNMT1 and G9a with nanomolar activity.[27, 34] Noteworthy, 8 has 

remarkable in vivo efficacy (70% tumor growth inhibition of a human acute myeloid leukemia xenograft 

in a mouse model).[27] The quinolines were developed and further optimized as dual inhibitors based on 

7-aminoalkoxy-quinazolines that are inhibitors of G9a such as 12 (MolPort-023-277-153 or UNC0646) 

and 13 (MolPort-035-789-726 or UNC0631) (Figure 2b) that are potent inhibitors of G9a in enzymatic 

and in cellular-based assays.[35] Other quinazoline-based derivatives, for example, 9 (BIX-01294), 10 

(UNC-0638), and 11 (UNC-0642) (Figure 1b) are potent inhibitors of G9a (at the nanomolar level, in 

particular 10 and 11 (IC50 <= 55 nM).[36] However, the quinazoline-based derivatives reported so far 

have low DNMT1 potency (> 2 μM and are mostly inactive, as shown in Figure 1b). As commented 

above, DNMTi are emerging as part of programs to develop combination therapies in drug cocktails or 

compounds targeting multiple epigenetic targets. 
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Figure 2. Chemical structures of quinazoline-based derivatives tested in enzymatic inhibition assays. The 

enzymatic DNMT inhibitory activity measured in this work is included in blue font. Mean value of two 

measurements. SAH was included as a positive control: IC50 (DNMT1) of 0.34 μM; IC50 (DNMT3A) of 0.10 

μM; (DNMT3B) of 0.03 μM. For reference, the enzymatic G9a inhibitory activity of UNC0646 and UNC0631 

reported in the literature is included.
[35]

 

 

Chemical content analysis of the novel epigenetic-focused screening libraries (vide supra) revealed 

that there are several quinazoline-based derivatives similar to 10 (UNC-0638) and 11 (UNC-0642), 

including two compounds reported in the literature as inhibitors of G9a. Following a knowledge-based 

approach, i.e. structure-based design reported in the literature and experimental information (vide 

supra),[27, 35] herein we hypothesized that quinazoline-based derivatives available in the commercial 

libraries such as 12 and 13 also inhibit the enzymatic activity of DNMTs.  

As part of an ongoing effort to continue expanding the chemical space of potential epi-drugs, in 

particular DNMTi,[31, 37] in this work, we report the experimental testing of 12 and 13 and another 

quinazoline-based derivative (cf. Figure 2) with DNMT1, DNMT3A, and DNMT3B in biochemical 
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enzymatic inhibition assays. We also discuss the molecular dynamics (MD) simulations of the most 

potent compounds to rationalize their enzymatic inhibitory activity at the molecular level. The findings of 

this work pave the way to continue exploring quinazoline-based derivatives as inhibitors of DNMTs with 

multi-epigenetic target activity. 

 

Methods 

Compounds for experimental screening 

Using a knowledge-based approach, for this work, we selected three quinazoline-based derivatives 

from epigenetic-focused libraries for experimental testing in enzymatic-based assays (Figure 2). The 

selection was based on the following criterion: 

1) Knowledge of the promising activity profile of quinoline-based derivatives as dual inhibitors of 

DNMTs/G9a (vide supra, Figure 1b) in enzymatic and epigenetic functional cellular response; 

2) High structural similarity of the quinoline-based compounds to the selected quinazoline-based 

derivatives 12 and 13, that are known to be potent G9a inhibitors in enzymatic and cell-based 

assays (vide supra, Figure 1b). 

3) Commercial availability of the physical samples from the chemical vendors (Table S3 in the 

Supporting Information).  

 Based on the rationale explained herein, we hypothesized that the three selected quinazolines in 

Figure 2 could also inhibit the enzymatic activity of DNMTs. 

All three compounds were purchased from MolPort Inc. that confirmed the compound’s purity (in 

parenthesis): 12 (100 %), 13 (98 %), and 14 (99.11 %).  

 

Biochemical DNMT inhibition assays 

The inhibition of the enzymatic activity of DNMT1, DNMT3A, and DNMT3B was tested using the 

HotSpotSM platform for methyltransferase assays available at Reaction Biology Corporation.[38] 

HotSpotSM is a low volume radioisotope-based assay that uses tritium-labeled AdoMet (3H-SAM) as a 

methyl donor. The three test compounds diluted in dimethyl sulfoxide were added using acoustic 

technology (Echo550, Labcyte) into an enzyme/substrate mixture in the nano-liter range. The 
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corresponding reactions were commenced by adding 3H-SAM and incubated at 30°C. Total final 

methylations on the substrate (Poly dI-dC in DNMT1, 3A, and 3B assays) were identified by a filter 

binding method implemented in Reaction Biology. Data analysis was done with Graphed Prism 

software (La Jolla, CA, USA) for curve fits. The enzymatic inhibition assays were carried out at 1 μM of 

SAM. In all assays, SAH was used as a standard positive control. The three compounds were tested 

first with DNMT1 at one 100 μM concentration in duplicate. The most active molecules were tested as 

DNMT1, DNMT3A, and DNMT3B inhibitors in 10-dose IC50 (effective concentration to inhibit enzymatic 

activity by 50%) with a threefold serial dilution starting at 100 μM. The research group has recently 

contracted the screening services of Reaction Biology Corporation to identify a novel DNMTi.[37] 

 

Computational methods 

Protein and ligands preparation 

The crystallographic structure of human DNMT1 (PDB ID: 4WXX) was retrieved from the Protein Data 

Bank (https://www.rcsb.org/).[39] Missing loops and side-chains were added with YASARA software.[40] 

The ligands were built and energy-minimized in MOE using the MMFF94x forcefield. The more stable 

protomers at physiological pH were identified.[41] 

 

Molecular docking  

Molecular Operating Environment (MOE) software was used to generate the dock conformation of 

protein-ligand complexes.[42] The grid was centered on the carbon atom of the carboxyl group of GLU 

1266 (chain A) with a size of 27 Å3 in the presence of the native ligand (SAM). Using the “Triangle 

Matcher” method, the binding compounds were subjected to 50 search steps (poses) and the default 

values for the other parameters. The clusters with an RMSD < 2 Å were visually explored. During the 

docking simulations, the receptor was considered rigid and the ligands flexible. The conformations with 

the lowest binding energy were selected for an additional MD analysis. 

 

Molecular dynamics  

MD studies of the protein-ligand complexes were performed using Desmond (version 2021-1, 

Schrödinger, New York, NY, USA) with the OPLS 2005 forcefield.[43] The most representative docking 

https://www.rcsb.org/).
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pose for each ligand was used as a starting point to initiate the MD simulations. The complexes were 

prepared with the System Builder Utility in a buffered orthomobic box (10×10×10 Å), using the 

transferable intermolecular potential with a 3-point model for water (TIP3P). The complexes were 

neutralized and NaCl was added in a 0.15 M concentration. Complexes were minimized in three 

stages. In the first stage, water-heavy atoms were restrained with a force constant of 1000 kcal mol−1 

Å−2 (during 100 ps); for the second stage, backbones were constrained with a 10 kcal mol−1 Å−2 (during 

100 ps); and for the third stage, the systems were minimized with no restraints (during 100 ps). The 

three minimization stages were generated using the default parameters. 

The system was submitted to 300 ns of production runs, under NPT ensemble at 1 bar using the 

Martyna-Tuckerman-Klein (MTK) barostat and 300 K using the Nose–Hoover thermostat. Electrostatic 

forces were calculated with the smooth PME method using a 9 Å cut-off, while constraints were 

enforced with the M-SHAKE algorithm. Integration was done every 2 fs, with a recording interval of 50 

ps. All protein-ligand complexes were submitted to the “Relax model system” using the default 

parameters. The quality of the simulation and trajectory analyses were carried out with the tools 

implemented in the Maestro-GUI (Schrödinger, New York, NY, USA). SAM was used as a procedure 

control, 150 ns of production were generated using the same protocol described in this section. 

 

Results and Discussion 

Biochemical inhibition assays 

First, we tested the three compounds 12, 13, and 14 (Figure 2) with DNMT1 at a single dose (100 uM). 

The results are summarized in Figure 2 and fully detailed in Tables S1 and S2 in the Supporting 

Information. Two compounds showed strong inhibition of DNMT1 (> 99 %), and 14 showed inhibition of 

7.4 %. The very low enzymatic inhibitory activity of 14 clearly indicated the need for substitution at 

position 2 of the quinazoline ring (Figure 2).   

Based on the results at a single dose, we decided to test the enzymatic inhibitory activity of 

DNMT1, DNMT3A, and DNMT3B of the two most active compounds 12 and 13 in dose-response 

assays. Results, summarized in Figure 2 and detailed in Table S1 in the Supporting Information, 
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indicated that 12 is a potent nanomolar and selective inhibitor of DNMT1 (IC50 = 30 nM), with higher 

inhibition of DNMT3A (IC50 = 4,870 nM) and no enzymatic inhibition of DNMT3B (IC50 > 100,000 nM). 

Notably, under the assay conditions used in this work, 12 was about ten times more potent against 

DNMT1 than the positive control SAH (IC50 = 340 nM). The structural analog 13 had a similar inhibitory 

activity profile with similar inhibitory potency but higher selectivity towards DNMT1 (IC50 = 81 nM) over 

DNMT3A (IC50 = 14,690 nM), and DNMT3B (IC50 > 100,000 nM) (Figure 2 and Table S1). 

The nanomolar enzymatic inhibitory potency of DNMT1 of both 7-aminoalkoxy-quinazolines 12 and 

13 is about ten times that of the positive control SAH. Despite the high variability across DNMT 

inhibitory assays and the challenge to reproduce the IC50 values accurately across different 

laboratories, there are few compounds reported in the literature with low nanomolar inhibition of 

DNMT1.[44] For instance, in one of the most recent studies testing different DNMTi under the same 

assay conditions, 5 (GSK3685032) strongly inhibited DNMT1 (IC50 = 30 nM) and did not inhibit 

DNMT3A and 3B (Figure 1a). In that work, Pappalardi et al., also tested the well-known pan inhibitor 3 

(SGI-1027), showing IC50 values of 1,030 nM (DNMT1); 13,000 nM (DNMT3A), and 7,000 nM 

(DNMT3B).[22] In the work of Pappalardi et al., SAH (also used as a reference) had IC50 values of 540 

nM, 100 nM, and 90 nM for DNMT1, DNMT3A, and DNMT3B, respectively. Such values for the positive 

control generally agree with the IC50 values measured under the assay conditions used in this work 

(340 nM, 100 nM, and 30 nM for DNMT1, DNMT3A, and DNMT3B, respectively, Table S2 in the 

Supporting Information). 

In addition to the promising DNMT enzymatic inhibition profile of compounds 12 and 13, it is 

remarkable the reported high inhibition of both molecules of the epigenetic target G9a (IC50 = 6, and 4 

nM, respectively, Figure 2).[35] As discussed in the Introduction, based on the structural relationship 

between the quinazolines tested in this work with the 4-aminoquinolines reported as dual inhibitors of 

G9a and DNMT1,[27] we hypothesized that quinazolines such as 12 and 13, could inhibit DNMT1. 

Biochemical inhibition assays reported in this work confirmed the hypothesis. Further testing with 

DNMT3A and DNMT3B revealed that both molecules are potent inhibitors of DNMT1 and selective 

versus DNMT3A and DNMT3B. Thus far, other than 5 (GSK3685032), the two quinazolines reported in 

this work are the few small-molecule selective inhibitors of DNMT1 over DNMT3A and DNMT3B. 
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Molecular docking and dynamics simulations with DNMTs 

Computational methods have been used to identify novel inhibitors, optimize their activity, and/or to 

further understand their activity at the molecular level of compound targeting epigenetic targets, 

including DNMTs. These methods are collectively referred to as “epi-informatics.”[30] As previously 

discussed, computational methods are not used necessary to predict or identify novel inhibitors but the 

computational studies provide key insights to study the mechanism of action and rationalize the activity 

of active molecules at the molecular level. For example, we recently conducted a molecular and activity 

landscape modeling study to rationalize the reported enzymatic inhibitory activity of 251 G9a 

inhibitors,[34] and 50 4-aminoquinolines as dual inhibitors of G9a and DNMT1.[45] Results of that work 

yielded the establishment of a robust structural hypothesis of protein-ligand interactions associated with 

the dual activity or selectivity with the epigenetic targets. 

In this work, we employed molecular docking and dynamics simulations to provide insights into the 

DNMTs enzymatic inhibitory activity of 12 and 13 at the structural level. For this purpose, we took 

advantage of the availability of the three-dimensional structural information of DNMT1, DNMT3A, and 

DNMT3B. 

Figure 3 summarizes the interactions between 12 and 13 and DNMT1, according to the MD 

simulations. The conserved interactions with SER 582, ASP 764, and SER 1292 in both compounds. 

However, the generation of stable interactions with ASP 583, ASP 588, CYS 1288, and GLN 1289 

(Figure 3-A1 and 3-A2). Interestingly, 13 has been distinguished by other key interactions (GLU 766, 

VAL 1330, ASN 1332, and PHE 1336). Despite the differences in key interactions, the compounds 

studied tend to establish the conformation (reducing the RMSD values) of CXXC (647 - 691 aa) and 

autoinhibition (699 - 733 aa) domains of DNMT1 (Figure 3-A3, 3-B3), in relationship with SAM (Figure 

S1-C in the Supporting Information). We emphasize that these domains are present only in DNMT1 and 

are not its 3A or 3B isoforms,[46] which could explain the selective enzymatic inactivation of DNMT1.[47] 

Additionally, we analyze the specific conformational changes associated with the interaction of 12 and 

13 against DNMT1 (Figure S2 in the Supporting Information). 
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Figure 3. Molecular dynamic results of compounds 12 and 13 against DNMT1. 300 ns were produced peer 

each compound. The A1 and B1 panels show the interactions between ligands and the DNMT1 structure in 

the presence of S-adenosyl-L-methionine (SAM). Additionally, panels A2 and B2 show the representative 

key interaction during the last 30 ns of molecular dynamic productions. Finally, panels A3 and B3 illustrate 

the conformational changes (RMSD values) on different key domains on DNMT1. 
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Recently, we described at the structural level the conformational changes generated on G9a in their 

SET domain by the interaction with quinoline-based compounds.[34] This work describes the 

conformational changes associated with the interaction of quinoline-based compounds against the 

CXXC and autoinhibition domain on DNMT1. 

 

Integrative discussion 

Several groups are working identifying novel potent DNMTi, including dual inhibitors of epigenetic 

writers such as DNMT and G9a (vide supra). For example, we recently reported DNMT1 inhibitors with 

novel chemical scaffolds, including two approved for clinical use. However, those compounds lack 

enough potency (for instance, 4 (glyburide) showed and IC50 = 55.85 μM using the same assay 

conditions used in this work).[37] The knowledge of the promising enzymatic and cell-based activity 

profile of quinoline-based compounds such as 8 (Figure 1b) as dual inhibitors of DNMT1 and G9a; the 

high structural similarity of the quinoline-based derivatives to the quinazoline-based derivatives with 

strong inhibition profile of G9a in enzymatic and cell-based assays; plus the commercial availability of 

quinazoline-based derivatives in epigenetic focused libraries led us to identify, in this work, the potent 

and selective inhibition of two 7-aminoalkoxy-quinazolines with 30 and 81 nM potency toward DNMT1 

(Figure 2). Molecular modeling studies suggest that the selective inhibition of DNMT1 was carried out 

by the induced conformational change on their CXXC and autoinhibition domains, which is essential for 

enzymatic activity.[47] 

Notably, it is reported in the literature that 12 and 13 have high in vitro potency versus G9a (IC50 = 6 

and 4 nM, respectively) and are also highly potent in reducing H3K9me2 levels in human breast 

adenocarcinoma (MDA-MB-231) cells (26 and 25 nM, respectively) and with low cell toxicity (EC50 of 

3.3 and 2.8 μM, respectively).[35] Potting together, the two 7-aminoalkoxy-quinazolines 12 and 13 are 

promising compounds to continue developing as polypharmacological, specifically, dual-epigenetic 

target inhibitors as candidates compounds with potential therapeutic applications. 

In silico target profiling of the three compounds tested in this work (Figure 2), with the recently 

developed online web server Epigenetic Target Profiler,[48] suggest that all compounds could be active 

with additional epigenetic targets such as HDACs (Figure S3 in the Supporting Information). It would 
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remain to continue exploring computationally (e.g., using structure-based methods) and then 

experimentally the predicted activity of the molecules. 

 

Conclusions 

New small molecule inhibitors with novel chemical scaffolds and potent inhibition are required. Herein, 

using a knowledge-based approach, we identified two 7-aminoalkoxy-quinazolines: 12 and 13, with 

nanomolar inhibition of DNMT1 in enzymatic inhibition assays (30 y 80 nM, respectively). Notably, both 

compounds showed better inhibitory activity than the positive control, SAH (340 μM). Both molecules 

showed less inhibition of DNM3A (4.87 and 14.69 μM), and none of them inhibited DNMT3B. 

Compounds 12 and 13 are reported as potent inhibitors of another epigenetic target reader, G9a, in 

enzymatic and human breast adenocarcinoma (MDA-MB-231) cell-based assays with low cell toxicity. It 

remains to demonstrate that 12 and 13 can also reduce methylation levels in cell-based assays. 

However, their high structural similarity to the quinoline-based derivatives such as 8 (CM-272, Figure 

1b), which are known to effectively reduce DNA methylation in cell-based assays, strongly support the 

hypothesis that the quinazolines reported in this work will also be inhibitors in cell based-assays. Such 

a hypothesis will be tested and reported in due course. 

The two active compounds identified in this work are structurally similar with conserving key 

interactions against SER 582, ASP 764, and SER1292 on DNMT1 in the presence of their cofactor 

SAM. The MD simulations suggest that the DNMT1 inhibition of 12 and 13 is associated with the 

conformational changes of the CXXC and autoinhibition domains. 

From the mechanistic point of view, one of the main perspectives of this study is to test if the 

quinazoline-based derivatives, for instance, 12, is DNA - substrate competitive. This will be done 

through enzymatic DNA-substrate competitive assays. The results will be reported in due course. In all, 

the results of this work contribute to the further investigation and development of DNMTi as part of 

multiple epigenetic target therapies. 
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