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ABSTRACT:	Metal-Organic	Frameworks	(MOFs)	exhibit	attractive	characteristics	for	separations	such	as	remarkable	surface	
area	and	diverse	porosities.	However,	a	mechanistic	understanding	of	their	synthesis	and	scale-up	remains	underexplored	
due	to	the	complicated	nature	of	building	block	interactions.		In	this	work,	we	investigate	the	collective	assembly	of	building	
units	that	have	been	experimentally	observed	to	initiate	MOF	nucleation,	using	MIL-101(Cr)	as	a	prototypical	example.	We	
use	large-scale	molecular	dynamics	simulations	under	a	variety	of	synthesis	conditions	and	mixture	compositions.	We	ob-
serve	that	the	choice	of	solvent	(water	or	DMF),	introduction	of	ions	(Na+,	F-)	and	the	relative	population	of	MIL-101(Cr)	half-
secondary	building	unit	(half-SBU)	isomers	has	a	strong	influence	on	the	cluster	formation	process.	In	more	detail,	the	shape,	
size,	nucleation	and	growth	rates,	crystallinity	and	short	and	long-range	order	largely	vary	depending	on	the	synthesis	con-
ditions.	We	evaluate	these	properties	as	they	naturally	emerge	when	interpreting	self-assembly	of	MOF	nuclei	as	the	time-
evolution	of	an	undirected	graph.	Solution-induced	conformational	complexity	and	ionic	concentration	have	a	dramatic	effect	
on	the	morphology	of	clusters	emerging	during	assembly,	such	diversity	is	captured	by	key	features	of	the	graph	representa-
tion.	More	precisely,	pure	solvent	leads	to	rapid	formation	of	a	small	number	of	large	clusters,	while	ions	result	in	slower	
nucleation	through	smaller	clusters	 in	water.	Finally,	we	use	Principal	Component	Analysis	(PCA)	on	graph	properties	 to	
successfully	deconvolute	MOF	self-assembly	into	a	small	number	of	molecular	descriptors,	such	as	the	average	coordination	
number	between	half-SBUs	and	fractal	dimension,	which	can	be	followed	by	time-resolved	spectroscopy.	We	conclude	that	
graph	theory	can	be	used	to	understand	complex	processes	such	as	MOF	nucleation	through	providing	molecular	descriptors	
accessible	by	both	simulation	and	experiment.

INTRODUCTION	
Metal-Organic	Frameworks	(MOFs)	constitute	a	class	of	po-
rous	materials	that	thanks	to	their	high	porosity	and	surface	
area,	have	ignited	interest	in	a	plethora	of	applications	in-
cluding	carbon	capture	and	storage1,	2,	separations3,	extrac-
tion	of	water	from	air4,	electrodes5	and	drug	delivery6.	Nev-
ertheless,	the	stability	of	MOFs	is	lower	than	other	porous	
materials	and	their	scale-up	is	still	problematic,	thus	reduc-
ing	their	applicability7,	8.	The	presence	of	defects	in	MOFs	is	
known	to	affect	their	thermomechanical	properties,	stabil-
ity,	synthesis	costs,	and	overall	suitability	for	industrial	ap-
plications9,	10.	
This	 led	 recent	 efforts	 to	understand	 the	detailed	mecha-
nisms	associated	with	MOF	synthesis	 in	order	 to	regulate	
the	extent	of	defects11,	12.	The	formation	of	secondary	build-
ing	units	(SBUs)	during	the	early	stages	of	synthesis	is	cru-
cial	 in	determining	the	final	properties	of	a	MOF.	Ferey	et	
al.13	 suggested	 a	 synthesis	 mechanism	 involving	 the	 for-
mation	of	pre-nucleation	building	units	(PNBUs)	and	their	
subsequent	nucleation.	These	are	soluble	zero-charged	spe-
cies	such	as	the	half-SBUs	mentioned	in	this	work.	More	ex-
perimental	 works	 have	 identified	 PNBUs	 and	 evaluated	
their	role	in	the	final	MOF	structure	following	the	approach	
of	synthesis	through	SBU	formation14-18.	Recently,	Liu	et	al.19	

suggested	a	three-step	MOF	nucleation	mechanism	through	
a	mixed	experimental	and	computational	work.	They	iden-
tified	metastable	structures	that	recrystallize	into	the	MOF,	
hence	acting	as	precursors	to	the	nucleation	of	crystalline	
MOFs,	 but	 could	not	 elucidate	 the	molecular	mechanisms	
governing	the	process.	
It	has	been	observed	that	the	composition	of	the	synthesis	
mixture	 affects	 the	 thermodynamics	 and	 kinetics	 of	MOF	
nucleation	and	growth20.	Ions	are	known	to	promote	MOF	
crystallinity21,	22,	while	their	concentration	needs	to	be	fine-
tuned	in	order	to	achieve	this23.	At	last,	we	should	note	that	
fluoride	anions	were	considered	in	this	work	following	the	
original	MIL-101(Cr)	synthesis24	but	fluoride-free	synthetic	
routes	also	exist25,	26.	
Also,	MOF	synthesis	optimization	is	very	important	in	order	
to	manufacture	MOFs	 for	 different	 applications27-29.	 Addi-
tionally,	manufacturing	cost	can	be	decreased	by	optimizing	
the	synthetic	process	(e.g.,	processing	 time,	pressure,	and	
temperature)30.	 Optimization	 is	 often	 difficult	 due	 to	 the	
several	possibilities	of	metal-ligand	combinations	and	 the	
large	number	of	phases	emerging	for	each	one31,	32.	Conse-
quently,	isoreticular	modification	of	a	well-known	MOF	by	
exchanging	ligands	while	maintaining	metal-ligand	connec-
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tivity	is	ordinarily	employed	to	study	new	MOFs	for	a	par-
ticular	 application33.	 At	 last,	 electronic	 structure	 parame-
ters	can	be	optimized	through	mixing	different	metals	in	a	
MOF34.	
Computational	studies	on	the	early	stages	MOF	self-assem-
bly	are	rather	limited35.	Yoneya	et	al.36	studied	MOF	self-as-
sembly	with	a	 focus	on	optimizing	simulation	parameters	
using	 dummy	 atoms	 in	 implicit	 solvent.	 Biswal	 and	 Ku-
salik37	have	studied	MOF	self-assembly	using	Langevin	dy-
namics,	and	their	results	imply	the	existence	of	several	local	
energy	minima	associated	with	the	process.	Wells	et	al.38	in-
vestigated	 the	early	 stages	of	MOF	synthesis	using	Monte	
Carlo	methods	and	developed	an	algorithm	able	to	distin-
guish	 between	 different	 phases	with	 respect	 to	 composi-
tion.	Colon	et	al.39	focused	on	the	self-assembly	of	MOF-5	us-
ing	enhanced	sampling	methods,	but	they	did	not	consider	
all	 relevant	metastable	 states	 as	 they	 restrained	 the	 end-
points	of	 the	biased	simulation.	Cantu	et	al.40	 investigated	
the	assembly	of	MIL-101(Cr)	building	blocks	at	the	density	
functional	theory	level,	and	identified	possible	SBU	isomers	
through	modelling	the	kinetics	of		their	formation.	Finally,	
the	formation	of	“metal-free”	covalent	organic	frameworks	
has	been	studied	using	coarse-grained	models	for	building	
blocks41,	42.	
The	shape	and	structure	of	clusters	can	be	examined	as	a	
means	to	characterize	the	growth	of	complex	materials.	In	
this	 respect,	 the	 fractal	 dimension	 is	 a	 well-known	 de-
scriptor	of	compactness	used	to	describe	the	self-assembly	
of	metal-ligand	 systems43.	 Recently,	 new	 synthetic	 strate-
gies	to	form	self-similar	MOFs	that	exhibit	fractal	geometry	
were	suggested44,	45.	Maurer	et	al.46	observed	that	fractal	di-
mension	 provides	 useful	 insight	 into	 the	 spatial	 arrange-
ment	of	structures	with	similar	radii	of	gyration.	Tsao	et	al.47	
used	fractal	dimension	to	explore	the	potential	of	hydrogen	
storage	inside	MOF	pores.	Goesten	et	al.48	investigated	MOF	
growth	through	characterizing	the	fractal	nature	of	precur-
sors.	 At	 last,	 Liu	 et	 al.19	 linked	 the	 shape	 of	 clusters	with	
crystallinity	during	MOF	nucleation.		
Graph	theory	has	been	used	to	model	nucleation	of	metal-
oxide	 compounds49,	 or	 construction	 of	molecular	 polyhe-
dra50.	 Also,	 it	 has	 been	 successfully	 applied	 to	 study	 the	
properties	 of	 metal-ligand	 systems51	 and	 MOFs52-54,	 and	
characterize	the	dynamic	behavior	of	functional	materials55.	
In	a	previous	work,	we	have	demonstrated	how	the	initial	
population	of	isomer	half-SBUs,	choice	of	solvent,	and	ionic	
strength	 affect	 the	 thermodynamics	 of	 defect	 formation	
based	 on	 interactions	 between	 couples	 of	 half-SBUs56.	
There,	we	computed	free	energy	landscapes	and	evaluated	
the	equilibrium	population	of	stable	and	meta-stable,	crys-
tal-like	and	noncrystal-like	dimers	formed	from	half-SBUs.	
We	concluded	 that	 in	absence	of	 ions,	half-SBUs	 form	en-
tropically	controlled	defects57,	while	ions	tend	to	control	the	
conformational	landscape	of	dimers,	by	hindering	ligand	ro-
tation	that	may	lead	to	defects	as	a	result	of	𝜋 − 𝜋	stacking	
of	 the	 phenyl	 rings.	 The	 latter	 dominate	 the	 equilibrium	
probability	of	dimers	in	the	absence	of	ions.	Consequently,	
interactions	between	ions	and	half-SBUs	increase	the	equi-
librium	probability	of	crystal-like	units.	

In	this	work	we	use	large	scale	atomistic	simulations	of	the	
early	 stages	 of	 MOF	 self-assembly	 from	 pre-formed	 half-
SBU	precursors	to	evaluate	dynamics	under	various	system	
compositions.	We	perform	an	unsupervised	clustering	anal-
ysis	of	half-SBUs	using	a	graph-based	model58	 in	order	 to	
identify	MOF	precursors	emerging	from	solution,	and	calcu-
late	the	properties	of	their	interconnected	structures.		
Finally,	we	carry	out	a	principal	component	analysis	(PCA)	
to	identify	the	properties	which	largely	determine	how	self-
assembly	proceeds	under	various	conditions.	This	way	we	
deconvolute	the	characterization	of	the	complex	MOF	self-
assembly	process	by	projecting	various	properties	on	 the	
low-dimensional	 space	 of	 principal	 components.	 This	 al-
lows	 us	 to	 evaluate	 various	 solution	 compositions	 and	
group	them	based	on	the	similarity	of	the	resulting	assem-
bly	mechanisms;	thus,	offering	a	mechanistic	understanding	
of	the	early	stages	of	MOF	self-assembly.	

METHODS 
Simulation	 setup.	 Molecular	 Dynamics	 (MD)	 simulations	
were	performed	in	explicit	solvent.	Water	has	been	repre-
sented	with	the	TIP3P	model59	and	ions	with	the	OPLS-AA	
force	field60.	Our	analysis	is	carried	out,	apart	from	water,	in	
N,N-dimethylformamide	 (DMF)	 using	 force	 field	 parame-
ters	compatible	with	OPLS-AA60	obtained	from	the	virtual-
chemistry.org	 database61,	 62.	 The	 MOF	 half-SBUs	 were	
modelled	 using	 force	 field	 parameters	 obtained	 from	 a	
previous	work56.	Force	field	parameters	are	also	included	as	
Supporting	Information	(SI),	in	a	text	file	(SI_FF.txt).	A	brief	
discussion	of	the	force	field	is	provided	in	the	SI,	section	I,	
p.	2.	The	leapfrog	integrator	was	used	to	propagate	dynam-
ics	of	the	system	with	a	time	step	of	2	fs.	The	LINCS63	algo-
rithm	preserved	the	distances	of	bonds	involving	hydrogen	
atoms.	 	 The	 cut-off	 for	 non-bonded	 interactions	 is	 10	 Å.	
Long	 range	electrostatics	were	 treated	using	 the	Particle-
Mesh	Ewald	(PME)64	scheme.	The	Bussi-Donadio-Parrinello	
thermostat65	 and	 the	 Berendsen	 barostat66	 preserved	 the	
temperature	and	pressure	at	493	K	and	3,500	bar	respec-
tively	for	an	equilibration	period	of	5	ns.	Production	molec-
ular	 dynamics	 simulations	 followed	 using	 the	 Parrinello-
Rahman	Barostat67	with	a	relaxation	time	of	2	ps	in	water	
and	4	ps	in	DMF.	Production	simulations	were	carried	out	
for	100	ns.	The	system	consists	of	132	half-SBUs	in	explicit	
solvent.		The	SBUs	are	introduced	in	varying	proportions	of	
three	Metal-Ligand	(ML)	isomers	each	with	different	orien-
tations	of	the	ligands	about	the	Cr3O3	core	denoted	as,	MLA,	
MLB,	and	MLC40,	56.	These	isomers	can	be	depicted	in	Figure	
1.	Systems	consist	of	more	than	780,000	atoms	in	water	and	
500,000	atoms	in	DMF	randomly	dispersed	in	a	cubic	box	
with	an	edge	of	200	Å.	Two	initial	compositions	of	half-SBUs	
are	considered.	In	the	first	one	(purely	MLA),	there	are	132	
MLA	half-SBUs	 in	solution.	The	second	one	(equiprobable	
MLA,	MLB,	and	MLC),	consists	of	44	MLA,	44	MLB	and	44	
MLC	in	solution.	Simulations	were	performed	with	periodic	
boundary	conditions	in	three	dimensions,	using	GROMACS	
201868.	Chemical	structures	were	visualized	with	VMD69.	
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Figure	1.	Half-SBUs	(chemical	formula:	C24H17Cr3O16)	used	in	
this	work.	In	MLA,	all	linkers	are	above	the	plane.	In	MLB,	two	
are	above	and	one	is	below.	In	MLC,	two	are	bidentate	(above)	
and	one	monodentate	(below).	Atom	color	code:	Cr	–	lime,	O	–	
cyan,	H	–	gray,	C	–	blue	(MLA),	red	(MLB),	green	(MLC).	Upper	
row	is	view	from	top.	Bottom	row	is	side	view.	

Distance	and	adjacency	matrices.	At	first,	a	(n	x	n)	distance	
matrix	is	constructed,	where	n	is	the	number	of	half-SBUs.	
The	generic	𝑖𝑗	element	of	the	matrix	corresponds	to	the	Eu-
clidean	distance	between	the	central	oxygen	atoms	of	the	ith	
and	jth	half-SBUs	units.	This	distance	was	used	as	the	argu-
ment	of	a	step	function	to	define	the	adjacency	of	two	half-
SBUs.	A	cutoff	distance	of	15	Å	is	chosen	as	this	value	lies	
between	the	first	and	second	coordination	shells	emerging	
from	the	calculation	of	the	pair	radial	distribution	function	
between	 central	 oxygen	 atoms	 of	 half-SBUs.	 This	 is	 pro-
vided	in	the	SI,	section	II,	p.	3,	Figure	S2.	In	the	adjacency	
matrix,	 the	element	 𝑖𝑗	 is	equal	 to	 the	unity	 if	 the	distance	
between	𝑖	and	𝑗	is	below	the	cutoff	otherwise	it	is	set	to	zero.	
Examples	of	distance	and	adjacency	matrices	are	discussed	
in	the	SI,	section	II,	p.	3.	
Graph-based	 clustering.	 The	 clustering	 analysis	 of	 half-
SBUs	is	performed	by	converting	molecular	structures	into	
lower	 dimension	 graph	 representations.	We	 consider	 the	
central	oxygen	atoms	of	the	building	units	as	the	nodes	of	
the	graph.	Then	we	connect	these	nodes	advised	by	the	ad-
jacency	matrix	discussed	in	the	previous	paragraph.	Then,	
we	identify	clusters	as	connected	components	in	the	graph,	
where	 the	 smallest	 cluster	 consists	 of	 two	 half-SBUs	 (di-
mer).70	Departing	form	depth	first	search	(DFS)70	that	can	
be	used	 to	 identify	 clusters,	we	 analyze	 the	properties	 of	
clusters	as	components	of	a	graph;	hence	enrich	the	infor-
mation	we	have	for	each	cluster.	Also,	we	calculate	the	mass	
of	each	cluster	as	the	sum	of	the	masses	of	its	constituent	
particles.	Furthermore,	the	local	environment	of	each	half-
SBU	is	characterized	by	enumerating	the	neighbors	of	each	
node.	This	is	a	measure	of	the	coordination	of	half-SBUs	in	
the	 cluster.	 Also,	 we	 calculate	 the	 number	 of	 “free”	 half-
SBUs	as	isolated	nodes,	without	any	edges	attached.	This	al-
lows	us	to	further	calculate	certain	properties	of	the	graph,	
such	as	the	number	of	connections	(average	neighborhood	
degree	of	 each	node,	named	graph	degree	 for	 simplicity),	
the	extent	of	 interconnected	triplets	(transitivity)	and	the	
number	of	nodes	which	connect	with	similar	ones	based	on	

their	 degree	 (assortativity	 coefficient).	 	 The	 graph	 repre-
sentation	was	 constructed	using	 the	NetworkX	Python	 li-
brary58.	
Spherical	 radius	 and	 radius	of	 gyration.	The	 spherical	 ra-
dius	and	the	radius	of	gyration	are	calculated	for	each	clus-
ter.	The	first	follows	from	the	ideal	process	of	including	each	
cluster	in	a	sphere.	The	radius	of	that	sphere	would	then	be	
half	the	maximum	distance	between	any	two	metal	centers	
in	this	cluster.	The	radius	of	gyration71	provides	insight	into	
the	distribution	of	mass	in	complex	structures	and	it	is	used	
to	calculate	the	fractal	dimension	of	each	cluster.	Periodic	
boundary	conditions	in	three	dimensions	are	appropriately	
considered	in	all	these	calculations.	
Fractal	Dimension.	The	fractal	dimension	D!	was	computed	
using	a	power	law	approach72,	73	in	the	form,	
									M	 = 	R"#$%! 			 	 					(1)	
Where	M	is	the	cluster	mass,	and	R"#$	its	mass-weighted	ra-
dius	of	gyration.	In	single	structures	we	consider	all	atoms	
within	 a	 spherical	 volume	 extending	 from	 the	 center	 of	
mass	of	a	cluster.	For	all	atoms	included	into	spherical	vol-
umes	of	increasing	radii,	we	calculate	the	total	mass	and	the	
mass-weighted	radius	of	gyration.	The	fractal	dimension	is	
then	calculated	as	the	angular	coefficient	of	the	linear	func-
tion	obtained	by	fitting	logjR"#$k	against	log(M).		
This	is	repeated	for	all	clusters	consisting	of	at	least	three	
half-SBUs.	We	 consider	 spherical	 shells	 ranging	 from	 the	
minimum	distance	between	centers	of	half-SBUs	in	the	clus-
ter	increased	by	1	Å,	to	the	maximum	distance	increased	by	
5	Å.	This	allows	to	have	enough	atoms	to	calculate	a	mean-
ingful	radius	of	gyration	for	all	volumes,	with	the	largest	ra-
dius	containing	the	entire	cluster.	
A	similar	analysis	is	applied	to	clusters	that	spontaneously	
emerge	during	simulation.	We	observe	the	growth	of	a	frac-
tal	pattern	by	plotting	the	size	of	clusters	against	the	corre-
sponding	radii	of	gyration.	Then,	we	use	the	power-law	re-
lationship	 to	 calculate	 the	 fractal	 dimension	 of	 clusters	
formed	along	 the	simulation	 trajectory.	 In	 this	 case,	how-
ever,	we	 substitute	 the	 total	mass	M	with	 the	 number	 of	
half-SBUs	in	the	cluster.	The	non-mass-weighed	Rgyr	of	the	
cluster	 is	 computed	 from	 the	 positions	 of	 the	 centers	 of	
mass	of	the	half-SBUs.	
Diffraction	patterns.	We	calculate	the	X-Ray	powder	diffrac-
tion	 (XRD)	 patterns	 of	 clusters	 emerging	 throughout	 the	
simulation	using	PyMatGen74,	75.	The	wavelength	of	 the	Z-
Ray	source	used	is	equal	to	Cuk-a	radiation, l=1.54184	Å.	
We	consider	angles	that	differ	less	than	10-5	radians	to	have	
the	same	intensity.	We	scale	intensities	so	that	the	unity	is	
the	 maximum	 value	 and	 scaled	 intensities	 less	 than	 10-5	
were	considered	to	be	negligible.	Hydrogen	atoms	are	not	
present	in	the	calculation	to	be	consistent	with	the	pattern	
of	the	experimental	crystal	structure.	This	analysis	is	per-
formed	for	the	five	largest	clusters	at	every	ns	of	the	simu-
lation.	Consequently,	distance	metrics	can	be	used	to	evalu-
ate	the	similarity	of	each	structure	with	the	reference76,	77.	
In	this	effort,	we	used	various	distance	metrics	such	as	the	
Euclidean,	Hellinger,	Cosine,	City-Block	(Manhattan),	c2	and	
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Canberra	distances78.	Similarity	is	calculated	as	the	differ-
ence	of	the	distance,	normalized	by	its	maximum	value	in	all	
simulations,	 from	 the	unity78.	 Zero	distance	means	highly	
similar	to	MIL-101(Cr)24,	while	distance	equal	to	the	unity	
means	patterns	are	not	similar	to	MIL-101(Cr)24.		
Effect	of	ions	and	solvent.	Ions	(Na+,	F-)	are	added	at	con-
centrations	 of	 0.035M	 in	 water	 and	 0.075M	 in	 DMF.	We	
chose	small	concentrations	as	it	was	suggested	that	this	is	
the	optimal	balance	between	crystallinity	and	salt	precipi-
tation56.	Furthermore,	a	different	solvent	(DMF)	can	signif-
icantly	 affect	 the	 energetics	 of	 conformational	 transfor-
mations	of	the	solute56,	57.	In	this	context,	we	can	assess	the	
effect	of	guest	molecules	on	the	collective	assembly	of	half-
SBUs.	Finally,	there	is	experimental	evidence	that	studying	
the	solution	in	the	early	stages	of	assembly	can	significantly	
improve	our	understanding	of	the	mechanism	of	MOF	syn-
thesis79.	
Calculation	 of	 rates.	 We	 calculate	 nucleation	 and	 growth	
rate	of	cluster	formation	during	self-assembly	following	the	
approach	discussed	by	Yuhara	et	al.80.	In	more	detail,	we	cal-
culate	rates	per	unit	volume,	J.	These	are	computed	directly	
from	unbiased	simulations	by	estimating	the	partial	deriva-
tive	of	the	number	of	clusters	formed,	N(t),	with	respect	to	
simulation	time,	t,	and	then	normalizing	it	by	the	volume	of	
the	simulation	box	V:			

																																													J = &
'
⋅ ()(+)

(+
		 															 			 						

(2)	
In	 the	expression	above,	 the	volume	of	 the	 system	shows	
negligible	 fluctuations	 during	 the	 simulation,	 hence	 it	 is	
considered	constant	(the	average	volume	of	the	simulation	
box	was	used	to	calculate	rates).	We	use	a	linear	fit	of	the	
transient	 period	 at	 the	 start	 of	 the	 simulation	 (until	 the	
number	of	clusters	reach	a	maximum)	and	then	we	calcu-
late	J	from	the	slope.	This	corresponds	to	the	rate	of	nuclea-
tion	after	it	is	normalized	by	V.	Then,	we	model	the	decay	in	
the	number	of	 clusters	by	 fitting	 an	exponential	 function.	
The	growth	rate	is	calculated	by	the	exponent	normalized	
by	V.	We	use	NumPy81	for	the	fitting	procedure.	At	last,	we	
consider	fitting	errors	as	the	root	mean	square	deviation	of	
the	linear	fit	for	the	nucleation	rate,	and	the	one	standard	
deviation	error	on	the	exponent	for	the	growth	rate.	
Principal	Component	Analysis.	We	calculate	different	sets	of	
data	which	characterize	our	analysis	of	the	early	stages	of	
MOF	self-assembly.	A	dimensionality	reduction	can	be	per-
formed	while	retaining	meaningful	information	by	project-
ing	data	on	principal	components	that	possess	most	of	the	
variation	of	the	dataset82.	In	this	effort,	we	consider	the	av-
erage	values	of	quantities	corresponding	to	the	largest	clus-
ter	along	the	trajectory	of	each	simulation.	We	standardize	
data	to	have	a	mean	of	zero	and	standard	deviation	equal	to	
the	unity.	This	is	done	to	combine	data	that	have	different	
units	and	magnitude83.	Then,	we	identify	eigenvectors	and	
eigenvalues	of	 the	covariance	matrix83.	At	 last,	we	project	
data	on	the	eigenvectors	(principal	components)	with	the	
highest	eigenvalues.		
	
	

	

RESULTS 
Simulations	 in	pure	water.	We	start	our	analysis	with	 the	
system	of	MLA	half-SBUs	 in	pure	water.	A	 large	cluster	 is	
formed	leaving	no	“free”	half-SBUs	after	approximately	70	
ns.	This	cluster	is	highly	ordered	and	forms	pores.	The	Q	in-
teraction	between	half-SBUs57,	is	prevalent	in	this	case.		This	
conformer	 is	 entropically	 favored	 in	 pure	 solvent	 (water,	
DMF)	and	features	p-p	stacking	interactions.	
We	observe	a	rapid	decrease	 in	the	number	of	clusters	 in	
the	 first	10	ns	as	almost	half-SBUs	are	already	connected	
with	other	two	neighbors	at	this	time.	Also,	we	monitor	the	
size	of	the	five	largest	clusters.	After	approximately	70	ns	
the	 clusters	 start	 sintering,	 incorporating	 into	 the	 large	
cluster	during	this	time.	On	average,	each	half-SBU	that	be-
longs	to	this	cluster	has	three	other	neighboring	half-SBUs.	
We	believe	that	this	high	degree	of	interconnectivity	is	what	
holds	this	cluster	intact	for	the	rest	of	the	simulation.	The	
five	largest	clusters	formed	of	MLA	half-SBUs	in	pure	water	
at	the	very	early	stages	of	the	simulations	are	reported	in	
Figure	2	along	with	their	corresponding	graph	representa-
tions.	Molecular	structures	of	clusters	emerging	after	5	ns	
of	the	production	simulation	are	provided	in	the	SI,	section	
III,	Figures	S3-S10,	p.	4-8.		

	
Figure	2.	Purely	MLA	half-SBUs	in	water.	Molecular	(left)	and	
graph	 (right)	 representations	 of	 the	 five	 largest	 clusters	
(ranked	by	size)	after	5	ns	of	 the	production	simulation.	The	
color	code	is	consistent	with	Figure	1. 

An	initially	equiprobable	distribution	of	half-SBUs	in	water	
results	 in	the	formation	of	two	relatively	smaller	clusters.	
Also,	these	are	less	ordered	than	in	the	previous	case	where	
MLB	and	MLC	were	absent.	Nevertheless,	the	clusters	pre-
sent	higher	dimensionality	than	the	cluster	emerging	from	
the	purely	MLA	system.	
The	number	of	clusters	is	gradually	decreased	to	2,	reaching	
a	 plateau	 after	 50	 ns.	 One	 of	 the	 clusters	 is	 almost	 30%	
larger	than	the	other	(4,380	and	3,420	atoms	respectively).	
The	average	number	of	neighbors	each	half-SBU	has	is	the	
largest	of	all	cases	as	 it	plateaus	to	a	value	greater	than	5	
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after	50	ns.	Structures	emerging	from	the	simulation	of	as-
sembly	in	pure	water	along	with	the	corresponding	graph	
representations	after	20	and	100	ns	of	the	production	sim-
ulations	for	both	“purely	MLA”	and	equiprobable	half-SBU	
distributions	are	shown	in	Figure	3.	Structures	and	graph	
representations	of	clusters	in	the	rest	of	the	simulations	are	
available	 in	 the	 SI,	 section	 III,	 Figures	 S12-S14,	 p.	 10-11.	
Also,	we	calculate	the	distribution	of	cluster	sizes	during	the	
simulation,	and	this	is	provided	in	the	SI,	section	IV,	Figure	
S24,	p.	21.	
Furthermore,	we	used	two	clusters	formed	by	MLA	isomers	
in	pure	water	after	100	ns	and	ran	a	relatively	short	MD	sim-
ulation	in	vacuo.	The	reason	is	to	evaluate	whether	clusters	

of	higher	dimension	can	be	formed	from	2D	sheets,	as	the	
MIL-101	crystal	is	a	three-dimensional	network84.	A	cluster	
of	 increased	 fractal	 dimension	 emerged;	hence	 such	 clus-
ters	could	possibly	develop	after	longer	times	of	self-assem-
bly.	This	 is	 further	discussed	in	the	SI,	section	V,	p.	22.	At	
last,	we	note	that	we	shall	use	the	following	code	for	abbre-
viations	throughout	the	text	and	the	SI.	AW:	“Purely	MLA	in	
pure	water”,	EW:	“Equiprobable	MLA/B/C	in	pure	water”,	
AWI:	“Purely	MLA	in	water	with	ions”,	EWI:	“Equiprobable	
MLA/B/C	 in	 water	 with	 ions”,	 AD:	 “Purely	 MLA	 in	 pure	
DMF”,	 ED:	 “Equiprobable	 MLA/B/C	 in	 pure	 DMF”,	 ADI:	
“Purely	 MLA	 in	 DMF	 with	 ions”,	 EDI:	 “Equiprobable	
MLA/B/C	in	DMF	with	ions”.	

	
Figure	3.	Clusters	emerging	from	self-assembly	in	pure	water.	Molecular	structures	formed	of	the	"purely	MLA"	(top)	and	"Equi-
probable"	(bottom)	systems	after	20	ns	(left)	and	100	ns	(right)	production	simulations	are	shown	along	with	the	respective	graph	
representations.	Atom	color	code:	Cr	–	lime,	O	–	cyan,	H	–	gray,	C	–	blue	(MLA),	red	(MLB),	green	(MLC).	Nodes	in	the	graph	repre-
sent	the	central	oxygen	atom	of	each	monomer	and	an	edge	is	drawn	between	connected	nodes.	Graph	color	code:	nodes	–	gold,	
edges	–	blue.	
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Simulations	 in	water	with	 ions.	The	 introduction	of	 ions	
(Na+,	F-)	considerably	affects	 the	dynamics	of	assembly.	
Ions	 promote	 numerous	 small	 clusters	 in	 contrast	with	
pure	water.	Crystal-like	SBUs	are	formed	in	the	presence	
of	ions;56	hence	ions	can	help	in	healing	defects	during	as-
sembly.	Also,	small	clusters	of	higher	dimensions	form	in	
this	case	as	it	is	desirable84.	At	last,	we	observe	small	clus-
ters	forming	during	assembly	under	both	half-SBU	distri-
butions;	hence	solute	composition	does	not	significantly	
affect	the	early	stages	of	self-assembly	in	water	with	ions.	
In	further	detail,	the	number	of	clusters	gradually	reaches	
a	plateau	at	25	ns	for	MLA	half-SBUs,	while	this	happens	
much	 faster	 in	 the	 equiprobable	 half-SBU	 distribution.	
There	are	approximately	13	and	25	clusters	in	the	“purely	
MLA”	 and	 the	 “equiprobable	 half-SBUs”	 cases	 respec-
tively.	The	two	largest	clusters	consist	of	1,320	and	1,140	
atoms	when	there	are	purely	MLA	half-SBUs	and	780	and	
480	atoms	when	there	is	an	equiprobable	distribution	of	
half-SBUs.	
The	average	coordination	of	half-SBUs	is	similar,	on	aver-
age,	 for	 the	 largest	 cluster	 in	 the	 “purely	 MLA”	 case	 in	
presence	of	ions	and	in	pure	water.	Nevertheless,	smaller	
clusters	(e.g.,	the	2nd,	3rd,	and	4th	largest	clusters)	show	in-
creased	coordination	in	presence	of	ions.	Coordination	is	
lower	 in	 the	equiprobable	half-SBU	distribution	 in	pres-
ence	of	ions	than	in	pure	water.	Consequently,	ions	tend	to	
decrease	 the	 number	 of	 half-SBU	 neighbors	 when	 MLB	
and	MLC	are	also	considered.	The	choice	of	a	small	con-
centration	of	ions	is	further	validated	by	results	obtained	
from	a	larger	concentration	as	discussed	in	the	SI,	section	
VI,	p.	23.	
Simulations	 in	 DMF.	 Solvent	 effects	 are	 investigated	
through	simulation	of	the	early	stages	of	MOF	self-assem-
bly	 in	 DMF.	 The	 system,	 consisting	 of	 purely	MLA	 half-
SBUs,	rapidly	forms	a	large	cluster	where	the	Q	configura-
tion	 prevails,	 and	 linear	 chains	 are	 also	 formed.	 Pores	
form	in	a	similar	fashion	as	in	water.	In	the	equiprobable	
half-SBUs	case,	we	see	one	long	cluster	forming	in	contrast	
with	 corresponding	 simulations	 in	water.	 Consequently,	
pure	DMF	leads	to	a	decrease	in	the	dimensionality	of	the	
resulting	structures.	
The	number	of	clusters	is	rapidly	decreased	when	purely	
MLA	 half-SBUs	 are	 present	 in	 DMF.	 Equiprobable	 half-
SBUs	 lead	 to	 the	 formation	 of	 two	 large	 clusters	 (4,080	
and	3,420	atoms	respectively)	between	30	and	50	ns.	The	
average	number	of	neighbors	 in	 the	 largest	cluster	plat-
eaus	at	around	3	when	purely	MLA	half-SBUs	are	present,	
while	 it	 is	slightly	higher	when	MLB	and	MLC	are	 intro-
duced.	
Simulations	in	DMF	with	ions.	Ionic	species	show	a	com-
pletely	 different	 behavior	 in	 DMF	when	 compared	with	
water.	The	 “purely	MLA”	system	 forms	a	 large,	ordered,	
and	 high-dimensional	 cluster	 compared	 with	 the	 one	
formed	in	absence	of	ions.	A	similar	behavior	is	observed	
when	ions	are	added	when	MLB,	MLC	are	present.	
The	time	evolution	of	the	number	of	clusters	shows	a	sim-
ilar	 trend	 in	both	half-SBU	distributions	resulting	 in	3-4	
clusters	 after	 100	 ns.	 In	 “purely	 MLA”,	 we	 observe	 a	

slightly	higher	degree	of	 interconnectivity	 in	 the	 largest	
cluster	as	the	number	of	neighbors	is	close	to	3.3	against	
3	in	the	“equiprobable	half-SBUs”	scenario.	
The	 evolution	 of	 the	 largest	 cluster,	 represented	 by	 a	
graph,	during	assembly	in	water,	is	shown	in	Figure	4.	The	
relevant	 evolution	 during	 assembly	 in	 all	 other	 simula-
tions	in	water	and	DMF,	with	or	without	ions	is	provided	
in	the	SI,	section	III,	Figures	S15-S21,	p.	12-18.	Addition-
ally,	the	probability	density	of	different	cluster	sizes	is	dis-
cussed	in	the	SI,	section	IV,	Figure	S24,	p.	21.	
Graph	analysis.	A	graph	representation	of	the	system	al-
lows	us	to	calculate	of	certain	properties	of	the	molecular	
network	in	every	simulation.	The	equiprobable	distribu-
tion	of	species	results	 in	higher	numbers	of	connections	
per	 half-SBU,	 hence	 half-SBUs	 interact	more	 than	when	
MLA	 is	 the	 only	 species	 present.	 Also,	 the	 equiprobable	
distribution	of	species	and	the	presence	of	 ions	 leads	 to	
higher	 transitivity	 values;	 hence	 networks	 are	 more	
tightly	connected	as	more	triplets	of	interconnected	mem-
bers	exist.	In	contrast,	purely	MLA	systems	have	higher	as-
sortativity	coefficients,	 except	 in	 the	presence	of	 ions	 in	
DMF.	 Consequently,	 MLA	 leads	 to	 assortative	 mixing	
where	similar	molecules	(which	have	the	same	number	of	
connections	on	average)	are	interconnected	more.	
Overall,	 larger	 networks,	 formed	when	 purely	MLA	 iso-
mers	are	present,	feature	members	that	connect	to	others	
with	whom	they	share	similarities	(e.	g.	of	the	same	num-
ber	of	connections),	but	they	are	not	as	strongly	connected	
as	smaller	clusters	emerging	in	the	equiprobable	distribu-
tion	of	species.	The	latter	“communicate”	more	with	oth-
ers	that	are	not	similar;	hence	they	tend	to	connect	to	mol-
ecules	 that	 share	 different	 properties	 in	 a	way	 that	 can	
prove	beneficial	to	heal	defects	in	the	longer	term.	
Estimation	of	rates.	Nucleation	and	growth	rates	are	cal-
culated	 for	 all	 simulations	 performed.	 Samples	 with	
purely	MLA	half-SBUs	 invariably	 result	 in	 faster	nuclea-
tion	 and	 growth	 than	 the	 equiprobable	 distribution	 in	
pure	solvent.	In	presence	of	ions	in	water,	rates	are	similar	
for	both	distributions.	In	water,	ions	tend	to	significantly	
slow	 down	 nucleation.	 However,	 ions	 result	 in	 faster	
growth	 in	 the	 equiprobable	 MLA/B/C	 distribution	 and	
slightly	slower	growth	for	MLA	half-SBUs	than	in	pure	wa-
ter.	MLA	nucleation	is	much	faster	in	water	than	in	pure	
DMF,	while	the	opposite	occurs	for	growth.	MLA/B/C	also	
nucleate	 faster	 in	 pure	 water,	 while	 they	 grow	 slightly	
faster	in	pure	DMF.	Ions	result	in	similar	nucleation	rates	
for	 MLA	 in	 water	 and	 DMF,	 while	 in	 presence	 of	 ions	
MLA/B/C	nucleate	slightly	faster	in	DMF	than	in	water.	At	
last,	ions	induce	faster	growth	in	water	than	in	DMF.	De-
tails	on	 the	values	of	nucleation	and	growth	rates	along	
with	an	example	calculation	are	provided	in	the	SI,	section	
VII,	Figures	S27-28,	Table	S1,	p.	24-25.	
Fractal	growth	process.	We	calculate	the	radii	of	gyration	
of	clusters	(see	Figure	4)	formed	and	growing	in	time	dur-
ing	the	simulation.	We	then	relate	these	values	with	their	
corresponding	size	expressed	in	terms	of	number	of	half-
SBUs.	In	this	manner,	we	can	calculate	the	fractal	dimen-
sion	associated	with	the	growth	process	(see	Figure	5).	In	
pure	 water,	 we	 observe	 that	 the	 “purely	 MLA”	 system	
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evolves	by	forming	two-dimensional	structures	as	the	cor-
responding	fractal	dimension	is	close	to	2.	Introduction	of	
MLB	and	MLC	leads	to	a	slightly	higher	fractal	dimension,	
while	 ions	result	 in	an	overall	decrease	of	the	fractal	di-
mension.	On	the	other	hand,	in	DMF,	similar	fractal	dimen-
sion	 values	 are	 obtained	 for	 both	 solute	 compositions.	

However,	 these	 are	 appreciably	 lower	 than	 the	 ones	 in	
pure	water;	hence	DMF	decreases	 the	 fractal	dimension	
related	with	self-assembly.	Spectator	ions	in	DMF	further	
induce	a	slight	decrease	 in	the	fractal	dimension	related	
with	growth.	

	

Figure	4.	“Purely	MLA”	half-SBUs	in	water.	Top	1st	panel:	Graph	representation	of	the	largest	cluster	formed	at	10,	50	and	90	ns	of	
the	production	simulations	in	water.	Graph	color	code	is	the	same	as	in	Figure	3.		Top	2nd	panel:	time	evolution	of	the	number	of	
clusters	(left),	Derivation	of	the	fractal	dimension	!𝑑-#	as	a	linear	fit	of	the	number	of	half-SBUs	in	a	cluster	against	the	corresponding	
Rgyr	of	the	cluster	(center)	[point	color	differentiates	the	number	of	times	a	point	(size,	Rgyr)	occurs	throughout	the	simulation	tra-
jectory	(blue:	small,	red:	large)],	time	evolution	of	the	spherical	radii	of	the	5	largest	clusters	(right).	Top	3rd	panel:	Time	evolution	
of	the	radii	of	gyration	(left)	and	the	sizes	(center)	of	the	5	largest	clusters,	and	the	number	of	half-SBU	interactions.		Bottom	panel:	
Time	evolution	of	graph	properties	-	average	degree	(left),	assortativity	coefficient	(center),	transitivity	(right).	Units	are	separated	
from	the	axis	title	through	a	forward	slash.	

Diffraction	 pattern.	 In	 this	 section,	we	 assess	 structural	
similarity	 based	 on	 the	 diffraction	 patterns	 of	 clusters	
formed	during	 the	simulation	and	 that	of	MIL-101(Cr)24	

(reference	 structure).	We	perform	 this	 analysis	both	on	
clusters	formed	at	the	end	of	our	simulations	as	well	as	the	
5	largest	clusters	emerging	every	nanosecond	during	the	
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whole	simulation	trajectory.	Clusters	formed	out	of	MLA	
units	 are	more	 similar	 to	 the	 reference	based	on	 cosine	
similarity.	We	note	that	the	cosine	similarity	differentiates	
between	 the	 clusters	 emerging	over	 time	under	 various	
system	 compositions	 and	 it	 is	 widely	 used	 to	 compare	
spectra.85-87	 Nevertheless,	 other	 similarity	 metrics	 have	
been	assessed	and	they	are	provided	in	the	SI,	section	VIII,	
p.	26-32.	These	do	not	show	considerable	differences	be-
tween	 the	 various	 systems;	 hence	 they	 will	 not	 be	 dis-
cussed	in	this	text.	This	is	more	pronounced	in	the	case	of	
pure	water.	Consequently,	MLA	promotes	the	crystallinity	
of	clusters	formed	during	assembly	in	pure	water.	Also,	we	
see	that	in	pure	water	some	degree	of	crystallinity	is	ob-
served	for	only	the	larger	clusters	identified	in	the	simula-
tion,	while	for	a	completely	different	system	composition	
(MLA/B/C	in	DMF	with	ions),	smaller	clusters	with	some	
degree	of	crystallinity	are	formed.	
Principal	Component	Analysis.	Descriptors	of	the	nuclea-
tion	process,	extracted	from	simulations,	can	be	projected	
on	principal	components,	and	help	identify	new	collective	
variables	(named	PCs).	The	1st	PC	is	calculated	from	pro-

jecting	the	data	to	the	1st	principal	component,	i.e.,	the	ei-
genvector	with	the	largest	eigenvalue,	the	2nd	PC	from	the	
2nd	 principal	 component,	 i.e.,	 corresponding	 to	 the	 2nd	
largest	eigenvalue,	etc.	The	nucleation	rate	and	fractal	di-
mension	related	to	growth	are	correlated	with	both	PCs.	
The	average	graph	degree	(tied	to	the	local	coordination	
environment)	is	mostly	correlated	with	the	2nd	PC.	Cosine	
similarity	 (a	 descriptor	 of	 crystallinity),	 cluster	 size,	
spherical	 radius,	 radius	 of	 gyration,	 assortativity	 coeffi-
cient,	and	transitivity	are	predominantly	correlated	with	
the	1st	PC.	In	summary,	the	1st	PC	describes	long-range	or-
der	as	it	is	strongly	correlated	with	the	similarity	between	
the	XRD	patterns	of	emerging	clusters	and	MIL-101(Cr).	
The	2nd	PC	describes	the	local	coordination	environment	
as	it	is	strongly	correlated	with	the	average	graph	degree.	
At	last,	the	3rd	PC	is	strongly	correlated	with	the	growth	
rate.	
Systems	projected	on	the	PCs,	correlation	coefficients	be-
tween	properties	and	the	PCs	are	presented	in	Figure	5.	
An	 explanation	 of	 how	we	 performed	 this	 analysis	 and	
PCA	at	the	very	early	stages	of	assembly	are	provided	in	
the	SI,	section	IX,	p.	33-35.

	

Figure	5.	Principal	Component	Analysis.	Top	panel:	systems	projected	on	the	first	three	Principal	Components.	Blue/dark	blue/sky	
blue:	systems	with	purely	MLA	half-SBUs,	red/orange:	systems	containing	MLA/B/C	half-SBUs.	Bottom	left	panel:	Correlation	coef-
ficients	calculated	considering	all	dimensions.	Bottom	right	panel:	Correlation	between	dimensions	and	 the	 first	 three	principal	
components	(1st	:	blue,	2nd	:	red,	3rd	:	orange).
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CONCLUSIONS AND OUTLOOK 

The	 early	 stages	 of	 MOF	 self-assembly	 are	 investigated	
through	molecular	 simulation	 that	 allows	 us	 to	 identify	
key	interactions	during	nucleation	at	the	molecular	level.		
We	assess	the	effects	of	building	unit	distribution,	solvent,	
and	spectator	 ions	on	MIL-101	self-assembly	by	100	ns-
long	simulations	of	more	than	780,000	atoms.	Clusters	of	
building	units	are	then	characterized	as	an	evolving	graph.	
Our	results	corroborate	previous	studies,	where	the	solu-
tion	 composition	 considerably	 influences	 the	 dynamical	
rearrangement	 of	 building	 units.56,	 57	 Consequently,	 our	
conclusions	 confirm	 these	 phenomena	 at	 large	 length	
scales	where	the	complexity	is	significantly	increased.			

This	 increased	 complexity	 can	be	deconvoluted	 through	
graph	 theory	which	we	use	 to	monitor	and	characterize	
growth	 at	 the	 early	 stages	 by	 projecting	 trajectories	 of	
atomic	positions	on	lower-dimension	graphs.	The	graphs	
are	used	to	interpret	how	the	connectivity,	size,	and	mor-
phology	of	 clusters	 evolve	during	 assembly.	As	 a	 result,	
this	work	sets	the	base	for	further	analysis	of	nucleation	
using	data	science	to	evaluate	dynamics	as	the	propaga-
tion	of	a	coarse-grained	graph	model.	

We	 conclude	 that	 less	 than	 a	 third	 of	 molecular	 de-
scriptors	suffice	to	account	for	90%	of	the	variance	of	the	
dataset.	Consequently,	we	successfully	identify	nucleation	
descriptors	that	capture	the	evolution	of	both	local	and	ex-
tended	features.	The	1st	principal	component	is	correlated	
with	the	cosine	similarity	that	can	be	calculated	from	pow-
der	diffraction	patterns,	and	measures	long-range	order.	
The	 latter	 can	 be	 monitored	 by	 time-resolved	 diffrac-
tion.24,	35,	43-47,	88,	89		The	2nd	principal	component	is	strongly	
correlated	 with	 the	 local	 structural	 environment	 of	 the	
half-SBU,	a	variable	 that	 is	accessible	 through	X-Ray	ab-
sorption	and	scattering	methods.35,	88,	89	The	3rd	principal	
component	characterizes	 the	rate	of	cluster	growth	 that	
can	be	experimentally	measured.90,	91	Ultimately,	these	de-
scriptors	can	also	form	a	basis	for	collective	variables	to	
simulate	 nucleation	 via	 enhanced	 sampling.56,	 92	 This	
opens	up	the	exciting	possibility	to	monitor	the	evolution	
of	these	graphs	both	experimentally	and	computationally.	
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