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Abstract  28 

There is growing awareness that metabolic heterogeneity of organism provides vital 29 

insight into the disease with molecular mechanism and personalized therapy. The 30 

screening of metabolism-related sub-regions that affect disease development is 31 

essential for the more focused exploration how disease progress aberrant phenotypes, 32 

even carcinogenesis and metastasis. Mass spectrometry imaging (MSI) technique has 33 

distinct advantages to reveal the heterogeneity of organism based on the in situ 34 

molecular profiles. The challenge of heterogeneous analysis has been to perform an 35 

objective identification among biological tissues with different characteristics. By 36 

introducing the divide-and-conquer strategy to architecture design and application, we 37 

establish here a flexible unsupervised deep learning model, called divide-and-conquer 38 

(dc)-DeepMSI, for metabolic heterogeneity analysis from MSI data without prior 39 

knowledge of histology. dc-DeepMSI can be used to identify either spatially contiguous 40 

region-of-interest (ROIs) or spatially sporadic ROIs. We demonstrate that the novel 41 

learning strategy successfully obtain sub-regions that are statistically linked to invasion 42 

status and molecular phenotypes of breast cancer, as well as organizing principles 43 

during developmental phase.  44 

   45 

  46 



Introduction 47 

Mass spectrometry imaging (MSI) could provide a plethora of metabolic information 48 

directly from biological specimens, including spatial distribution, abundance and 49 

composition of thousands of biomolecules1,2. Identification from MSI data the region-50 

of-interest (ROIs), which are statistically linked sub-regions or biologically functional 51 

regions, is usually used to differentiate cell types from heterogeneous tissue and in turn 52 

to contribute to our understanding of the cellular specificity of tissue3,4, and allows 53 

better targeting the lesions and distant metastases that are associated with disease 54 

diagnosis and prognosis5,6. In particular, ROIs analysis has become a critical foundation, 55 

allowing for subsequent detection of known biomarkers and discovery of unknown 56 

biomarkers with a major focus in tumor research7. Nevertheless, the fundamental 57 

question of how to improve accuracy and specificity of ROIs analysis is not crystal 58 

clear. 59 

Segmentation is the common method for ROIs analysis in MSI data, which is 60 

accomplished by clustering data points (MSI image pixels) with similar characteristics 61 

into a cluster (i.e., ROI). An effective segmentation result means that each cluster could 62 

link to a sub-region or a molecular phenotype, and the difference between clusters on 63 

MSI data can be used to interpret the biological heterogeneity on the tissue8.  64 

MSI segmentation by far is a challenging task because of the complexities of MSI 65 

data in high dimensionality, low signal-to-noise ratio, and lack of benchmark datasets9. 66 

The existing methods for MSI segmentation can be roughly divided into supervised and 67 

unsupervised depending on whether prior knowledges of ROI label are used. In 68 



supervised methods, data from histopathology, pathology or other imaging modals like 69 

MRI are often evident to the ROI labels of MSI pixels, then guiding the segmentation 70 

of MSI data10,11. However, MSI data is of much more metabolic information which can 71 

shape some “hidden” sub-regions that might not be distinguished by histological or 72 

other imaging techniques, therefore, segmentation results will be biased if supervised 73 

by histological data or other imaging modals. Nevertheless, some MSI studies are lack 74 

of prior knowledges of ROI labels because of the extremely precious human tissue 75 

specimens, which makes the supervised segmentation unpractical. On the contrary, 76 

unsupervised segmentation is exploratory approach in which no prior information is 77 

needed for pixels clustering, so the unsupervised segmentation is more practical and 78 

gains more extensive attention than supervised one in MSI segmentation. 79 

Dozens of unsupervised methods have been proposed for MSI segmentation in the 80 

past decades12-14. For example, Abdelmola et al. use t-distributed stochastic neighbor 81 

embedding (t-SNE) to reduce the dimensionality of MSI data, then uses k-means to 82 

segment MSI data into a certain number of clusters that are expected to be in 83 

coincidence with the prognostic tumor subpopulations12; The widely used vendor 84 

software13, SCiLS Lab uses k-means to conduct MSI segmentation on some selected 85 

ions, rather than on extracted features; Cardinal package provides a new unsupervised 86 

clustering algorithm, namely spatial shrunken centroids, to produce a smooth MSI 87 

segmentation14; and so on. To our best knowledge, most of the existing unsupervised 88 

methods apply statistical model-based clustering algorithms like k-means to identify 89 

ROIs from MSI data. Since model-based clustering algorithms usually rely on a certain 90 



mathematical hypothesis of ROI15, for example, k-means assume that data points from 91 

a same cluster are high-dimensional spherical distribution around the ROI center16. 92 

Model-based clustering algorithm would fail to identify the ROIs that are unsatisfied 93 

with its underlying hypothesis. However, as we known, MSI dataset are of highly 94 

heterogenous, that is, data points from different sub-regions might distribute in-95 

homogeneously across the MSI dataset. Thus, different sub-regions are of specific 96 

discriminate validities under a certain model-based clustering algorithm, making the 97 

segmentation results be poor-determined. It is urgent to develop a flexible clustering 98 

algorithm which is adaptive to the high heterogeneity of MSI data. 99 

Deep learning is flourishing in recent years and achieved great success in various 100 

fields especially for biomedical image analysis. Deep learning features in data-driven 101 

strategy and the ability of learning automatically the local structure from the data17, 102 

which allows us to develop a flexible and adaptive clustering algorithm for MSI 103 

segmentation. Although deep learning-based methods have been proposed for some 104 

contexts of MSI data analysis like classification18,19, the deep learning-based 105 

unsupervised segmentation for MSI segmentation is rarely reported because of the high-106 

dimensionality of MSI data and the sensitivity of unsupervised deep learning methods 107 

in parameters initialization. 108 

Here, we propose a flexible deep learning-based method called divide-and-conquer 109 

(dc)-DeepMSI for segmentation of MSI data by introducing the dc strategy into model 110 

designation, training and application. The task of MSI segmentation is divided into two 111 

separated sub-tasks, namely dimensionality reduction and feature clustering, then two 112 



independent modules are designed and trained to conquer the two sub-tasks accordingly. 113 

In particular, a convolutional neural network (CNN) based deep learning architecture 114 

is designed to meet with the high heterogeneity of MSI data, and to achieve a flexible 115 

unsupervised MSI segmentation. In addition, to achieve a more accuracy segmentation, 116 

dc-DeepMSI provides with two specific modes, namely SPAT-spec and spat-SPEC, for 117 

typical ROIs including spatially contiguous ROIs and spatially sporadic ROIs. We 118 

illustrate the feasibility of dc-DeepMSI in two typical applications, experimental results 119 

show that dc-DeepMSI successfully identify elven-different organs from a whole-body 120 

mouse fetus MSI image, and effectively explore the metabolic heterogeneity from a 121 

human breast tumor MSI image. Biomarker screening are performed on the ROIs 122 

identified by dc-DeeepMSI from the tumor tissue, which further demonstrate that dc-123 

DeepMSI can be used to detect the ROIs connected with clinical diagnosis, and thereby 124 

help to illuminate the metabolism associated diseases. 125 

Results 126 

1. dc-DeepMSI: A Divide-and-conquer Strategy Based Model to Segment MSI 127 

Data. 128 

By introducing the divide-and-conquer strategy into deep neural network, a deep 129 

learning model named dc-DeepMSI is proposed here for unsupervised segmentation of 130 

high-dimensional MSI data, in which the task is divided into two independent sub-tasks, 131 

dimensionality reduction and feature clustering. Two separate modules are designed 132 

and trained accordingly in dc-DeepMSI to meet with the two sub-tasks, as shown in 133 

Fig. 1a. The dimensionality reduction module (the upper panel of Fig. 1a) is 134 



implemented by an autoencoder with the intention of preserving the information and 135 

suppressing the noise as much as possible20. The features clustering module (the lower 136 

panel of Fig. 1a) is designed as two competitive-cooperative CNN and their temporally 137 

ensemble copies. Two CNNs are structurally identical with independent parameters 138 

initialization, the output of one ensemble CNN feeds into the other CNN network, and 139 

vice versa, with intent to reduce the randomness and to achieve stable feature clustering. 140 

More architectural details of dc-DeepMSI including loss function, activation function 141 

and implementation are presented in the “Methods” section. 142 

The CNN networks here play the roles of feature extraction (FE) and argmax 143 

classification, where FE block is accomplished by components following by a classifier 144 

(Fig. 1b). By setting two hyper-parameters, i.e., the convolutional kernel size 𝑠 and 145 

the weight of total variation (TV) loss 𝜔3, dc-DeepMSI can switch its working modes 146 

between the general mode of SPAT-spec and the specific mode of spat-SPEC to meet 147 

with different ROI scenarios in a variety of specimens. Based on the extracted features 148 

of hyperspectral data, the general mode SPAT-spec clusters data points (MSI pixels) by 149 

both of their spatial closeness and spectral similarity, which is designed for 150 

identification of the most common ROIs in which MSI pixels are spatially contiguous 151 

across the MSI dataset. The specific mode spat-SPEC, by setting 𝑠 = 1 and 𝜔3 = 0, 152 

clusters MSI pixels by their spectral similarities, which is designed for ROIs 153 

identification in which MSI pixels are spatially sporadic across the MSI dataset. 154 

Nevertheless, the two modes are not antagonistic. Spatially sporadic ROIs can also be 155 

successfully identified by dc-DeepMSI of SPAT-spec mode with a small 𝜔3, in which 156 



the additional loss item of spatial closeness plays a role of denoising. 157 

 158 

Fig. 1︱Schematic overview of dc-DeepMSI. a, Architecture of dc-DeepMSI. The 159 

upper half part is dimensionality reduction module which reduces a high-dimensional 160 

MSI data 𝐗 to a low-dimensional feature map 𝐘. The dimension reduction module is 161 

implemented by an autoencoder which consists of two fully connection layers in both 162 

encoder and decoder blocks. The lower half part is feature clustering module which is 163 

consisted of two CNN networks and two ensemble CNN networks. Each CNN network 164 

consists of a feature extraction (FE) block and an argmax classification. The cluster 165 

label from one ensemble CNN network is feed into its counterpart CNN network by 166 

loss function 𝓛𝑠𝑡𝑎  to stabilize the segmentation result. When dc-DeepMSI reaches 167 



convergence, the four CNN networks will also converge to a similar cluster label. b, 168 

Architecture of FE block. A FE block consists of 𝑛 CNN components and a linear 169 

classifier, in which a CNN component consists of a 2D convolutional layer with 𝑠 × 𝑠 170 

kernel size and 𝑝 filters, a batch normalization layer and a ReLU activation function. 171 

The 𝑛 CNN components are used to carry out a deeper feature extraction from the 172 

dimension reduced data 𝐘 to an 𝑝-dimensional feature map. And the linear classifier, 173 

which is consisted of a 2D convolutional layer with 1×1 kernel size and 𝑞 filters and 174 

a batch normalization layer, is used to map and normalize a 𝑝-dimensional feature map 175 

to a 𝑞-dimensional response map 𝐑. 176 

 177 

2. dc-DeepMSI Identifies Sub-organs of Mouse Fetus 178 

  The ROIs, in which data points contiguously distribute across the dataset, is a 179 

common scenario in MSI data of various biological tissues. Among them, MSI images 180 

of whole-body mouse fetus are a typical example with such spatially contiguous ROIs. 181 

Most noteworthy, molecular features and organs identification of mouse fetus are 182 

considered to be the complex and critical preprocessing with applications in areas such 183 

as embryological genetics, pathology and pharmacology21. Due to limitations in terms 184 

of technology, we have not been able to profile the multi-organ structures of mouse 185 

fetus from MSI images. To address this issue, we construct a dc-DeepMSI model on 186 

the MSI data of fetus mouse (embryonic day18) to identify organs and their sub-organs, 187 

in which the general mode SPAT-spec is adopted in view of the spatial continuity of 188 

MSI pixels from a same ROI. A total of 11 organs are identified by dc-DeepMSI 189 

including brain, orbital cavity, genioglossus muscle, submaxillary gland, sternebra, 190 

thymus, deposits of brown fat, heart, adrenal gland, kidney and intestine (Fig. 2a). More 191 

importantly, functional sub-organ structures are recognized from whole brain organ, 192 



such as, dorsal pallium (isocortex) and hippocampal formation (Hpf) region, midbrain, 193 

brainstem and cerebellum (Fig. 2a). 194 

To illustrate the performance of dc-DeepMSI on segmentation of MSI data, three 195 

commonly used methods are carried out on the MSI dataset of fetus mouse for 196 

comparison, including t-SNE+k-means which is implemented by the Python library 197 

Scikit-learn12, a pipeline provided by commercial SCiLS Lab software22, and a pipeline 198 

implemented by Cardinal package 23. Segmentation map of t-SNE+k-means method 199 

shows abundant isolated clusters and obscure boundaries on mouse fetus, especially on 200 

fetal brain, which might due to the lack of spatial denoising procedure in the method 201 

(Fig. 2b). SCiLS Lab software tends to segment some big-size organs, such as brain 202 

and thoracic cavity, while fails to identify the sub-organs (Fig. 2c). Segmentation result 203 

of Cardinal package is a little bit better than that of SCiLS Lab software, but still miss 204 

some sub-organs, such as the brain of mouse fetus (Fig. 2d). The failure of sub-organs 205 

identification might due to the adoption of feature selection instead of feature extraction 206 

in dimension reduction procedure in SCiLS Lab and Cardinal package, which may 207 

result in severe information loss. These results demonstrate that dc-DeepMSI 208 

outperforms the other three methods in more and accuracy organ/sub-organ analysis.  209 

Robustness and stability are two pivotal indicators for deep learning-based 210 

method24. Here we illustrate the robustness of dc-DeepMSI on anti-noise in organ 211 

segmentation of mouse fetus. Poisson noise is generated and added on the MSI data, 212 

then dc-DeepMSI and the other three methods are carried out on the noisy data, 213 

respectively. dc-DeepMSI shows that its robustness against the noise by identifying 214 



accurately most of the organs and sub-organs from the noisy fetus data, for example, 215 

brain and its sub-organs (Fig. 2e). t-SNE+k-means method whereas delivers too many 216 

isolated clusters on the segmentation map (Fig. 2f). More experiments on anti-noise 217 

ability evaluation by using k-means clustering, spectral clustering and Gaussian mixture 218 

model (GMM) clustering are detailed on Supplementary Note 1 and Supplementary 219 

Fig. 1. 220 

Sensitive to parameters initialization is another nuisance in most of deep learning-221 

based methods25. Here we design a comparative experiment to illustrate the model 222 

stability of dc-DeepMSI. Two different deep learning models are constructed. One is 223 

an end-to-end architecture model without explicit dimension reduction module 224 

(Supplementary Fig. 2a). The other is a deep model proposed in Kim’s work26, in 225 

which dimension reduction module is explicitly designed, but feature clustering module 226 

is implemented by a single-CNN structure (Supplementary Fig. 2b), which differs 227 

from dc-DeepMSI model. Twenty times of training with different parameters 228 

initialization are carried out, and the adjusted rand index (ARI) values are calculated 229 

(Fig. 2g). The end-to-end model has a small ARI mean = 0.68  and a large ARI 230 

standard deviation (std = 0.020 ), which implies the high sensitivity of parameters 231 

initialization. Kim’s model improves its stability by dimension reduction module 232 

architecture (ARI mean = 0.74 , std = 0.021). While dc-DeepMSI is of the best 233 

model stability (ARI mean = 0.78,  std = 0.017) because of the divide-and-conquer 234 

strategy and double-CNN structures. More detailed evaluation results can refer to the 235 

Supplementary Note 2 and Supplementary Table. 1. 236 



Above all, dc-DeepMSI is more suitable for segmentation on high-heterogeneity 237 

and high-dimensional data analysis with outstanding robustness and stability. 238 

 239 

Fig. 2 ︱ Identification of sub-organs of mouse fetus. a-d, Color encoded 240 

segmentation maps obtained from dc-DeepMSI, t-SNE+k-means, SCiLS Lab, Cardinal 241 

on original MSI data. Compared with the other three methods, dc-DeepMSI shows a 242 

smoothing clustering result as well as a better resolution of sub-organs. e-f, 243 

Segmentation maps obtained from dc-DeepMSI and t-SNE+k-means on a noisy MSI 244 

data. g, Comparison ARI values of an end-to-end model, Kim’s model and dc-DeepMSI 245 

model. The organs and sub-organs are as follows, (1) dorsal pallium (isocortex) and 246 

hippocampal formation (Hpf) regions, (2) midbrain and brainstem, (3) cerebellum, (4) 247 

orbital cavity, (5) genioglossus muscle, (6) submaxillary gland, (7) sternebra, (8) 248 

thymus, (9) deposits of brown fat, (10) heart, (11) adrenal gland, (12) kidney and (13) 249 

intestine. 250 

 251 



3. dc-DeepMSI Explores Metabolic Heterogeneity of Human Breast Tumor 252 

   Being different from the organ identification depending on spatially contiguous 253 

ROIs, some MSI datasets suggest that cellular distribution is characterized by the 254 

sporadic arrangement, as well as diversity on morphology, such as, human tumors, 255 

biofilm and single cell imaging 6,12,27. To specify the dc-DeepMSI application on 256 

spatially sporadic ROIs detection, taking the human breast sample as an example, the 257 

specific mode of dc-DeepMSI is carried out on intratumor regions to explore tumor 258 

metabolic heterogeneity. Thus, another divide-and-conquer based strategy is leveraged 259 

by dc-DeepMSI on application, in which the MSI dataset of complex tumor sample is 260 

divided into cancerous and para-carcinoma regions using the general mode of dc-261 

DeepMSI, then exploring of tumor metabolic heterogeneity is conquered using the 262 

specific mode of dc-DeepMSI. 263 

3.1 Cancerous and para-carcinoma discriminating via the general mode 264 

   Cancerous cells from solid tumors, e.g., the human breast sample shown in 265 

Supplementary Fig. 3, possess the pathological characteristics of spatial continuity28. 266 

Accordingly, both cancerous ROIs and para-carcinoma ROIs in the MSI data of tumor 267 

sample are spatial contiguous. Specially, margins of sub-regions are supposed to be 268 

natural edges of sub-populations of tumor samples. In view of this situation, we 269 

construct a general mode SPAT-spec of dc-DeepMSI to separate ROIs of carcinoma 270 

from para-carcinoma. As expected, the MSI data is successfully segmented into two 271 

separate sub-regions with clearly boundary, namely cancerous (blue) and para-272 

carcinoma (light gray) regions (Fig. 3a), which shows good consistency with the results 273 



from morphological evaluation (Supplementary Fig. 3). Scatter plot shows that data 274 

points from cancerous region (colored points) and data points from para-carcinoma 275 

region (grey points) can be clearly separated from each other in the cubic embedding 276 

space (Fig. 3m), or say the feature space of dimension reduced MSI data, which implies 277 

that molecular features are significantly different from each other between cancerous 278 

and para-carcinoma sub-region, and demonstrates the accuracy and efficiency of dc-279 

DeepMSI in cancerous sub-region detection. 280 

3.2 Tumor intra-heterogeneity exploring via the specific mode 281 

   Human tumor has significantly intra-heterogeneity in molecular phenotypes, 282 

microenvironment and metabolic regulation29. The morphological analysis of the 283 

invasive ductal carcinoma with neuroendocrine differentiation (NED) indicates that 284 

breast tumor displays significant intra-tumor heterogeneity that is featured in the 285 

sporadic distribution between cancerous regions with different degrees in 286 

differentiation and stromal regions. As show in Supplementary Fig. 3, at least two 287 

typical cancerous regions can be classified by using immunohistochemistry (IHC) 288 

analysis according to the chromogranin A expression, including the cancerous region 289 

with NED (18%) and cancerous region (15%), as well as respective typical invasive 290 

regions. 291 

To explore the molecular phenotypes and microenvironments in tumor sample, we 292 

build a model of dc-DeepMSI with the specific mode spat-SPECT on the MSI data of 293 

human breast tumor sample. dc-DeepMSI cluster data points in the intact tumor sample 294 

into ten-different sub-regions (Fig. 3b), in which most of sub-regions are in agreement 295 



with the results of the morphological information. For example, three sub-regions are 296 

assigned and associated to two major molecular phenotypes (Fig. 3c, 3d, 3e). 297 

Additionally, there are one invasive sub-region (Fig. 3f) and six stromal sub-regions 298 

(Fig. 3g-3l). Herein, invasive ductal carcinoma with NED-related segmentation from 299 

intact tumor sample is given in Fig. 3c, 3d, showing the discrete imaging patterns with 300 

obscure boundary between the nests of neoplastic cells, which is basically consistent 301 

with morphological results. We also achieve the accurate invasive ductal carcinoma-302 

related segmentation (Fig. 3e). The results exhibit the clear boundary between the nests 303 

of neoplastic cells according to the morphological results. Continuously, typical 304 

invasive region (Fig. 3f) and stromal region (Fig. 3j) are segmented from the intact 305 

sample, demonstrating the sporadic infiltration of neoplastic cells in the fibrous stroma, 306 

as well as the randomness of spatial distribution of stromal region, respectively. 307 

Scatter plot shows that data points from a same sub-region are gather together, 308 

while data points from different sub-regions are clearly separated from each other in 309 

the embedding space, which illustrates the distinct metabolic difference among the ten 310 

sub-regions (Fig. 3m). Scatter plots of the ten sub-regions are shown in 311 

Supplementary Fig. 4. Violin plots display the distribution of Euclidean distances 312 

between data points of each sub-region and data points of para-carcinoma in the 313 

embedding space (Fig. 3n). As we can expected, the data points of two molecular 314 

phenotypes-related regions are far away from each other in the cubic embedding space, 315 

while data points of the stromal sub-regions locate in between the molecular phenotypes 316 

and the para-carcinoma, which indicates that lipid profiles of stromal sub-regions are 317 



more similar to para-carcinoma than the invasion and the two major molecular 318 

phenotypes-related regions. The results show the ability of dc-DeepMSI in exploring 319 

metabolic heterogeneities from MSI data of tumor sample. 320 

 321 

Fig. 3︱Results of dc-DeepMSI on human breast cancer data. a, Cancerous and 322 

para-carcinoma regions. b, Intact tumor sample. c, d, Invasive ductal carcinoma with 323 

NED-related sub-regions, called IDC-NED-1, IDC-NED-2, respectively. e, Invasive 324 

ductal carcinoma-related sub-regions, called IDC. f, Typical invasive region. g-l, 325 



Stromal regions 1-6, called str 1-6. m, Scatter plot of data points in embedding space 326 

corresponding to b. n, Violin plot of Euclidean distances between data points of each 327 

sub-regions in cancerous and data points of para-carcinoma in the embedding space.  328 

 329 

4. Screening of the underlying molecular markers 330 

   The underlying molecular markers from ROIs can help us to interpret and validate 331 

dc-DeepMSI segmentation results. As a traditional application scenario, MSI is capable 332 

of providing the spatial distribution of marker by an expression of single ion. 333 

Nevertheless, both multiple molecules and their interaction play an important role in 334 

complex biological regulations, making it difficult to use the expression of single ion 335 

to elaborate the spatial heterogeneity of bio-samples. To solve this problem, a two-stage 336 

screening approach is used here to identify the molecular markers between two given 337 

ROIs, namely target ROI and control ROI, as follows: 338 

The first stage uses three univariate statistics to quantify the difference of abundance 339 

of a ion between target and control ROIs, that is, fold-change (FC), area under the 340 

receiver operating characteristic curve (AUC) and Hedges’g effect size (ES)30. Then 341 

ions are defined as markers of the target ROI with respect to control ROI if they satisfy 342 

with the criteria as follows, 343 

(ES × AUC) ≥ 1.5 and | log2 FC | ≥ 1. 344 

If no marker is found in the first stage, we continue the second stage. 345 

The second stage builds a linear regression model on the abundance matrix 𝐗 and 346 

the ROIs belonging vector 𝐲 vector 31, 347 

𝐲 = 𝜷𝟎 + 𝛃𝐗 + 𝓔 348 



Where 𝛃 = (𝛽1, 𝛽2,⋯ , 𝛽𝑖,⋯ ) is the regression coefficients for ions, and 𝓔  is the 349 

residuals errors. By imposing a least absolute shrinkage and selection operator (LASSO) 350 

penalty on the optimization of 𝛃, only a few ions are of non-zero coefficients, then 351 

these ions are defined as the co-expressive ions of the target ROI, which acts as a marker. 352 

More detailed definitions of FC, Hedges’ g ES and LASSO optimization can refer to 353 

“Methods” section. 354 

   The existing evidences have suggested that abundances and spatial distribution of 355 

lipids are expressed abnormally in human breast tumor tissues, with a close relationship 356 

to aggressiveness and metastatic potentials of tumors. Tumor cells can generate excess 357 

lipids to maintain metabolic supplies and support tumor proliferation and invasion32,33. 358 

Taking the human breast tumor for instance, the two-stage screening approach is carried 359 

out on each sub-region (target ROI) with respect to the other 9 sub-regions (control 360 

ROI) to identify the lipid markers or co-expressive lipid ions of the target ROI. Volcano 361 

plots and ion images are used to visualize the screening results (Fig. 4). And the lists 362 

including single- and multi- co-expressive lipid markers from the ROIs of breast tumor 363 

sample can refer to the Supplementary Table 2. 364 

   According to the results of two-stage screening approach, 4 lipid ions are found to 365 

be the lipid markers of carcinoma with respect to para-carcinoma regions. For example, 366 

the abundant m/z 743.65.73 PE (36:2), which is observed in cancerous regions 367 

corresponding on the haematoxylin and eosin (H&E) stain image, is absent in the para-368 

carcinoma regions (Fig. 4b). We find that 8 lipids up-regulate in the specific sub-369 



regions containing invasive ductal carcinoma with NED, such as m/z 839.98 PC (40:3) 370 

(Fig. 4d) and m/z 795.89 PE (40:4) (Fig. 4f). 371 

   In the tumor sample at the invasive ductal carcinoma, invasive and stromal sub-372 

regions, the results have shown a series of ions jointly contribute to shape their own 373 

molecular profiles. For example, co-expression of 17 ions in invasive ductal carcinoma-374 

associated sub-regions (Fig. 4h), which is equivalent to a complex marker with ES =375 

1.57, AUC = 0.87  and log2(FC) = −0.15 . Similarly, co-expression of 10 ions is 376 

accumulated in invasive sub-regions (Fig. 4j), which is equivalent to a complex marker 377 

with ES = 3.49, AUC = 0.94 and log2(FC) = −0.26. In addition, the one of stromal 378 

sub-regions is delineated by the co-expression of 30 ions (Fig. 4l), which is equivalent 379 

to a complex marker with ES = 1.66, AUC = 0.83 and log2(FC) = −0.13. A more 380 

detailed result is available in Supplementary Fig. 5. 381 

   We have demonstrated the significant heterogeneity of spatial distribution of lipid 382 

markers in the form of single-ion expression and multi-ions co-expression by the 383 

proposed two-stage screening approach, which has an important conductive function to 384 

metabolic reprogramming of tumor progression.  385 



 386 

Fig. 4︱Molecular markers among sub-regions identified by dc-DeepMSI. The 387 

volcano plots show three measures including ES , AUC  and log2(FC)  between the 388 

target sub-region and the control region for all ions. Color encoded ion’s images show 389 

the normalized abundances of selected markers or co-expressive ions. In volcano plots, 390 

the color represents the value of ES ∗ AUC ∗ |log2(FC)|, and the warmer the color, the 391 

larger the value. The point size in volcano plots represents the absolute LASSO 392 

regression coefficient, the larger the size, the bigger the absolute coefficient. The target 393 

and control regions in a,b are cancerous and para-carcinoma regions, respectively. The 394 

target sub-region is c, d, IDC-NED-1. e, f, IDC-NED-2. g, h, IDC. i, j, Invasion. k, l, 395 

Stromal 5; respectively, and the control region is the remain sub-regions excluded the 396 

target sub-region. 397 

 398 

Discussion 399 

The screening and identification of metabolism-related sub-regions plays an 400 



important role for better describing the molecular characteristics throughput the 401 

biological process and for optimizing the diagnosis and treatment of diseases34. 402 

Previous studies reported the potential of MSI for the discovery of metabolic 403 

heterogeneity in tumor tissues35. Actually, MSI dataset is appropriate for the metabolic 404 

heterogeneous analysis because of MSI provides us with: (1) very rich biological 405 

information from molecular level, usually achieve thousands of compounds 406 

simultaneously; (2) spatial resolved and (3) (relative) quantitative molecular 407 

information for in situ analysis of bio-samples. In this paper, for the first time, we 408 

introduce a divide-and-conquer strategy into deep neural network, and present a flexible 409 

dc-DeepMSI model to screen ROIs of spatially sporadic or spatially contiguous from 410 

MSI datasets of complex bio-samples, like human tumor or mouse fetus. dc-DeepMSI 411 

provides the possibility to characterize the molecular phenotypes and biomarkers in 412 

human tumors, and as well identifies sub-organs in mouse fetus based on spectral 413 

similarity and spatial closeness of targeted subpopulations. 414 

The proposed model of dc-DeepMSI outperforms state-of-the-art MSI 415 

segmentation methods, which benefits from the following aspects: (1) The adoption of 416 

divide-and-conquer strategy greatly reduces complexity of a deep learning model, and 417 

as well improve the model stability. (2) The autoencoder based dimensionality 418 

reduction leads to a stable and low-dimensional representation of MSI data while 419 

minimizing information loss. (3) Feature clustering using two structurally identical but 420 

randomly initialized CNNs achieves a robust segmentation, in which the two CNNs 421 

work in an adversarial-and-collaborative way. Moreover, two temporally ensemble 422 



CNNs stabilize effectively the segmentation. Several results have proven dc-DeepMSI 423 

is a straightforward and more robust approach to identify the presence of sub-regions 424 

characterized by similar mass spectrometry profiles, providing results that are not 425 

captured by histological technologies. 426 

We provide in this paper a deep learning-based method to identify underlying 427 

metabolic heterogeneity from high-dimensional MSI data. Nevertheless, the proposed 428 

model is also expected to be broadly applicable in multiple computational tasks with 429 

hyperspectral imaging techniques, such as microscopy imaging, remote sensing 430 

imaging, and other medical imaging. We believe that our work will facilitate the 431 

extensive applications of unsupervised deep learning on high-dimensional data analysis. 432 

  433 



Methods   434 

Experimental datasets.  435 

    The procedures of animal experiments are approved by the Institutional Animal 436 

Care and Use Committee at Shenzhen Institutes of Advanced Technology, Chinese 437 

Academy of Sciences (Shenzhen, China). All of mice are treated humanely with the 438 

consideration of alleviating suffering. Six-week-old C57BL/6 male and female mice 439 

are housed under specific pathogen free condition with controlled temperature, 440 

humidity and 12 hrs dark: light cycle. One male and two females are bred and observed 441 

by a vaginal plug. And then, females are placed in a separate cage after successful 442 

mating. We collect the whole-body mouse fetus at embryonic day 18 for MALDI-MSI 443 

analysis. 444 

    Human tumor samples are collected from patients with breast caner during the 445 

surgical tumor operation at the Second Affiliated Hospital of Medical College, Xi’an 446 

Jiaotong University. The patients are recruited with consent in this study and handled 447 

in accordance with approved procedures from the Institutional Review Board of the 448 

Second Affiliated Hospital of Medical College, Xi’an Jiaotong University and 449 

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. 450 

   The procedures of MALDI-MSI and histological analysis are described in the 451 

previous work of Zhao et al 22,36. In short, the mouse fetus and human breast tumor 452 

samples are sectioned at a 14 μm-thickness by using CryoStar Nx79 cryostat (Thermo 453 

Fisher Scientific, Germany). Then, sections are thaw-mounted onto ITO slides for 454 

MALDI-MSI analysis. Subsequently, the serial sections are mounted on 4% 455 



paraformaldehyde coated glass slides then used for H&E staining. MSI datasets are 456 

collected by using the RapifleX MALDI Tissuetyper (Bruker Daltonics, Germany) with 457 

N-(1-Naphthyl)-ethylenediamine dihydrochloride matrix. H&E images are acquired 458 

using by Nanozoomer 2.0RS digital pathology scanner (Hamamatsu, Japan) with 0.4 × 459 

amplification. 460 

Data Preparation. The raw MSI data is collected using Bruker RapifleX MALDI 461 

Tissuetyper. SCiLS Lab vendor software is used to read and export MSI data to .imzML 462 

files. MALDIquant package is then used to carry out data preprocessing including 463 

spectral alignment, peak detection, peak binning, etc 37. Finally, we obtain a data matrix 464 

𝐗𝑀×N×𝐻, in which 𝑀,𝑁 are pixel numbers of horizontal and vertical coordinates of 465 

MSI image respectively, and 𝐻 is the hyperspectral dimensionality, or say the ions 466 

(m/z) number.  467 

The architecture of dc-DeepMSI. dc-DeepMSI is consisted of two modules, i.e., 468 

dimensionality reduction (DR-module) and feature clustering (FC-module), as shown 469 

in Fig. 1a. DR-module is to learn a nonlinear mapping 𝑓(∙ |𝛝) to project the high-470 

dimensional data 𝐗𝑀×N×𝐻 into a low-dimensional data 𝐘𝑀×𝑁×𝐿 as follows, 471 

𝐘𝑀×𝑁×𝐿 = 𝑓(𝐗𝑀×N×𝐻|𝛝)                                                 (1) 472 

Where 𝛝 is the network parameters in DR-module to be trained. FC-module is to learn 473 

a nonlinear mapping function 𝑔(∙ |𝛉)  from 𝐘𝑀×𝑁×𝐿  to segmentation map/cluster 474 

label 𝐂𝑀×𝑁 as follows, 475 

𝐂𝑀×𝑁 = 𝑔(𝐘𝑀×𝑁×𝐿|𝛉)                                                       (2) 476 

where 𝛉 is the network parameters in FC-module to be trained. 477 



To achieve the nonlinear mapping, FC-module is designed with two parallel feature 478 

extraction (FE) blocks and two temporally ensemble FE blocks, as shown in Fig. 1a. 479 

Firstly, each FE block is implemented by a CNN of 𝑛 components and a linear 480 

classifier (Fig. 1b), in which the CNN component is consisted of a 2D convolutional 481 

layer of 𝑝 channels and 𝑠 × 𝑠 kernel size, a batch normalization layer and a ReLU 482 

activation function, while the linear classifier is consisted of a 2D convolutional layer 483 

of 𝑞  filters and 1 × 1  kernel size. The output of FE block is a response map 484 

𝐑𝑀×𝑁×𝑞 = ( 𝑟𝑚,𝑛,𝑖) , on which a segmentation map, or say cluster label 𝐂𝑀×𝑁 =485 

(𝐶𝑚,𝑛), will be produced by applying argmax classifying, 486 

𝐶𝑚,𝑛 ≔ {𝑖| 𝑟𝑚,𝑛,𝑖 ≥  𝑟𝑚,𝑛,𝑗 , ∀𝑗 ≠ 𝑖 ≤ 𝑞}                                       (3) 487 

Secondly, the temporally ensemble FE block is accomplished by averaging the 488 

parameters of its corresponding FE block at each iteration 𝑡 as follows, 489 

𝛉𝐸(𝑡) = 𝛼 ∙ 𝛉𝐸(𝑡 − 1) + (1 − 𝛼) ∙ 𝛉(𝑡)                                        (4)                    490 

where 𝛉(𝑡)  and 𝛉𝐸(𝑡)  are the parameters of FE block and its corresponding 491 

temporally ensemble FE block at time 𝑡, and 0 ≤ 𝛼 < 1 is the ensemble momentum. 492 

Specifically, the two FE blocks and two ensemble FE blocks map the input 493 

𝐘𝑀×𝑁×𝐿 to 4-different segmentation maps as, 494 

{
 
 

 
 𝐂𝑀×𝑁

1 = 𝑔1(𝐘𝑀×𝑁×𝐿|𝛉
1)

𝐂𝑀×𝑁
2 = 𝑔2(𝐘𝑀×𝑁×𝐿|𝛉

2)

𝐂𝑀×𝑁
1𝐸 = 𝑔1𝐸(𝐘𝑀×𝑁×𝐿|𝛉

1𝐸)

𝐂𝑀×𝑁
2𝐸 = 𝑔2𝐸(𝐘𝑀×𝑁×𝐿|𝛉

2𝐸)

                                      (5) 495 

The four FE blocks work adversarially and collaboratively to achieve a final 496 

segmentation map 𝐂𝑀×𝑁. 497 

Training strategy and implementation. Divide-and-conquer strategy is designed to 498 



train the DR module and FC module, respectively. DR-module is implemented by an 499 

autoencoder framework 20, which is consisted of two blocks, i.e., the encoder block and 500 

the decoder block as follows, 501 

𝐘𝑀×𝑁×𝐿 = 𝑓(𝐗𝑀×𝑁×𝐻|𝛝) 502 

𝐗′𝑀×𝑁×𝐻 = 𝑓
𝑑(𝐘𝑀×𝑁×𝐿|𝛝

𝑑) 503 

where 𝑓 and 𝑓𝑑 are the mapping functions of encoder and decoder, 𝛝 and 𝛝𝑑 are 504 

the parameter of encoder and decoder blocks respectively. 𝐘𝑀×𝑁×𝐿 is the reduced data. 505 

We use a loss function 𝓛𝑟𝑒𝑐 to train the autoencoder module as follows, 506 

𝓛𝑟𝑒𝑐 =
1

𝑀 ×𝑁
∑∑1− (

𝐗𝑚,𝑛 ∙ 𝐗′𝑚,𝑛
‖𝐗𝑀×𝑁‖2 ∙ ‖𝐗′𝑀×𝑁‖2

)

𝑁

𝑛=1

𝑀

𝑚=1

                (6) 507 

where ‖∙‖2 is 𝑙2-norm. 508 

The loss function 𝓛 in FC-module is a weighted combination of three parts as, 509 

𝓛 = 𝜔1 ∙ (𝓛𝑠𝑖𝑚(𝐑
1, 𝐂1) + 𝓛𝑠𝑖𝑚(𝐑

2, 𝐂2)) 510 

          + 𝜔2 ∙ (𝓛𝑠𝑡𝑎(𝐑
1, 𝐂2𝐸) + 𝓛𝑠𝑡𝑎(𝐑

2, 𝐂1𝐸))                                        (7) 511 

            + 𝜔3 ∙ (𝓛𝑇𝑉(𝐑
1)+𝓛𝑇𝑉(𝐑

2)) 512 

where 𝜔1, 𝜔2, 𝜔3  are combinational weights, 𝓛𝑠𝑖𝑚 , 𝓛𝑠𝑡𝑎 , and 𝓛𝑇𝑉  are three loss 513 

functions to optimize the network parameters. 514 

Firstly, the similarity loss of 𝓛𝑠𝑖𝑚  is to make pixels with similar features be 515 

assigned to same cluster, which is designed based on cross entropy between the 516 

response map 𝐑 and segmentation map 𝐂 as follows, 517 

𝓛𝑠𝑖𝑚(𝐑, 𝐂) =
1

𝑀 × 𝑁
∑ ∑∑−𝛿(𝑖 − 𝐶𝑚,𝑛)∙ ln  𝑟𝑚,𝑛,𝑖

𝑞

𝑖=1

𝑁

𝑛=1

𝑀

𝑚=1

              (8) 518 

where 519 



𝛿(𝑡) = {
1, if 𝑡 = 0
0, Otherwise

 520 

Secondly, the stability loss of 𝓛𝑠𝑡𝑎 is to stabilize the segmentation result, which 521 

is calculated using to the response map of one FE model (𝐑) and the segmentation map 522 

of the temporally average of another FE block (𝐂~𝑬) as follows: 523 

𝓛𝑠𝑡𝑎(𝑹, 𝐂
~𝐸) =

1

𝑀 × 𝑁
∑ ∑max(0, 𝑟𝑚,𝑛

neg
− 𝑟𝑚,𝑛

pos
+ 𝛼)

𝑁

𝑛=1

𝑀

𝑚=1

                     (9) 524 

where 𝛼 is a margin parameter, and 525 

𝑟𝑚,𝑛
neg

 ≔ {𝑟𝑖,𝑗 |𝑚𝑖𝑛 (‖𝑟𝑚,𝑛 − 𝑟𝑖,𝑗‖2
2
) , ∀ 𝐶𝑖,𝑗

~𝐸 ≠ 𝐶𝑚,𝑛
~𝐸  & 𝑚, 𝑛 ≠ 𝑖, 𝑗} 526 

𝑟𝑚,𝑛
pos

 ≔ {𝑟𝑖,𝑗 |𝑚𝑎𝑥 (‖𝑟𝑚,𝑛 − 𝑟𝑖,𝑗‖2
2
) , ∀ 𝐶𝑖,𝑗

~𝐸 = 𝐶𝑚,𝑛
~𝐸 & 𝑚, 𝑛 ≠ 𝑖, 𝑗} 527 

Thirdly, the total variation (TV) loss of 𝓛𝑇𝑉 is to make pixels of spatially close 528 

be in a same cluster, which is used to decrease the differences between neighboring 529 

pixels, 530 

𝓛𝑇𝑉(𝐑) =
1

𝑀 ×𝑁
∑ ∑‖𝑟𝑚+1,𝑛 − 𝑟𝑚,𝑛‖1 + ‖𝑟𝑚,𝑛+1 − 𝑟𝑚,𝑛‖1

𝑁−1

𝑛=1

𝑀−1

𝑚=1

             (10) 531 

where ‖∙‖1 is 𝑙1-norm.  532 

Stochastic gradient descent optimizer is adopted to train both DR-module and FC-533 

module, where the learning rate and the momentum are set to be 0.01 and 0.9 534 

respectively. Network parameters are initialized to be normal distribution 𝑁(0,0.02). 535 

The proposed model is implemented in Python with PyTorch library and trained the 536 

models on a workstation equipped with a GPU Nvidia GTX 2080Ti graphics card. 537 

Lipid ions screening method. Three commonly used metrics including Hedges’ g 538 

effect size (ES), Fold-change (FC), area under the curve (AUC) are used to screen lipid 539 

markers for each sub-region in breast tumor sample, 540 



Hedges’ g is a measure of effect size (ES) that tells us how much one ROI differs 541 

from another, which can be calculated as, 542 

Hedges′ g =
|𝜇1 − 𝜇2|

σ𝑝𝑜𝑜𝑙𝑒𝑑
∗                                                     (11) 543 

where 𝜇1 , 𝜇2  are the mean abundances of the target ROI and the control ROI 544 

respectively, and σ𝑝𝑜𝑜𝑙𝑒𝑑
∗  is the pooled and weighted standard deviation, 545 

σ𝑝𝑜𝑜𝑙𝑒𝑑
∗ = √

(𝑛1 − 1)σ1
2 + (𝑛2 − 1)σ2

2

𝑛1 + 𝑛2 − 1
                                        (12) 546 

where 𝜎1 and 𝜎2 are the standard deviations of the target ROI and the control ROI 547 

respectively. The larger the effect size, the greater the difference between two ROIs. 548 

Fold-change (FC) is used to evaluate the abundance difference between two given 549 

ROIs, which is calculated as follows: 550 

FC =
 𝜇1
 𝜇2
                                                            (13) 551 

where 𝜇1 , 𝜇2  are the mean abundances of the target ROI and the control ROI 552 

respectively. 553 

The area under the curve (AUC) is a measure of the ability of a classifier to 554 

distinguish between classes and is used as a summary of the receiver operating 555 

characteristic (ROC) curve. The higher the AUC, the better the performance of the 556 

model at distinguishing between the positive and negative classes. Here the positive 557 

and negative classes are the target and control ROIs respectively, and logistic regression 558 

is adopted to be the classifier model. 559 

Furthermore, least absolute shrinkage and selection operator (LASSO) regression 560 

is used to identify co-expressive lipid ions for the target ROI with respect to the control 561 



ROI31. 562 

Let 𝐗𝑁×𝑃 be the data matrix of two given ROIs with 𝑁 data points (pixels) and 563 

𝑃 lipid ions in each pixel, 𝐲 be the ROI belonging vector of the N pixels. We can build 564 

a linear regression model on (𝐗, 𝐲) as follows, 565 

𝐲 = 𝜷𝟎 + 𝛃𝐗 + 𝓔                                                            (14) 566 

where 𝛃 = (𝛽1, 𝛽2, ⋯ , 𝛽𝑃) is the regression coefficients, and 𝓔 is the residuals errors. 567 

Impose LASSO penalty on the optimization of 𝛃, we have31 568 

�̂�𝑙𝑎𝑠𝑠𝑜 = argmin
𝛃

{
1

2
∑(𝑦𝑖 − 𝛽0 −∑𝑥𝑖𝑗𝛽𝑗

𝑃

𝑗=1

)2 + 𝜆∑|𝛽𝑗|

𝑃

𝑗=1

𝑁

𝑖=1

}               (15) 569 

Then most of the regression coefficients will be zero. 570 

The lipid ions of non-zero regression coefficients are defined as the co-expressive 571 

lipid ions of the target ROI, which acts as a lipid marker. 572 

 573 

Data availability.  574 

All of the datasets analyzed in this paper are public and can be referenced at 575 

https://github.com/gankLei-X/dc-DeepMSI. 576 

Code availability 577 

Source code is available at https://github.com/gankLei-X/dc-DeepMSI. 578 
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