
Integrating Python into Physical Chemistry

Lab

Marie van Staveren
∗

Department of Chemistry and Biochemistry

University of Maryland Baltimore County, Baltimore, MD 21250;

E-mail: mvanstav@umbc.edu

Abstract

This paper shows a method for integrating computer programming into a standard

physical chemistry laboratory sequence to augment student analysis abilities and allow

them to carry programming skills forward to other courses. The Python programming

language is used, taking advantage of the pedagogical bene�ts of Jupyter notebooks,

primarily the ability to intersperse instructions and interactive code cells. A series of �ve

notebooks, plus one traditional script exercise are designed to teach basic techniques

(e. g. loops, assignments, data types), instrument interfacing, model �tting, and

introductory quantum chemistry. The skills are directly applicable to labs the students

perform during the hands-on portion of the courses. A survey of students who have

completed the course show high con�dence in their ability to learn new skills, and

student comments reveal they have used these skills in a variety of other contexts.

Keywords

Upper-Division Undergraduate, Curriculum, Laboratory Instruction, Physical Chemistry,

Computer-Based Learning, Computational Chemistry, Laboratory Interfacing

1

Introduction

The amount of programming instruction and course structure used to train undergraduate

chemistry students varies widely between institutions. A stand-alone introductory course,1 2

followed by incorporation of learned techniques into advanced laboratory and lecture courses

might be appealing. However, already packed program requirements for a bachelors degree

often leave no room for such a course. Additionally, as programming skills can be uneven

among faculty, it is often easier to to focus on a single course or course sequence. Often this

takes the form of instructor-supplied code that students view and use to solve homework

problems3 4 5 6 7 or operate home-built instrumentation.8 9 10 11 While these modules are rela-

tively easy to include in a course, they are limited by how much programming the students

(rather than the instructor) actual do.

A key question to consider is the suitability of lab versus lecture instruction to achieve

the goal of teaching students programming skills. Stand-alone modules can be incorporated

into lecture courses12 13 which allow students to deeply explore concepts through the code

they produce. A particularly interesting model14 has students directly collaborating via

Github, which is a current best-practice among professional programmers, though generally

unfamiliar to students. However laboratory courses are an excellent �t for programming

instruction for two reasons. First, the programming instruction can be made directly and

consistently relevant, by using the programming language to perform experiments as well as

aiding in data analysis and presentation.15 Secondly, they have more contact hours, making

it easier to spend precious class time doing the necessary introductory work for the new

language.

This article describes a series of programming modules comprising seven lab periods

spread over a two semester physical chemistry lab sequence. Students learn and then apply

increasingly complex programming sills throughout the courses. The goal of these modules

is to teach students immediately applicable programming skills which aid them in their lab

tasks. As the skills are directly relevant to their chemistry course work, students are able to

2

carry forward their programming knowledge into future courses.

Structure and Implementation

Python was chosen as the programming language for several reasons. It's free, open source

software, which eliminates access barriers during coursework, as well as in the future where

a student might wish to apply what they learned in this course. Python has been among the

most popular programming language for the last decade.16 In addition to a robust standard

library, Python has a robust ecosystem devoted to scienti�c computing, including Numpy17

which adds in a powerful array function to handle numerical data, and Matplotlib18 for

easy visualizations. Python is popular enough to have code already developed for most

scienti�c problems, and several electronic structure packages run in Python or have Python

interfaces.19

In teaching programming, getting the software onto student computers is often a signi�-

cant barrier. To that end, the Anaconda Python distribution was chosen for this project.20

Anaconda is a popular distribution of Python which includes a large number of standard

libraries, and is easy to install on PCs, Macs, and most Linux distributions. Additionally,

Anaconda includes both an IDE (Spyder) and Jupyter notebooks.21

Jupyter uses notebook (also called literate) programming, also seen in Mathematica and

RStudio. A sample notebook, taken from the �rst tutorial, is shown in �gure 1. In a Jupyter

notebook, a few lines of code is typed into a cell. Each cell can be executed individually, and

it's output is printed below the cell. A key feature of Jupyter notebooks for instruction is

the use of markdown cells, which allow the display of rich text instead of text which executes

as code. The instructor can create tutorials that switch between instructions typed as rich

text in markdown cells, executable cells for the student to use to follow the instructions, and

empty cells for students to add in their own code.

Programming instruction was split into three modules, consisting of seven lab periods

3

over two semesters. The �rst semester module, taking three lab periods, introduced students

to programming in Python and taught them to interface with an instrument. The second

term had a two day module on �tting data to a module, and another two day module solving

computational chemistry problems. There is no required computer science requirement for

these courses, and prerequisite courses primarily use Microsoft Excel.

First semester

The �rst semester lab course accompanies a standard physical chemistry lecture course that

covers thermodynamics and kinetics. Lab enrollment is generally 30 - 60 students, split

approximately evenly between chemistry and chemical engineering majors. One experimental

goal is to have students build their own temperature acquisition device and connect it to a

computer for digital data acquisition. Programming goals include being familiar with basic

language constructs, using Jupyter notebooks, and learning how to execute a script in an

integrated development environment (IDE).

Output

Instructions

Instructions

Input

Pseudocode

Figure 1: A screenshot taken from the �rst tutorial. Instructions for the student, including
a snippet of psuedocode (plain language showing the structure), are displayed in markdown
cells. Next is an input cell containing a while loop, and the loop output displays below.

4

Table 1: Summary of �rst semester skills by lab period

First lab period Second lab period Third lab period
Hello world User inputs User interrupts
Loops Strings, ints, and �oats Working in the Spyder IDE
Plotting in matplotlib18 Making prettier plots Connecting the DAQ board
Numpy arrays17 Array manipulation Advanced control structures
Accessing help Saving data to a text �le
Random numbers Imports
Time functions
Commenting

A breakdown of the concepts covered in each of the three lab periods is shown in table 1.

Students spend the lab period working through the Jupyter tutorial. At �rst, these tutorials

ask students to alter instructor written code snippets. As they progress, students build

up their own code snippet which is copied forward and added to. This code develops into

their temperature acquisition script. In the �rst implementation of these notebooks, students

worked in the lab room, either alone or in pairs. During the second implementation, COVID-

19 necessitated running the course primarily online. Students worked remotely on their own

computers, with the instructor coordinating and o�ering assistance via online conferencing.

The goal of the �rst semester is for students to write a script that controls a student built

digital thermometer. The three notebook tutorials take students through the programming

of the script for their instrument. They alternate lab days building a circuit which connects

a thermocouple to the computer for signal input. Both circuitry and programming are

intimidating skills for many chemistry students. As such, using both while building a real

instrument that students will use adds relevance that many students �nd motivating. Typical

scripts are 40 - 80 lines of code, and almost every group has a functioning device at the end

of the unit.

As this sequence of tutorials is designed to help scientist students create useful code as

quickly as possible, minimal computer science theory is included. Instead, tutorials place

heavy emphasis on accessing the documentation and getting regular feedback, whether from

peers or the instructor. The skills acquired match well with introductory skill lists and tuto-

5

rials from computational chemistry groups like PSI4Education22 and the Molecular Sciences

Software Institute.19

Second Semester

The second semester laboratory course also meets twice a week for four hours. Second

semester enrollment is 15 - 25 students, all chemistry majors. The accompanying lecture

course covers quantum mechanics and spectroscopy. Approximately half of the laboratory

term is spent on kinetics experiments, while the other half is spectroscopy experiments.

The notebooks in the second semester are aimed at increasing student independence.

There are frequent references to appropriate documentation and help functions. Sample

code is increasingly sophisticated. Theory is included where relevant, whether computer

science, math, kinetics, or quantum mechanics. Finally students are expected to create their

own notebooks and generate appropriate markdown cells to describe the code in rich text.

These are required for assignments, but also show students how to use notebooks for their

own reference.

Model �tting lab

During the kinetics unit, students see a variety of data sets showing decay that is either �rst

or second order, and are asked to determine the reaction order with respect to the varying

substance. In order to give students the computational tools to make this evaluation, the

�rst experiment of the semester is a one week (two lab period) experiment on �tting data.

The notebook contains three sections: import and cleanup of sample data, �tting sample

data to several models, and instructions for students to �t their own data set.

Students begin by importing sample data using the Numpy loadtxt function. They see

how to handle metadata without deleting it using the skiprows argument. Next, they see

how to use array slices to trim o� the initial rapid increase in the data, which isn't part of

the region to be �t.

6

Next, students learn to write functions by de�ning the model they'll use to �t their data.

To actually perform the �t, we use curve_fit from the Scipy23 library. This is a non-linear

least squares function which allows several �tting methods and is �exible and reasonably

robust. A major advantage of curve_fit is that it returns the covariance matrix, making

extraction of uncertainties in the �t parameters straightforward, which allows comparison

with how similar analysis is done in the analytical chemistry course.

The evaluation of goodness of �t introduces new plotting skills. For each model, students

create a residual plot stacked on top of their �tted experimental data. Additionally, they

make a bar chart of parameter errors. Multiple possible model functions are introduced and

their suitability discussed.

The lab report has students analyze a new dataset and propose an appropriate model.

We use the production of foam from the mixing of Diet Coke and Mentos, which piques

student interest, and doesn't have an obvious answer for the reaction order. Students view

a live demonstration of the foam geyser using an apparatus that allows the measurement of

foam volume as a function of time.24 25 Students extract data of foam volume versus time

from a video of the demonstration, and �t their data. The dataset shows an initial rapid

increase, followed by a slow decay; only the decay portion is �t. The student lab report has

students submit two �ts: one that they accept as the best model for their data, and one that

they've rejected. Using markdown cells, students discuss the goodness of �t for each model,

and justify, based on available metrics, such as their residual plot and the uncertainties in

the �t parameters.

Computional Chemistry lab

The majority of students take this lab course alongside an inorganic lecture course which

covers molecular symmetry in great detail as well as a physical chemistry lecture course on

quantum mechanics. As such, there is a lot of synergy between the three courses in the area

of applying quantum mechanics to spectroscopy of small molecules. To complement that, a

7

computational chemistry experiment has been added to the physical chemistry lab.

In the computational chemistry notebook, students use Psi4,26 an open-source research-

grade suite of computational chemistry software. While Psi4 is capable of using a traditional

command-prompt interface for computations, it can also be run inside a Jupyter notebook. It

is, however, di�cult to get a stable compile of Psi4 on a variety of computer set-ups. In order

to make this software stack more user friendly, we used ChemCompute.27 ChemCompute is

a web service that allows students and educators to use a variety of computational software

(Including GAMESS,TINKER, and NAMD) free of charge. All that a user needs is an email

address to register.

Table 2: Computational chemistry learning objectives

Computational Chemistry Learning Objectives
Pick an appropriate basis set for a given problem and justify the choice
Perform an energy minimization in Psi4, importing the molecule from pubchem
Perform a geometry optimization
Generate predicted frequencies of normal modes and see the irreducible representa-
tion for each mode
Use `fortecubeview'28 to visualize electronic surfaces and normal modes, allowing
observation of symmetry
Collect generated data into plots that assist in justifying conclusions
Use the vocabulary of computational chemistry appropriately

Learning objectives are shown in table 2. Students �rst read through an example tutorial

in which a variety of computations are performed. They are then instructed to perform a

similar series of calculations on a new set of molecules. The tutorial uses methane for basis

set determination and energy minimization, and carbon dioxide for normal mode analysis.

The assignment uses chloromethane for basis set determination, and water for normal mode

analysis. Students submit a Jupyter notebook they create, which includes markdown cells

as needed to explain their work.

8

Assessment of e�ectiveness

In order to evaluate the e�ectiveness of this programming instruction, students in the cap-

stone instrumental analysis course were surveyed as to their programming abilities (UMBC

IRB #513, exempt). Students take this course in the spring semester, either concurrently

with the second term of physical chemistry lab, or a year after the physical chemistry lab

sequence. Fifteen students gave informed consent to participate in the study; of those, 14

had taken one or both courses during the relevant semesters, 14 had taken the �rst term

course, and 8 had taken the second term course. Not every student answered every question.

The survey consisted of paired questions: one Likert-scale item and an accompanying free-

response item to elaborate on their answer, as well as a �nal open-ended question. Figure 2

shows answers to the Likert-scale items.

Extremely Very Moderately Slightly Not at all
0

2

4

6

Nu
m

be
r o

f s
tu

de
nt

s

(a)How confident are you that you could
 learn a new programming skill? n = 14

Extremely Very Moderately Slightly Not at all
0

2

4

6

Nu
m

be
r o

f s
tu

de
nt

s

(b)How would you rate your programming
ability at the tasks you performed

 in Chem311L/312L? n = 14

Extremely Very Moderately Slightly Not at all
0

1

2

3

4

Nu
m

be
r o

f s
tu

de
nt

s

(c)How confident are you in your ability to
use Python to acquire data from a circuit

board today? n = 13

Extremely Very Moderately Slightly Not at all
0

1

2

3

Nu
m

be
r o

f s
tu

de
nt

s

(d)How confident are you in your ability to
use a Jupyter notebook to fit data

to a model? n = 7

Figure 2: Likert-scale results to survey questions. Sample size varies because not every
student had taken each course in the relevant semesters.

Overall, students show a high degree of con�dence with both their ability to perform skills

taught in the course 2(b) and at their ability to learn new skills 2(a). This was re�ected

in their answers to the free-response questions. For example, one student wrote �I could

9

de�nitely learn [a new skill] given the time. I think I need a lot of time, but I de�nitely have

a foundation now.� Similarly, another student wrote �At the start of [fall semester] Jupyter

notebooks were completely new to me, but by the end of [spring semester] I felt extremely

comfortable using it for my analysis.� The collaborative nature of the method of instruction

was also mentioned as increasing con�dence: �It didn't feel like I was alone in all of it, which

was reassuring, especially since I know that in the real-world, you're with a team of people

working together to get things done.�

Con�dence with particular skills was mixed, and depended on the particular skill. Both

programming and circuitry are new skills for most chemistry majors. Figure 2(c) shows

con�dence with ability to program a circuit interface. One student responded �I don't know

if I can work well with circuits. I could probably do it, but it would take quite a bit of time

to refamiliarize myself with it.� In contrast, student con�dence with using Python to �t data

to a model was signi�cantly higher, as shown in �gure 2(d). Because of the timing of the

survey, every student who answered the question about model �tting was answering it a full

year after they had taken that tutorial, and all were moderately to extremely con�dent to

perform that skill. A typical quote describing this: �This was probably the skill I performed

the most. I did it so much that I simpli�ed it into a function that I could use again and

again with modi�cations to help me perform it quicker.�

Another goal of the Python instruction was to build skills that students could transfer

to other situations. Several students mentioned skill transfer in their free-response answers.

One student wrote �I used all of the instruction I got in those classes for [inorganic lab] to

process all the data I got and make �gures for the lab report.� Another student, speaking of

circuit interfaces, said �With the help from the Jupyter notebooks, I've been able to write a

similar program at home.� Another student compared the chemistry-speci�c programming

instruction to what they learned in a computer science course: �At the end of the year, I

knew so much more about skills necessary for chemistry analysis that a computer science

class would not have primarily focused on.�

10

Conclusion

Computer programming in Python using Jupyter notebooks has been successfully imple-

mented into a two semester upper division course. This method allows students to apply the

programming they are learning to chemistry laboratory tasks. The focus on immediately

relevant skills is designed to increase student con�dence at attempting programming in the

future. Survey results show students have transferred these skills to new contexts.

Acknowledgement

ChemCompute used the Extreme Science and Engineering Discovery Environment (XSEDE),

which is supported by National Science Foundation grant number ACI-1548562. The author

would like to thank Joseph Bennett, Clarissa Sorensen-Unruh, and Sarah Bass for their

editorial support, and the students whose hard work learning to code made this project a

success.

Supporting Information Available

� Student survey questions.docx: Full text of questions in the student survey

Student versions of the Jupyter notebooks described, as well as additional data �les as

needed, can be found at https://github.com/chemdrv/python-for-pchem. Completed note-

books for instructor use can be requested by emailing the author.

References

(1) Weiss, C. J. A Creative Commons Textbook for Teaching Scienti�c Computing to

Chemistry Students with Python and Jupyter Notebooks. Journal of Chemical Ed-

ucation 2021, 98, 489�494.

11

(2) Weiss, C. J. Scienti�c Computing for Chemists: An Undergraduate Course in Simu-

lations, Data Processing, and Visualization. Journal of Chemical Education 2017, 94,

592�597.

(3) Green, M.; Chen, X. Data Functionalization for Gas Chromatography in Python. Jour-

nal of Chemical Education 2020, 97, 1172�1175.

(4) Möglich, A. An Open-Source, Cross-Platform Resource for Nonlinear Least-Squares

Curve Fitting. Journal of Chemical Education 2018, 95, 2273�2278.

(5) Srnec, M. N.; Upadhyay, S.; Madura, J. D. Teaching Reciprocal Space to Undergradu-

ates via Theory and Code Components of an IPython Notebook. Journal of Chemical

Education 2016, 93, 2106�2109.

(6) Srnec, M. N.; Upadhyay, S.; Madura, J. D. A Python Program for Solving Schrödinger's

Equation in Undergraduate Physical Chemistry. Journal of Chemical Education 2017,

94, 813�815.

(7) Weiss, C. J. Introduction to Stochastic Simulations for Chemical and Physical Pro-

cesses: Principles and Applications. Journal of Chemical Education 2017, 94, 1904�

1910.

(8) Jin, H.; Qin, Y.; Pan, S.; Alam, A. U.; Dong, S.; Ghosh, R.; Deen, M. J. Open-

Source Low-Cost Wireless Potentiometric Instrument for pH Determination Experi-

ments. Journal of Chemical Education 2018, 95, 326�330.

(9) Navarre, E. C. Extensible Interface for a Compact Spectrophotometer for Teaching

Molecular Absorption in the Undergraduate Laboratory. Journal of Chemical Education

2020, 97, 1500�1503.

(10) Bougot-Robin, K.; Paget, J.; Atkins, S. C.; Edel, J. B. Optimization and Design of

12

an Absorbance Spectrometer Controlled Using a Raspberry Pi To Improve Analytical

Skills. Journal of Chemical Education 2016, 93, 1232�1240.

(11) Tan, S. W. B.; Naraharisetti, P. K.; Chin, S. K.; Lee, L. Y. Simple Visual-Aided

Automated Titration Using the Python Programming Language. Journal of Chemical

Education 2020, 97, 850�854.

(12) Fisher, A. A. E. Developing the Chemist's Inner Coder: A MATLAB Tutorial on the

Stochastic Simulation of a Pseudo-First-Order Reaction. Journal of Chemical Education

2020, 97, 1476�1480.

(13) Fisher, A. A. An Introduction to Coding with Matlab: Simulation of X-ray Photoelec-

tron Spectroscopy by Employing Slater's Rules. Journal of Chemical Education 2019,

96, 1502�1505.

(14) Vargas, S.; Zamirpour, S.; Menon, S.; Rothman, A.; Häse, F.; Tamayo-Mendoza, T.;

Romero, J.; Sim, S.; Menke, T.; Aspuru-Guzik, A. Team-Based Learning for Scien-

ti�c Computing and Automated Experimentation: Visualization of Colored Reactions.

Journal of Chemical Education 2020, 97, 689�694.

(15) Menke, E. J. Series of Jupyter Notebooks Using Python for an Analytical Chemistry

Course. Journal of Chemical Education 2020, 97, 3899�3903.

(16) Tiobe Index. https://www.tiobe.com/tiobe-index/, Accessed: 2022-03-03.

(17) Harris, C. R. et al. Array programming with NumPy. Nature 2020, 585, 357�362.

(18) Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in Science & Engi-

neering 2007, 9, 90�95.

(19) MolSSI � The Molecular Sciences Software Institute. https://molssi.org/, Accessed:

2021-10-14.

13

(20) Anaconda: The World's Most Popular Data Science Platform. https://www.

anaconda.com/, Accessed: 2021-2-24.

(21) Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kel-

ley, K.; Hamrick, J.; Grout, J.; Corlay, S.; Ivanov, P.; Avila, D.; Abdalla, S.; Willing, C.;

development team, J. Jupyter Notebooks - a publishing format for reproducible com-

putational work�ows. Positioning and Power in Academic Publishing: Players, Agents

and Agendas. Netherlands, 2016; pp 87�90.

(22) Psi4Education: Computational Labs Using Free Software | Posts. https://psicode.

org/posts/psi4education/, Accessed: 2021-10-14.

(23) Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scienti�c Computing in

Python. Nature Methods 2020, 17, 261�272.

(24) Kuntzleman, T. S.; Annis, J.; Anderson, H.; Kenney, J. B.; Doctor, N. Kinetic Modeling

of and E�ect of Candy Additives on the Candy�Cola Soda Geyser: Experiments for

Elementary School Science through Physical Chemistry. Journal of Chemical Education

2020, 97, 283�288.

(25) Kuntzleman, T. S.; Johnson, R. Probing the Mechanism of Bubble Nucleation in and the

E�ect of Atmospheric Pressure on the Candy�Cola Soda Geyser. Journal of Chemical

Education 2020, 97, 980�985.

(26) Parrish, R. M. et al. Psi41.1: An Open-Source Electronic Structure Program Emphasiz-

ing Automation, Advanced Libraries, and Interoperability. Journal of Chemical Theory

and Computation 2017, 13, 3185�3197.

(27) Perri, M. J.; Weber, S. H. Web-Based Job Submission Interface for the GAMESS Com-

putational Chemistry Program. J. Chem. Educ. 2014, 3.

14

(28) fortecubeview. https://github.com/evangelistalab/fortecubeview, Accssed:

2021-10-19.

15

Graphical TOC Entry

Instrument

interfacing

Model

fitting

Computational

chemistry

7 days programming

instruction over 2 semesters
How confident are you

that you could learn a new

programming skill?

N
u
m

b
e
r

o
f
s
tu

d
e
n
ts

Extremely Moderately Not at all

 Very Slightly

16

