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Abstract 

 Dynamic catalysis proffers a new strategy for leveraging linear free energy (LFE) relationships in 

catalysis to increase reaction rate, conversion, and selectivity by high-frequency, forced kinetic oscillations. 

This work explicates two dynamic catalysis mechanisms—“resonance” and quasi-static, characterized by 

finite frequency bands and high frequency limits, respectively—and details the necessary LFE parameters 

necessary for each dynamic catalysis phenomena to arise. Detailed analytical and numerical analyses reveal 

that under quasi-static mechanisms, Sabatier limits on reaction rates and thermodynamic limits on 

conversion can be completely subverted with sufficiently large kinetic oscillation amplitudes. In resonance 

mechanisms, reaction rates and conversion are still limited by Sabatier volcanos and thermodynamic 

equilibrium constants, respectively; however, these imposed limitations are those for a subset of elementary 

steps, rather than for the entire overall reaction. An investigation of dynamic catalysis for reaction schemes 

with multiple products reveals that quasi-static dynamic catalysis can drive selectivities of any intermediate 

or product to 100%, provided the appropriate LFE relationships. 

1. Introduction 

The advent of computational catalysis and electronic structure calculation methods has facilitated 

the discovery of quantitative reactivity trends amongst transition-metal catalysts which affirm decades-old 

postulated linear scaling relationships between energies of surface-bound intermediates and kinetically-

relevant transition states [1–3]. These linear free energy (LFE) relationships simplify the microkinetic 

description of catalytic reaction networks down to a small number of pertinent LFE scaling parameters and, 

in doing so, quantitatively validate the Sabatier principle: that turnover rate is maximized at moderate 

substrate binding energies which balance kinetic driving forces for (i) reactant adsorption/reaction and (ii) 

product desorption [4,5]. This simple, intuitive principle has proven virtuous in rationalizing observed 

reactivity trends across a diverse range of catalytic chemistries and transition metal surfaces [4,6–10]. The 

ubiquity of the Sabatier prescription, affirmed experimentally and quantitatively reconciled by ab initio 

quantum mechanical calculation methods, reinforces the need to develop new strategies to “break” linear 
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scaling and overcome conventional limits to catalytic turnover rate [11–14]. Recently, dynamic catalysis—

the forced oscillation of elementary step rate constants—has emerged as a promising method to both (i) 

accelerate heterogeneously-catalyzed reactions beyond the Sabatier limit and (ii) drive chemical conversion 

to supra-equilibrium values by exploit of thermodynamic work introduced by, for example, a fluctuating 

electric potential [14,15]. Theoretical [16–21] and experimental [22–26] studies have substantiated the 

competence of dynamic strategies to enhance catalytic turnover rates by orders of magnitude compared to 

static systems, but the fundamental precepts and catalyst-design considerations which dictate the efficacy 

of dynamic strategies remains elusive. To this end, we build upon the mathematical framework we recently 

developed to derive quantitative guiding principles for dynamic catalysis which, analogous to the Sabatier 

principle for static systems, prescribe the kinetic consequences of LFE scaling for dynamic catalytic 

performance and behavior [16].  

In brief, we facilitate analytical derivation and numerical discovery of rates and coverages at the 

“dynamic steady state”, or limit cycle, by judicious application of periodic and continuity boundary 

conditions to the governing set of differential equations describing the frequency response of each surface 

intermediate. This solution technique (i) disencumbers numerical approaches of the requirement to calculate 

computationally-onerous transients preceding the limit cycle [18] and (ii) enables the derivation of closed-

form relationships between LFE scaling parameters and enhancement to rate, selectivity, and/or conversion. 

From inspection of these simple, interpretable analytical relations, we identify two limiting cases, the quasi-

static and resonance conditions, which manifest as distinct mechanisms of dynamic catalysis with disparate 

characteristic frequency response, kinetic prerequisites, and opportunities for optimization [16]. 

The quasi-static mechanism of dynamic catalysis is defined by rate enhancement at the high 

frequency limit, where forced kinetic oscillations occur much more rapidly than elementary step 

interconversion of surface species. Consequently, surface coverages are effectively time-invariant, or quasi-

static. The time-invariance of adspecies concentrations during quasi-static dynamic catalysis confers 

significant simplifications to analytical description which we exploit to derive, in closed-form, the exact 
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consequences of LFE scaling relations on rate, selectivity, and the capacity to achieve supra-equilibrium 

conversion. 

The resonance mechanism of dynamic catalysis, observed in precedent and contemporary 

theoretical/computational studies [16–18,20,21,27], refers to dynamic systems that exhibit a finite band of 

apparent “resonant” frequencies within which turnover rate is maximized. We re-interpret catalytic 

resonance phenomena in the context of the described mathematical framework to (i) develop an 

understanding of the precise mechanism by which kinetic systems exhibit resonance behavior,  (ii) 

demonstrate that resonance follows directly from and is a manifestation of LFE relations underpinning the 

Sabatier principle, (iii) derive the kinetic and thermodynamic requirements for resonance in terms of linear 

scaling parameters, and (iv) establish a method for deriving rate expressions for resonance catalysis which, 

in some cases, are identical to Langmuir-Hinshelwood descriptions of conventional static catalytic 

reactions.  

We synthesize learnings from description of the quasi-static and resonance conditions to identify, 

for each set of LFE parameters, the dynamic strategy (quasi-static or resonance) which most effectively 

accelerates a generic three-step catalytic reaction (A + * ⇌ A* ⇌ B* ⇌ B + *). In doing so, we generate a 

map of systematically-classified dynamic catalysts, which, despite all being described by the Sabatier 

principle at static conditions, exhibit distinct dynamic behavior. We contend that this classification of 

dynamic catalysts provides a straight-forward guide for future efforts which seek to understand and/or 

engineer catalytic systems and conditions most amenable to dynamic forcing strategies.  

2. Methods 

This work used Matlab version R2020a to run numerical calculations to study dynamic catalysis rate 

and conversion. This section details the methods employed in these codes. Example codes are available in 

Section S1 of the Supporting Information and are downloadable from https://github.com/foley352/DC-2. 
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2.1. Numerical methods for calculating dynamic catalysis rate at a specified 

condition 

Numerical methods employed herein utilize insights from our previous work [16], which explicates 

fast (< 1 ms per condition) linear algebra-based methods for calculating rates and coverages at the “dynamic 

steady state”, or limit cycle. Briefly, the governing ordinary differential equations (ODEs) describing any 

linear dynamic catalytic system are recast in terms of a single first-order matrix differential equation (eq. 

(1)):  

d𝜽

d𝑡
= 𝑨(𝑡)𝜽 + 𝒃(𝑡) (1) 

where 𝑨 is a time-dependent coefficient matrix of rate constants and chemical activities of fluid-phase 

species, 𝜽 is a vector of the fractional coverages of the linearly-independent surface species (one species is 

eliminated by virtue of ∑𝜃𝑗∗ = 1), and 𝒃 is a time-dependent vector of rate constants and fluid-phase species 

activities. The time-dependence of 𝑨 and 𝒃 proscribes a general solution—a complication we resolve by 

considering discretizing the forced oscillation as a concatenation of infinitesimal square waves (see Scheme 

1) where 𝑨 and 𝒃 are time-invariant except at the step discontinuities (i.e., transition between square waves). 

The eigenvalues of the discretized matrices 𝑨 quantify the characteristic timescales of chemical 

transformations and thus determine frequencies of forced oscillation required to enhance reaction rate and 

conversion. Equation (1), once discretized, is solved over the period, or wavelength (𝜆), of the limit cycle 

by application of continuity conditions at each discretization step and periodic boundary conditions at 𝑡 and 

𝑡 + 𝜆. With fractional coverages of all species in hand, the time-averaged rate is calculated by eq. (2): 

〈𝑟〉 =
∫ 𝑟 d𝑡′
𝑡+𝜆

𝑡

∫  d𝑡′
𝑡+𝜆

𝑡

 (2) 
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Scheme 1. An example of a square-wave oscillation between two kinetic states. 

 

2.2. Numerical method for calculating the maximum dynamic catalysis rate 

The dynamic catalysis reaction rate is a function of the oscillation wave endpoints, frequency, and 

temporal asymmetry for a two-stepped square-wave oscillation. The optimal operating conditions to 

achieve the global maximum dynamic catalysis rate is found by sampling oscillation endpoints on the range 

of −10 < Δ𝐺2
o‡[𝑗]

/𝑅𝑇 < 10 and frequencies at three conditions—𝑓 → 0, 𝑓 → ∞, and 𝑓 = √𝜆1
[2]
𝜆2
[2]

, 

which is the center of the resonance regime as discussed in Section 3.2.3. The built-in Matlab function 

fminunc is then used to find the local maximum rate by varying the oscillation endpoints, frequency, and 

𝛿𝑡[2]/𝛿𝑡[1]. This method does not always find the global maximum, giving rise to a few artifacts in Figure 

2 and Figure 4. 

3. Results and Discussion 

3.1. Dynamic enhancement of conversion and rate for a two-step reaction 

sequence 

With the aim of developing a general understanding of catalyst properties necessary for achieving 

supra-Sabatier peak reaction rates and supra-equilibrium conversions, we first derive analytical solutions 

that describe the simplest dynamic catalysis system with reaction kinetics described by linear free energy 



7 
 

relationships (Scheme 2). In this two-step reversible reaction scheme, the activated sorption of A to form 

B* precedes the activated desorption of B* to form the final product B. The complexity of the analytical 

solution for the time-averaged reaction rate for this system renders it challenging to extract key relations 

between the catalyst LFE properties, the reaction conditions, and the dynamic catalysis rate. We therefore 

consider simplifying limiting cases which permit derivation of closed-form solutions and, in doing so, 

facilitate the development of generalizable physical insights regarding the mechanism(s) of rate and 

conversion enhancement in dynamic catalysis. 

Scheme 2. Reversible two-step reaction sequence for the conversion of A to B. 

A + ∗ ⇄ B∗ 
B∗ ⇄ B+ ∗ 

Overall: A ⇔ B 

  

3.1.1. Derivation of the dynamic equilibrium constant 

Periodic forced oscillation of rate constants during dynamic catalysis provide an input of 

thermodynamic work which, akin to biological molecular pumps [26,28–30], can drive chemical reactions 

beyond the thermodynamic equilibrium limit which prescribes an equilibrium ratio of product and reactant 

activities, (e.g., 𝑎B
eq
/𝑎A
eq

), defined by the equilibrium constant, 𝐾 = exp (−Δ𝐺o/𝑅𝑇), where Δ𝐺o is the 

standard-state free energy difference between the product and reactants. In the absence of forced kinetic 

oscillations, the net rate of conversion of reactants to products is zero at thermodynamic equilibrium and 

the chemical potentials of the reactants and products are equal. We define an analogous “dynamic 

equilibrium” condition for which the net rate of the overall reaction is zero and the corresponding “dynamic 

equilibrium” constant, 𝐾dyn, is the quotient of reactant and product chemical activities. Unlike 𝐾, the 

dynamic equilibrium constant 𝐾dyn is not definable in terms of Δ𝐺o, but, rather, is determined by reaction 

kinetics, as is demonstrated next. 
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At dynamic equilibrium for a single-path reaction sequence (e.g. Scheme 2), the time-averaged net 

rate for each reaction step is zero, such that the difference between the forward and reverse time-averaged 

rates of elementary steps is zero (eqs. (3) and (4)): 

〈𝑟1〉 − 〈𝑟−1〉 =
∫ 𝑘1(𝑡

′)𝑎A
eq
𝜃∗(𝑡

′) d𝑡′
𝑡+𝜆

𝑡

∫  d𝑡′
𝑡+𝜆

𝑡

−
∫ 𝑘−1(𝑡

′)𝜃B∗(𝑡
′) d𝑡′

𝑡+𝜆

𝑡

∫  d𝑡′
𝑡+𝜆

𝑡

= 0 (3) 

〈𝑟2〉 − 〈𝑟−2〉 =
∫ 𝑘2(𝑡

′)𝜃B∗(𝑡
′) d𝑡′

𝑡+𝜆

𝑡

∫  d𝑡′
𝑡+𝜆

𝑡

−
∫ 𝑘−2(𝑡

′)𝑎B
eq
𝜃∗(𝑡

′) d𝑡′
𝑡+𝜆

𝑡

∫  d𝑡′
𝑡+𝜆

𝑡

= 0 (4) 

where 𝜆 is the wavelength of the oscillation. To facilitate the derivation of simple, interpretable analytical 

solutions, we consider the limiting case wherein the kinetic oscillation timescale (i.e. 𝜆) is much smaller 

than the characteristic timescales for the fractional coverages to change and, thusly, the fractional coverages 

are approximated as time-invariant, i.e., 𝜃B∗(𝑡) ≈ 𝜃B∗, such that eqs. (3) and (4) reduce to (eqs. (5) and (6)): 

〈𝑟1〉 − 〈𝑟−1〉 = 𝑎A
eq
𝜃∗
eq ∫ 𝑘1(𝑡

′) d𝑡′
𝑡+𝜆

𝑡

∫  d𝑡′
𝑡+𝜆

𝑡

− 𝜃B∗
eq ∫ 𝑘−1(𝑡

′) d𝑡′
𝑡+𝜆

𝑡

∫  d𝑡′
𝑡+𝜆

𝑡

= 〈𝑘1〉𝑎A
eq
𝜃∗
eq
− 〈𝑘−1〉𝜃B∗

eq
= 0 (5) 

〈𝑟2〉 − 〈𝑟−2〉 = 𝜃B∗
eq ∫ 𝑘2(𝑡

′) d𝑡′
𝑡+𝜆

𝑡

∫  d𝑡′
𝑡+𝜆

𝑡

− 𝑎B
eq
𝜃∗
eq ∫ 𝑘−2(𝑡

′) d𝑡′
𝑡+𝜆

𝑡

∫  d𝑡′
𝑡+𝜆

𝑡

= 〈𝑘2〉𝜃B∗
eq
− 〈𝑘−2〉𝑎B

eq
𝜃∗
eq
= 0 (6) 

where brackets, “〈    〉”, indicate time-averaged quantities. We now define the dynamic equilibrium 

constant, analogous to the thermodynamic equilibrium constant, by rearrangement of eqs. (5) and (6) to 

yield the ratio of 𝑎B/𝑎A as (eq. (7)): 

𝐾dyn =
𝑎B
eq

𝑎A
eq =

〈𝑘1〉〈𝑘2〉

〈𝑘−1〉〈𝑘−2〉
 (7) 
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In general, for single-path reactions at quasi-static surface conditions, the dynamic equilibrium 

constant is a product of 〈𝑘𝑗〉/〈𝑘−𝑗〉 raised to the power of the stoichiometric number of that reaction step, 

which is unity for both reactions in Scheme 2. Under a forced square-wave oscillation, each 〈𝑘𝑗〉 is the 

average of 𝑘𝑗
[𝑛]

 weighted by the duration, 𝛿𝑡[𝑛], spent in each kinetic state 𝑛 (see Scheme 1) (eq. (8)): 

〈𝑘𝑗〉 =
∫ 𝑘𝑗(𝑡

′) d𝑡′
𝛿𝑡[1]+𝛿𝑡[2]

0

∫  d𝑡
𝛿𝑡[1]+𝛿𝑡[2]

0

=
∫ 𝑘𝑗

[1]
 d𝑡′

𝛿𝑡[1]

0
+ ∫ 𝑘𝑗

[2]
 d𝑡′

𝛿𝑡[1]+𝛿𝑡[2]

𝛿𝑡[1]

∫  d𝑡
𝛿𝑡[1]+𝛿𝑡[2]

0

=
𝛿𝑡[1]𝑘𝑗

[1]
+ 𝛿𝑡[2]𝑘𝑗

[2]

𝛿𝑡[1] + 𝛿𝑡[2]

=
𝑘𝑗
[1]

1 + 𝛿𝑡[2]/𝛿𝑡[1]
(1 +

𝛿𝑡[2]

𝛿𝑡[1]

𝑘𝑗
[2]

𝑘𝑗
[1]
) 

(8) 

Substitution of eq. (8) into eq. (7) gives (eq. (9)): 

𝐾dyn =
𝑘1
[1]𝑘2

[1]

𝑘−1
[1]
𝑘−2
[1]

(1 +
𝛿𝑡[2]

𝛿𝑡[1]
𝑘1
[2]

𝑘1
[1])(1 +

𝛿𝑡[2]

𝛿𝑡[1]
𝑘2
[2]

𝑘2
[1])

(1 +
𝛿𝑡[2]

𝛿𝑡[1]
𝑘−1
[2]

𝑘−1
[1])(1 +

𝛿𝑡[2]

𝛿𝑡[1]
𝑘2
[2]

𝑘−2
[1])

 (9) 

for which the leading term, 𝑘1
[1]𝑘2

[1]/𝑘−1
[1]𝑘−2

[1]
, is equal to the thermodynamic equilibrium constant, 𝐾. Each 

rate constant ratio in eq. (9), 𝑘𝑗
[2]/𝑘𝑗

[1]
, can be re-expressed in terms of the variation, from state [1] to state 

[2],  of the free energy of activation for the corresponding step (eq. (10)): 

𝑘𝑗
[2]

𝑘𝑗
[1]
= exp(−

ΔΔ𝐺𝑗
o‡

𝑅𝑇
) (10) 

where ΔΔ𝐺𝑗
o‡ ≡ Δ𝐺𝑗

o‡[2] − Δ𝐺𝑗
o‡[1]

. In reaction sequences described by linear free energy (LFE) 

relationships, the oscillation amplitudes for the free energies of activation of each elementary step, ΔΔ𝐺𝑗
o‡

, 
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are not independent of each other, but are constrained by a scaling parameter. Here, we define free-energy 

scaling parameters in terms of ΔΔ𝐺2
o‡

, such that (eq. (11)): 

𝜔𝑗 ≡
ΔΔ𝐺𝑗

o‡

ΔΔ𝐺2
o‡

 
(11) 

where 𝜔2 = 1 by definition. In this work, 𝜔𝑗 are constants, but their definition in eq. (11) only concerns 

the relative change in free energies of activation with respect to each other; 𝜔𝑗 can, in general, vary as a 

function of the oscillation endpoints if scaling relationships are non-linear. Description of Scheme 2 in 

terms of LFE relationships is completed by recognizing that the free energy change of the overall reaction 

is constant, and thus the set of 𝜔𝑗 is not linearly independent (eq. (12)):  

Δ𝐺ovr
o =∑Δ𝐺𝑗

o‡

fwd

−∑Δ𝐺𝑗
o‡

rvs

 

ΔΔ𝐺ovr
o

ΔΔ𝐺2
o‡
= 0 =∑𝜔𝑗

fwd

−∑𝜔𝑗
rvs

 

(12) 

where the difference between 𝜔𝑗 in the forward and reverse directions on a reaction path must sum to zero. 

The constraints provided by eq. (12) enable description of the reaction in Scheme 2 in exclusive terms of 

𝜔1 and 𝜔−1 by recognizing 𝜔2 = 1 and 𝜔−2 = 𝜔1 +𝜔2 −𝜔−1 = 1 +𝜔1 −𝜔−1. After substitution of 

these expressions for 𝜔−2 and 𝜔2 with eqs. (10) and (11) into eq. (9), 𝐾dyn is obtained in terms of ΔΔ𝐺2
𝑜‡

, 

the asymmetry of the square-wave oscillation (𝛿𝑡[2]/𝛿𝑡[1]), and scaling parameters (𝜔1 and 𝜔−1) (eq. (13)): 
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𝐾dyn

𝐾
=

(1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp (−

ΔΔ𝐺1
o‡

𝑅𝑇 ))(1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp (−

ΔΔ𝐺2
𝑜‡

𝑅𝑇 ))

(1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp(−

ΔΔ𝐺−1
𝑜‡

𝑅𝑇 ))(1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp(−

ΔΔ𝐺−2
𝑜‡

𝑅𝑇 ))

=

(1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp(−𝜔1

ΔΔ𝐺2
𝑜‡

𝑅𝑇 ))(1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp(−

ΔΔ𝐺2
𝑜‡

𝑅𝑇 ))

(1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp(−𝜔−1

ΔΔ𝐺2
𝑜‡

𝑅𝑇 ))(1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp(−(1 + 𝜔1 −𝜔−1)

ΔΔ𝐺2
𝑜‡

𝑅𝑇 ))

 

(13) 

In eq. (13), 𝛿𝑡[2]/𝛿𝑡[1] and ΔΔ𝐺2
𝑜‡

 are controllable quantities of the kinetic oscillation, while 𝜔𝑗 are 

properties of the catalyst. We emphasize that, at quasi-static conditions, 𝐾dyn (eq. (13)) is not a function of 

Δ𝐺2
o‡[𝑖]

 in either state; 𝐾dyn is entirely determined by the amplitude of the oscillation, scaling parameters, 

and asymmetry of oscillation. 

 By inspection of eq. (13), we identify critical catalyst properties, in terms of 𝜔𝑗, that determine the 

behavior of 𝐾dyn and the reaction rate at reversible conditions (vide infra). The first condition, 𝜔1 = 𝜔−1,  

for which 𝐾dyn = 𝐾, is an “iso-equilibrium” line. At these conditions, 𝑘1
[2]/𝑘1

[1] = 𝑘−1
[2]/𝑘−1

[1]
 and 

𝑘2
[2]
/𝑘2
[1]
= 𝑘−2

[2]
/𝑘−2
[1]

, thus cancelling out in eq. (9). A second iso-equilibrium line is identified as 𝜔−1 =

1, where 𝑘1
[2]
/𝑘1
[1]
= 𝑘−2

[2]
/𝑘−2
[1]

 and 𝑘−1
[2]
/𝑘−1
[1]
= 𝑘2

[2]
/𝑘2
[1]

, and thus again cancel out. Three more linear 

relationships of 𝜔1 and 𝜔−1 determine whether correlations between each Δ𝐺𝑗
o‡

 with Δ𝐺2
o‡

 are negative or 

positive: 𝜔1 = 0, 𝜔−1 = 0, and 𝜔2 = 1 +𝜔1 −𝜔−1 = 0. The signs of 𝜔1, 𝜔−1 and 𝜔−2 define the 

behavior of 𝐾dyn because the terms 1 + exp (𝑎𝑥) in eq. (13) approach unity (𝑎 < 0) or infinity (𝑎 > 0) at 

large 𝑥; thus, the signs of the coefficients that multiply ΔΔ𝐺2
𝑜‡

 in eq. (13) determine whether 𝐾dyn 

approaches zero, infinity, or 𝐾 as ΔΔ𝐺2
o‡ → ∞.  We illustrate the kinetic insight and clarity proffered by 

these conditions by inspection of 𝐾dyn as a function of 𝜔1 and 𝜔−1 at oscillation amplitudes ΔΔ𝐺2
o‡/𝑅𝑇 of 

0.01 and 100 (Figure 1). We note that eq. (13) is symmetric about ΔΔ𝐺2
o‡ = 0, and thus we take ΔΔ𝐺2

o‡ >
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0 as convention. The solid lines in Figure 1 defines where 𝜔1, 𝜔−1 or 𝜔−2 change signs and each dashed 

line is an iso-equilibrium condition where the effects of oscillating each Δ𝐺𝑗
o‡

 cancel (𝜔1 = 𝜔−1 and 𝜔−1 =

1). At low oscillation amplitudes (Figure 1a), 𝐾dyn > 𝐾 if the catalyst properties 𝜔𝑗 fall between the iso-

equilibrium lines, and 𝐾dyn < 𝐾 otherwise. As the oscillation amplitude increases (Figure 1b), the 

magnitude of the 𝐾dyn/𝐾 ratio increases, but now 𝐾dyn ≫ 𝐾 only if 𝜔𝑗 fall between the iso-equilibrium 

lines and 𝜔1 < 0. For 𝜔𝑗 that fall in the top right green region of Figure 1b, 𝐾dyn~𝐾 at large oscillation 

amplitudes but is slightly below thermodynamic equilibrium (𝐾dyn ≲ 𝐾) outside of the iso-equilibrium 

lines and slightly above (𝐾dyn ≳ 𝐾) for 𝜔𝑗 between the iso-equilibrium lines. 

 Figure 1a and Figure 1b show the dynamic equilibrium constants for symmetric square waveforms; 

however, as we previously detailed [16], asymmetry in oscillation waveform is a potent lever for enhancing 

the reaction rate and driving dynamic equilibrium beyond the thermodynamic limit. The optimal temporal 

asymmetry in the oscillation square wave is found by taking the derivative of eq. (13) with respect to 

𝛿𝑡[2]/𝛿𝑡[1] and equating d𝐾dyn/d(𝛿𝑡
[2]/𝛿𝑡[1]) to zero. There is one positive 𝛿𝑡[2]/𝛿𝑡[1] solution to this 

equation (the negative solution is non-physical), which corresponds to the extremum of 𝐾dyn. The 

extremum in 𝐾dyn as a function of 𝛿𝑡[2]/𝛿𝑡[1] is located at (eq. (14)):  

(
𝛿𝑡[2]

𝛿𝑡[1]
)
ext

= exp(
𝜔1 + 1

2

ΔΔ𝐺2
𝑜‡

𝑅𝑇
) (14) 

where “extremum” is abbreviated to “ext” in the subscript. Evaluating 𝐾dyn at the extremum condition by 

substitution of eq. (14) into eq. (13) gives the results shown in Figure 1c. At quasi-static conditions with 

square-wave asymmetry corresponding to the extremum, 𝐾dyn > 𝐾 for all 𝜔𝑗 between the iso-equilibrium 

lines, and 𝐾dyn < 𝐾 outside of the iso-equilibrium lines. Between these lines, 𝐾dyn is driven to infinity by 

increasing the oscillation amplitude ΔΔ𝐺2
𝑜‡

 and adjusting 𝛿𝑡[1] and 𝛿𝑡[2] in accordance to eq. (14). The best 



13 
 

dynamic catalysts have 𝜔1 that deviate significantly from unity and 𝜔−1 = (𝜔1 + 1)/2, which is the line 

that bisects the iso-equilibrium lines and is the maximum in 𝐾dyn as a function of 𝜔−1. 

 The analysis thus far of the simple, two-step reaction scheme provides critical insights into the 

necessary relationships between free energies of activation to achieve supra-equilibrium conversion with 

high frequency oscillations (quasi-static conditions). From closed-form formulation of the dynamic 

equilibrium constant, we see that each reaction step j contributes a term in the form 1 +

𝛿𝑡[2]/𝛿𝑡[1] exp(−ΔΔG𝑗
𝑜‡/𝑅𝑇) raised to the power of the stoichiometric number +𝜎𝑗 for the forward 

reaction and −𝜎𝑗 for the reverse reaction.  By inspection of this function, iso-equilibrium lines where 

𝐾dyn = 𝐾 are identified; these iso-equilibrium lines bound the regions that define the limiting behavior of  

𝐾dyn (Figure 1c). Specifically, for this system, optimal conversion is achieved for catalysts that fall between 

the iso-equilibrium lines. For catalysts that fall between the iso-equilibrium lines and have 𝜔1 < 0—where 

the activation free energy for the first forward step is negatively correlated with that for the second forward 

step—the symmetric square wave oscillation gives 𝐾dyn → ∞ as the oscillation amplitude increases to 

infinity, enabling 100% conversion of any reactants. 
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Figure 1. Dynamic equilibrium constant (eq. (13)) with oscillation amplitudes and square-wave symmetry 

(a) ΔΔ𝐺2
𝑜‡ = 0.01𝑅𝑇, 𝛿𝑡[2]/𝛿𝑡[1] = 1 (b) ΔΔ𝐺2

𝑜‡ = 100𝑅𝑇, 𝛿𝑡[2]/𝛿𝑡[1] = 1, and (c) ΔΔ𝐺2
𝑜‡ = 100𝑅𝑇, 

𝛿𝑡[2]/𝛿𝑡[1] = (𝛿𝑡[2]/𝛿𝑡[1])
ext

 (see eq. (13)), which is the minimum or maximum of 𝐾dyn as a function of 

𝛿𝑡[2]/𝛿𝑡[1]. 

3.1.2. Derivation of the time-averaged dynamic reaction rate 

 The discussion above detailed the exploration of the ideal properties for achieving maximum 

conversion of reactants to products, as quantified by the dynamic equilibrium constant, 𝐾dyn. Following a 

similar analysis, we next explicate the ideal catalyst properties for enhanced reaction rates at quasi-static 

surface conditions with respect to the Sabatier maximum static catalysis reaction rate. In static catalysis, 

the rate of the two-step reaction in Scheme 2 is given as (eq. (15)): 

𝑟 =
𝑘1𝑎A𝑘2 − 𝑘−1𝑘−2𝑎B

𝑘1𝑎A + 𝑘2 + 𝑘−1 + 𝑘−2𝑎B
 (15) 

Each 𝑘𝑗 is a function of Δ𝐺2
o‡

 which is adjusted to maximize 𝑟; this is the Sabatier maximum. Each 𝑘𝑗 is 

given as (eq. (16)): 
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𝑘𝑗 = 𝑘𝑗,0 exp(−𝜔𝑗
Δ𝐺2

o‡

𝑅𝑇
) (16) 

where 𝑘𝑗,0 is a pre-exponential factor defined as 𝑘𝑗 at Δ𝐺2
o‡ = 0. An analytical solution for the Sabatier 

maximum does not exist for the general case shown in eq. (15), requiring numerical solvers to find the 

location and value of the peak [31]. The dynamic catalysis rate is significantly more complicated, and thus 

an analytical solution for the maximum dynamic catalysis rate is also out of reach, but a closed-form 

function for the time-averaged rate is found by recognizing that under quasi-static surface conditions, the 

time-averaged rate constants 〈𝑘𝑗〉 replace 𝑘𝑗 in all in the mass-action rate equations; thus, the dynamic 

catalysis rate function is simply the static catalysis rate function with 〈𝑘𝑗〉 substituted for 𝑘𝑗 (eq. (17)): 

〈𝑟〉 =
〈𝑘1〉𝑎A〈𝑘2〉 − 〈𝑘−1〉〈𝑘−2〉𝑎B

〈𝑘1〉𝑎A + 〈𝑘2〉 + 〈𝑘−1〉 + 〈𝑘−2〉𝑎B
 (17) 

where 〈𝑘𝑗〉 in terms of scaling parameters are (eq. (18)): 

〈𝑘𝑗〉 ≡
𝛿𝑡[1]𝑘𝑗

[1]
+ 𝛿𝑡[2]𝑘𝑗

[2]

𝛿𝑡[1] + 𝛿𝑡[2]
=

𝑘𝑗,0 exp(−𝜔𝑗
Δ𝐺2

𝑜‡[1]

𝑅𝑇 ) + 𝑘𝑗,0
𝛿𝑡[2]

𝛿𝑡[1]
exp(−𝜔𝑗

Δ𝐺2
𝑜‡[2]

𝑅𝑇 )

1 + 𝛿𝑡[2]/𝛿𝑡[1]
 

(18) 

Unlike the dynamic equilibrium constant, the dynamic rate is a function of the factors 𝑘𝑗,0 and the 

trough (Δ𝐺2
o‡[1]

) and peak (Δ𝐺2
o‡[2]

) of the oscillation wave, and not simply the amplitude (ΔΔ𝐺2
𝑜‡

). For an 

arbitrary choice of 𝑘𝑗,0 = 1, the time-averaged rate depends on three parameters for each set of 𝜔𝑗 

(Δ𝐺2
𝑜‡[1], Δ𝐺2

𝑜‡[2]
 and 𝛿𝑡[2]/𝛿𝑡[1])—resulting in a description of rate for which we employ a mixed 

optimization-brute force approach (see Section 2) to find the global maximum dynamic catalysis rate. The 

ratio of the maximum dynamic and static catalysis rates are shown in Figure 2a for a completely irreversible 

reaction (𝑎A = 1, 𝑎B = 0) and in Figure 1b for weakly reversible conditions that are still far from 

thermodynamic equilibrium (𝑎A = 1, 𝑎B = 0.05). In Figure 2a, the irreversible reaction is enhanced 
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significantly only if 𝜔1 < 0, which is where the activation free energy of the first reaction step is negatively 

correlated with that of the second reaction step. In the presence of a small amount of product, the benefits 

of dynamic catalysis for 𝜔−1 > 1 and for 𝜔−1 < 𝜔1 disappear (Figure 2b). For 𝜔−1 > 1, 𝜔1 < 0, the 

oscillation amplitude ΔΔ𝐺−2
𝑜‡

 correlates positively with and exceeds the oscillation amplitude ΔΔ𝐺1
𝑜‡

, while 

ΔΔ𝐺−1
𝑜‡

 correlates positively with and exceeds the magnitude of ΔΔ𝐺2
𝑜‡

, which lowers the dynamic 

equilibrium constant (eq. (13)). This lowering of 𝐾dyn results in driving the reaction in the reverse direction 

in the presence of a small amount of product, thus limiting the overall conversion. Similarly, dynamic 

catalysts below the 𝜔−1 = 𝜔1 line are also hindered by the decrease in 𝐾dyn. Thus, a dynamic catalyst is 

functionally useless if it decreases 𝐾dyn; while it may enhance the rate in the absence of product (Figure 

2a), any amount of B hinders the reaction to such an extent that the dynamic equilibrium constant is orders 

of magnitude lower than the thermodynamic equilibrium constant (Figure 2b). For the reaction in Scheme 

2, a good dynamic catalyst for enhancing the reaction rate under quasi-static conditions falls between the 

iso-equilibrium lines and has 𝜔1 < 0. While the catalysts that fall between the iso-equilibrium lines with 

𝜔1 > 0 achieve supra-equilibrium conversion by asymmetry of the square wave oscillation, this effects 

little rate enhancements at irreversible conditions when all 𝑘𝑗,0 = 1. However, as shown in Figure 2c, the 

maximum dynamic catalysis reaction rate at thermodynamic equilibrium (𝑎A = 𝑎B = 1) is positive for all 

catalysts that fall between the iso-equilibrium lines. 
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Figure 2. The ratio of the maximum dynamic catalysis rate (𝑟dyn) and the Sabatier maximum steady-state 

static catalysis rate (𝑟ss) as a function of the linear scaling parameters 𝜔𝑗 at (a) 𝑎A = 1, 𝑎B = 0 (b) 𝑎A =

1, 𝑎B = 0.05 (c) 𝑎A = 1, 𝑎B = 1 (thermodynamic equilibrium). The maximum dynamic catalysis rates 

were found by brute-force searches of kinetic oscillation waveshapes by systematically varying Δ𝐺2
𝑜‡[1]

,  

Δ𝐺2
𝑜‡[2]

 and 𝛿𝑡[2]/𝛿𝑡[1]  in eqs. (17) and (18) followed by convergence to a local minimum using the built-

in Matlab function fminunc. The Sabatier maximum was found by using fminunc to maximize the rate by 

varying Δ𝐺2
o‡

. The reference 𝑘𝑗,0 were arbitrarily set equal to unity. Artifacts in the figures are a result of 

the brute-force method converging to different local maximums. 

 Comparison of Figure 1 and Figure 2 reveals the close relationship between 𝐾dyn and 𝑟dyn. The 

dynamic equilibrium constant has a closed-form solution (eq. (13)) which proffers insights into the key 

parameters necessary for enhancing 𝐾dyn, and these insights generally extend to 𝑟dyn. Thus far, we have 

exclusively considered only oscillation frequencies much faster than the time scales for chemical 

transformations, where the quasi-static surface approximation (𝜃𝑗∗(𝑡) ≈ 𝜃𝑗∗) is valid. However, it has been 

shown that some kinetic systems do not exhibit rate enhancement at the high frequency limit, but, rather, 

are only appreciably accelerated within a band of finite “resonance” frequencies bound by characteristic 

relaxation times associated with the reaction kinetics. The word “resonance” is here within quotation marks 

because the concerned phenomenon is not the same as mechanical resonance—the dynamic behavior in the 

systems discussed herein do not exhibit any natural resonant frequency and the eigenvalues of the dynamic 
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systems discussed in this work are real numbers, precluding any unforced oscillatory behavior by the kinetic 

systems themselves. Nonetheless, we regard “resonance” a useful term for concisely describing this type 

of dynamic catalysis behavior because of the superficial similarities with well-established mechanical 

resonance phenomenon. An illustrative comparison of dynamic catalysis resonance and quasi-static 

behavior are shown in Figure 3.  

 

Figure 3. A schematic representation of “resonance” and quasi-static behaviors in dynamic catalysis. 

“Resonance” is characterized by a finite frequency band that gives enhanced rates of reaction. In quasi-

static dynamic catalysis, the oscillation frequencies are sufficiently fast that the chemical activities of all 

species are nearly time-invariant, and thus there is only a minimum threshold for the frequency. The 

behavior and required catalyst properties differs for each of these dynamic catalysis mechanisms. 

3.2. Dynamic enhancement of conversion and rate for a three-step reaction 

sequence—Unifying concepts of resonance and quasi-static dynamic catalysis 

Precedent literature has demonstrated that the manifestation of a resonance frequency band is a 

consequence of multiple processes occurring during a single kinetic state [16,21]. For the reaction in 

Scheme 2, there are only two reaction steps: the sorption of A* and the conversion of A* to B, each 

achieved by a separate kinetic state. Thus, no kinetic state is responsible for multiple reaction steps and 

therefore there are no resonance conditions, as confirmed by a brute-force search for resonance 

frequencies. In this section, we demonstrate the generality of the approach detailed hereinbefore for a 

three-step reaction sequence (Scheme 3) that exhibits enhancement to rates and conversions during 

dynamic catalysis by both resonance and quasi-static mechanisms. 
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Scheme 3 shows the three-step reaction sequence that is oft used as an instructive model system 

for study of dynamic catalysis. In line with previous work exhibiting resonance [18,19,27], the 

adsorption in all examples considered herein are “barrierless” and not functions of the oscillating 

parameter, such that 𝑘1
[2]
= 𝑘1

[1]
= 𝑘−3

[2]
= 𝑘−3

[1]
. Further, the free energy barrier for the desorption of the 

product B*, Δ𝐺3
o‡

, is equal to the binding energy of B, BEB = 𝐺B
o + 𝐺∗

o − 𝐺B∗
o = Δ𝐺3

o‡
. Thus, we regard 

𝜔𝑗 for this reaction sequence to be most conveniently defined as (eq. (19)): 

𝜔𝑗 =
ΔΔG𝑗

o‡

ΔBEB
 (19) 

The reaction in Scheme 3 has been investigated previously by Dauenhauer and coworkers [18] by 

defining  (i) 𝛾 ≡ ΔBEB/ΔBEA to relate the binding energies of A and B  and (ii) 𝛼 ≡ Δ𝐸a,sr/Δ𝐻sr.  to relate 

the activation energy of the surface reaction (A∗ → B∗) to the enthalpy change of the surface reaction. This 

formalism is equivalent to the 𝜔𝑗 formalism used herein, with 𝜔−1 = 1/𝛾 and 𝜔2 = 𝛼(1/𝛾 − 1).  We 

prefer the 𝜔𝑗 approach here because the salient relationships in dynamic catalysis describe the correlation 

of free energies of activation rather than energies of transition states and species. We also note that herein 

we make no consideration on the bounds on the validity of the LFE relationships that arise in the 𝛼-𝛾 

formalism and manifest as negative activation energies (see Section S2 of the Supporting Information).  

Scheme 3. Reversible three-step reaction sequence for the conversion of A to B. 

A +∗ ⇄ A∗ 
A∗ ⇄ B∗ 
B∗ ⇄ B +∗ 

Overall: A ⇔ B 

 

3.2.1. Derivation of the dynamic equilibrium constant for the quasi-static regime 

 The derivation of 𝐾dyn at quasi-static conditions for the reaction in Scheme 3 follows the same 

procedure as the derivation of 𝐾dyn (eq. (9)) for the reaction in Scheme 2. 𝐾dyn is thusly (eq. (20)):  
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𝐾dyn =
𝑎B
ss

𝑎A
ss =

𝑘1
[1]𝑘2

[1]𝑘3
[1]
(1 +

𝛿𝑡[2]

𝛿𝑡[1]
𝑘1
[2]

𝑘1
[1])(1 +

𝛿𝑡[2]

𝛿𝑡[1]
𝑘2
[2]

𝑘2
[1])(1 +

𝛿𝑡[2]

𝛿𝑡[1]
𝑘3
[2]

𝑘3
[1])

𝑘−1
[1]𝑘−2

[1]𝑘−3
[1]
(1 +

𝛿𝑡[2]

𝛿𝑡[1]
𝑘−1
[2]

𝑘−1
[1])(1 +

𝛿𝑡[2]

𝛿𝑡[1]
𝑘−2
[2]

𝑘−2
[1])(1 +

𝛿𝑡[2]

𝛿𝑡[1]
𝑘−3
[2]

𝑘−3
[1])

 (20) 

Now we simplify eq. (20) by dividing both sides of eq. (20) by 𝐾 = 𝑘1
[1]
𝑘2
[1]
𝑘3
[1]
/𝑘−1
[1]
𝑘−2
[1]
𝑘−3
[1]

 and 

recognizing that 𝑘1 and 𝑘−3 are both rate constants for barrierless sorption on a surface and thus 𝑘1
[2]
=

𝑘1
[1] = 𝑘−3

[2] = 𝑘−3
[1]

 to yield eq. (21): 

𝐾dyn

𝐾
=

  (1 +
𝛿𝑡[2]

𝛿𝑡[1]
𝑘2
[2]

𝑘2
[1])(1 +

𝛿𝑡[2]

𝛿𝑡[1]
𝑘3
[2]

𝑘3
[1])

(1 +
𝛿𝑡[2]

𝛿𝑡[1]
𝑘−1
[2]

𝑘−1
[1])(1 +

𝛿𝑡[2]

𝛿𝑡[1]
𝑘−2
[2]

𝑘−2
[1]) 

=

  (1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp (−

ΔΔG2
o‡

𝑅𝑇 ))(1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp (−

ΔBEB
𝑅𝑇 ))

(1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp(−

ΔΔG−1
o‡

𝑅𝑇 ))(1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp(−

ΔΔG−2
o‡

𝑅𝑇 )) 

=

(1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp (−𝜔2

ΔBEB
𝑅𝑇 ))(1 +

𝛿𝑡[2]

𝛿𝑡[1]
exp (−

ΔBEB
𝑅𝑇 ))

(1 +
𝛿𝑡[2]

𝛿𝑡[1]
exp (−𝜔−1

ΔBEB
𝑅𝑇 )) (1 +

𝛿𝑡[2]

𝛿𝑡[1]
exp (−(1 + 𝜔2 −𝜔−1)

ΔBEB
𝑅𝑇 ))

 

(21) 

where the free energy of activation for desorption of B is equal to the binding energy BEB. The functional 

form for 𝐾dyn in the three-step reaction (eq. (21)) is identical to that for the two-step reaction with activated 

sorption (eq. (13)) after substitution of 𝜔2 for 𝜔1. Correspondingly, 𝐾dyn/𝐾 for the three-step reaction 

sequence is given in Figure 1 with the x-axis changed to 𝜔2.  

For the two-step reaction with activated sorption (Section 3.1), it was demonstrated that the behavior 

of 𝐾dyn/𝐾 is closely related to the ratio of the dynamic reaction rate to the Sabatier maximum reaction rate. 

The relationship extends to the more complex three-step reaction as shown in Figure 4, where supra-
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Sabatier reaction rates are observed at quasi-static conditions for 𝜔𝑗 that fall between the iso-equilibrium 

lines at (a) irreversible and (b) thermodynamic equilibrium conditions. The derivation of 𝐾dyn/𝐾 is simple 

and straightforward, and thus the intertwined relationship between 𝐾dyn/𝐾 and the dynamic reaction rate 

dramatically simplifies the identification of dynamic catalyst properties that achieve both increases in 

conversion and reaction rates. In general, the ideal catalyst properties for quasi-static dynamic catalysis are 

easily found for any single-path reaction sequence. 

 

Figure 4. (a) Ratio of the optimal dynamic reaction rate to the steady-state reaction rate as a function of 𝜔𝑗 

at irreversible (𝑎A = 1, 𝑎B = 0) reaction conditions. (b) Dynamic reaction rate as a function of 𝜔𝑗 at 

thermodynamic equilibrium (𝑎A = 𝑎B = 1). All 𝑘𝑗0 = 1 s
−1 and BEB

[𝑗]
 and 𝛿𝑡[2]/𝛿𝑡[1] were varied at each 

𝜔𝑗 to find the optimal dynamic catalysis operating conditions. 

 

In contrast to the simplicity for determining the catalyst properties required for quasi-static dynamic 

catalysis, identifying the catalyst properties for dynamic catalysis resonance is a greater challenge. In the 

following section, we explicate the necessary properties for resonance for the three-step reaction sequence 

in Scheme 3. We demonstrate that while this requires a deeper understanding of the precise dynamic 

catalysis mechanism, it is still possible to derive closed-forms functions for the reaction rate and dynamic 

equilibrium constant. 
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3.2.2. Resonance regimes for the three-step reaction sequence 

While eq. (21) and Figure 4 again demonstrate the connection between enhanced conversion and 

reaction rates during quasi-static dynamic catalysis, previous reports [18,27] have shown that the reaction 

in Scheme 3, with appropriate LFE scaling parameters, can also exhibit resonance behavior wherein rate 

and conversion enhancement is confined to a range of finite resonance frequencies.  

In our recent work [16], we showed that these ostensible resonance frequencies manifest from the 

burden of a single kinetic state being responsible for executing multiple elementary steps. In the case of 

previously reported [18,27] resonance for the reaction in Scheme 3, the kinetic state with low binding of B 

executes only barrierless desorption steps—recovering B* as product B (step 3) and generating a bare 

catalyst surface with 𝜃∗ = 1. The second kinetic state, however, is responsible for both adsorbing the 

reactant A (step 1) and converting A* to B* (step 2). The burden on kinetic state 2 to execute two elementary 

steps (i) is the origin of apparent “resonant” behavior, with each bounding resonance frequency 

correspondent to the characteristic timescales of the reaction sequence, and (ii) implies that the rate-

controlling step occurs during kinetic state 2 and determines the time-averaged rate of B formation, 〈𝑟〉. We 

therefore surmise that, under optimal “resonant” conditions, 〈𝑟〉 is at most equal to the rate of B* formation 

during kinetic state 2, 𝑟B∗
[2]

, with quasi-equilibrated sorption of A (eq. (22)): 

〈𝑟〉 ≤ 𝑟B∗
[2] =

𝑘2
[2]𝐾1

[2]𝑎A

1 + 𝐾1
[2]𝑎A

 (22) 

Figure 5 shows that numerically simulated time-averaged rate for a system exhibiting resonance is in 

excellent agreement with the prediction made in eq. (22)—exemplifying the descriptive potence of allying 

simple, analytical mathematical methods with physical/chemical insight derived from algorithmic 

techniques for finding maximized dynamic catalytic rates. The familiarity of the Langmuir-Hinshelwood 

rate expression in eq. (22), for example, makes clear that, during dynamic catalytic resonance, (i) the rate-

controlling transition state is the conversion of A∗ → B∗ and (ii) the most abundant surface intermediate 
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(MASI) in kinetic state 2 is determined by the activity of A (i.e. the MASI is bare sites, *, for 𝑎A ≪ 𝐾1
[2]

 

and A* for 𝑎A ≫ 𝐾1
[2]

) [32–34].  

 

Figure 5. Time-averaged rate (solid line) compared to approximation in eq. (22) (square points) for BEB
[1]
=

0 eV, BEB
[2] = 1.03 eV, 𝛿𝑡[2]/𝛿𝑡[1] = 106, 𝑎B = 0, 𝑓 = 103 Hz, and log10 [𝑘1

[1], 𝑘−1
[1], 𝑘2

[1], 𝑘−2
[1], 𝑘3

[1], 𝑘−3
[1]
] 

= [6.00, 31.91, 10.07,−8.84, 13.00, 6.00].  

 With a closed-form approximation for the time-averaged rate during resonance in-hand, we next 

determine the necessary criteria and ideal operating conditions for dynamic catalysis resonance. For a 

system to exhibit resonance, kinetic state 2 (strong BEB) must be more temporally efficient than kinetic 

state 1 (weak BEB) at converting A to B*, otherwise kinetic state 1 would be better at executing all three 

elementary steps and forced kinetic oscillations would not increase the rate of reaction. This condition is 

formulated mathematically by requiring the derivative of eq. (22) with respect to BEB evaluated at BEB
[1]

 to 

be greater than zero (eq. (23)): 

d

d BEB

𝑘2𝐾1𝑎A
1 + 𝐾1𝑎A

|
BEB

[1]
=
(1 + 𝐾1

[1]𝑎A) (𝜔−1 −𝜔2)𝑘2
[1]𝐾1

[1]𝑎𝐴 − 𝑘2
[1]𝐾1

[1]𝑎𝐴 (𝜔−1𝐾1
[1]𝑎A)

(1 + 𝐾1
[1])

2
𝑅𝑇

> 0 (23) 

After rearranging, eq. (23) simplifies to eq. (24): 
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(𝜔−1 −𝜔2) > 𝜔−1
𝐾1
[1]𝑎A

1 + 𝐾1
[1]
𝑎A

 (24) 

In addition, for resonance to occur as described above, it is necessary for kinetic state 1 to regenerate a bare 

surface with little A*, i.e. 𝐾1
[1]
𝑎A ≪ 1, further simplifying the criteria to 𝜔2 < 𝜔−1. Thus, the concerned 

resonance mechanism simply requires that the catalyst properties lie above the 𝜔−1 = 𝜔2 iso-equilibrium 

line. The described mechanism of dynamic catalytic resonance does not, however, guarantee that 〈𝑟〉 is 

greater than the Sabatier volcano maximum. In other words, while 𝜔2 < 𝜔−1 ensures the resonance 

mechanism occurs per eq. (22), the degree of rate enhancement in reference to the Sabatier limit also 

depends on the relative magnitude of the rate constants, not only their scaling relationships. For example, 

if linear relationships hold indefinitely (i.e., Δ𝐺𝑗
o‡ = 𝜔𝑗BEB + 𝑏𝑗), whether resonance occurs depends 

solely on the slopes 𝜔𝑗, but whether this resonance rate is larger than the Sabatier maximum reaction rate 

depends on the intercepts, 𝑏𝑗. 

We aim to synthesize the prescriptions from eqs. (22)-(24) with learnings from analysis of quasi-

static dynamic catalysis conditions (eqs. (20)-(21)) to assign to each pair (𝜔−1, 𝜔2) the mechanism of 

optimal rate enhancement via dynamic catalysis. The intersection of linear scaling correlations based on 

the mechanism of dynamic rate enhancement (quasi-static versus resonance) and optimal wave form 

(symmetric versus asymmetric) forms a landscape of distinct catalyst types which we report in Figure 6. 

Each region of Figure 6 is bound by derived linear scaling correlations (e.g., iso-equilibrium lines 𝜔−1 =

𝜔2 and 𝜔−1 = 1) and is categorized by the optimal method for achieving enhanced rates or dynamic 

equilibrium conversion: resonance, quasi-static symmetric oscillation, or quasi-static asymmetric 

oscillation. Catalysts are further classified into twelve different sub-types based on the correlations between 

elementary step free energies of activation with the activation free energy for product desorption, i.e., the 

signs of 𝜔−1, 𝜔2 and 𝜔1 = 1 +𝜔2 −𝜔−1.  
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 In Figure 6, we delineate the catalyst types for all possible 𝜔𝑗 without making any distinction on 

the physical bounds of these catalyst properties. Previous work  [18,27] on the reaction sequence in Scheme 

3 has expressed the linear scaling relations in terms of 𝛾 ≡ ΔBEB/ΔBEA, which can take any value, and 

𝛼 ≡ Δ𝐸a,sr/Δ𝐻sr, which relates the activation energy of the surface reaction to the enthalpy change of the 

surface reaction. Precedent literature [31] suggests 𝛼 is typically bounded from 0 to 1, though exceptions 

likely exist. The 𝜔𝑗 are related to 𝛼 and 𝛾 by 𝜔−1 = 1/𝛾 and 𝜔2 = 𝛼(1/𝛾 − 1), and thus only catalyst 

types II, VI, X, and XI fall in the range of 0 ≤ 𝛼 ≤ 1. The iso-equilibrium lines in terms of 𝛼 and 𝛾 become 

𝛾 = 1 and 𝛼 = 1/(1 − 𝛾). One point on the latter iso-equilibrium line (𝛾 = −1.5, 𝛼 = 0.4) was discovered 

by Gathmann et al. [35] to achieve supra-equilibrium conversion at quasi-static conditions, the inequality 

𝛼 > 1/(1 − 𝛾) must be satisfied. A variable transformation of Figure 6 in terms of 𝛼 and 𝛾 is reported in 

Section S2 of the Supporting Information. 

Catalyst types V, VI, IX, and X are labeled as quasi-static dynamic catalysts in Figure 6, but also 

all exhibit dynamic catalysis “resonance.” However, there always exists a quasi-static dynamic catalysis 

condition that yields higher rates and conversions. If there are physical limitations on amplitude and 

frequencies of kinetic oscillations, then operating these catalyst types as resonance catalysts may be 

preferable. Likewise, catalyst type VII is both a resonance and asymmetric quasi-static dynamic catalyst 

and is colored as such to distinguish it from catalyst type IV, which does not exhibit any resonance regimes. 

Theoretically, the asymmetric quasi-static catalysts achieve the same rates and conversions as symmetric 

quasi-static dynamic catalysts; however, the asymmetry of the oscillation waves may require one kinetic 
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state to persist for sub-femtosecond timescales (see eq. (14)), making resonance conditions more practical 

for type VII catalysts.  

 

Figure 6. The dynamic catalysis behavior as a function of 𝜔2 and 𝜔−1. Catalyst types are further 

subcategorized into twelve sub-types based on the correlation of activation energies of elementary steps 

with the activation energy of product desorption. Enhanced rates and supra-equilibrium conversion are 

achieved: (i) in the blue region (types I-III and VII) by oscillating at a range of resonance frequencies, (ii) 

the yellow region (types IV and VII) by operating with an asymmetric square wave at quasi-static surface 

frequencies, and (iii) the red region (types V, VI, IX, and X) by symmetric or asymmetric square-wave 

oscillation at quasi-static surface frequencies. In the gray region (types VIII, XI, and XII), little to no rate 

or equilibrium enhancement is achieved by square-wave oscillations at quasi-static surface conditions for 

A + ∗→ B∗ type resonance frequencies. Other resonance types (A∗ → B + ∗ or A + B∗ → B+ A∗) may 

occur for these catalyst types but these are beyond the scope of the present work. 

 

Figure 6 details the categorization of catalysts based on their dynamic catalysis properties and 

further sub-categorized into twelve different types based on free energy correlations. Catalysts in the same 

sub-type (I-XII) will behave nearly identically during dynamic catalysis, while catalysts with the same 

dynamic catalysis properties (indicated by colors in Figure 6) will exhibit similar behavior. Thus, we will 

not detail an example for each of the twelve sub-types, but instead we next highlight general behaviors in 

select instructive case studies. 
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3.2.3. Volcano plots for dynamic catalysis 

The first case study we consider is resonance for a catalyst of sub-type III with 𝜔2 = 1 and 𝜔−1 =

1.5. We develop a two-dimensional volcano plot by systematically varying BEB
[1]

 and BEB
[2]

 and then 

evaluating the rate at three frequencies: below both eigenvalues for kinetic state 2 (steady-state kinetics), a 

geometric average of both eigenvalues (in the range of resonance frequencies if it occurs), and above both 

eigenvalues (quasi-static surface kinetics). The optimal reaction rate for each BEB
[𝑗]

 combination is shown 

away from thermodynamic equilibrium (Figure 7a) and at thermodynamic equilibrium (Figure 7b). In 

Figure 7a and Figure 7b, the diagonal BEB
[1]
= BEB

[2]
 corresponds to the static catalysis volcano plot. The 

dynamic rate is symmetric about BEB
[1]
= BEB

[2]
 because (BEB

[1]
, BEB

[2]
) = (𝑥, 𝑦) and (BEB

[1]
, BEB

[2]
) = (𝑦, 𝑥) 

are identical oscillations shifted temporally, and thus give the same reaction rate. The optimal resonance 

frequencies are weak functions of 𝑎B, as shown by comparison of Figure 7c to Figure 7d. 

For 𝜔2 = 1, 𝜔−1 = 1.5, the catalyst does not exhibit enhanced reaction rates at high oscillation 

frequency (Figure 4) but does exhibit enhanced reaction rates at resonance frequencies (Figure 7). At this 

resonance condition, the weaker binding energy of B* needs to be sufficiently small, and the rate is highest 

when the stronger binding energy is a specific value; for the conditions shown in Figure 7, this value is 

BEB
[2]

~0.7 eV. We showed in Figure 5 that the time-averaged reaction rate is approximated by the rate of 

the overall reaction A + ∗ → B∗ (eq. (22)). The rate of A + ∗ → B∗ (eq. (22)) is shown as a function of BEB
[2]

 

in Figure 8 to illustrate that the rate of this reaction is described by a volcano plot whose peak is located at 

~0.7 eV, the same optimal BEB
[2]

 for resonance in Figure 7.  

While the overall reaction involves three reaction steps (A +∗→ A∗, A∗ → B∗,  B∗ → B +∗), 

resonance effectively simplifies the kinetically-relevant reaction path to the two steps executed during 

kinetic state 2 (A + ∗ → A∗ and  A∗ → B∗), with the desorption of B* as a kinetically-irrelevant step. The 

BEB
[2]

 needs to be optimized with respect to the sub-reaction A + ∗ → B∗, as illustrated by the volcano plot 



28 
 

in Figure 8a. Thus, for dynamic catalysis resonance, the reaction rate is still constrained by the Sabatier 

principle for static catalysis, but for a subset of the overall reaction network.  

 

Figure 7. (a) A projection of the multi-dimensional dynamic catalysis volcano plot for a square wave 

oscillation with endpoints BEB
[1]

 and BEB
[2]

 operating at an optimal frequency at 𝑎A = 98, 𝑎B = 2 and (b) at 

thermodynamic equilibrium (𝑎A = 𝑎B = 50). (c) The optimal frequency as a function of BEB
[1]

 and BEB
[2]

 

at 𝑎A = 98, 𝑎B = 2 and (d) thermodynamic equilibrium 𝑎A = 𝑎B = 50. For (a)-(d), Type III catalyst with 

ω2 = 1,𝜔−1 = 1.5, and T = 373 K. At BEB = 0 eV,   log10[𝑘1, 𝑘−1, 𝑘2, 𝑘−2, 𝑘3, 𝑘−3] =

[6.00, 22.45, 17.63, 8.18, 13.00, 6.00]. Dark red regions in the frequency plots correspond to quasi-static 

conditions, dark blue corresponds to the limit as 𝑓 → 0 (time-average of static steady state rates), and 

intermediate regions are “resonant” frequencies. 
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Figure 8. (a) The volcano plot for resonance behavior for Type II, III, and VII catalysts in Figure 6. Shown 

here is a Type II catalyst with 𝑎A = 100, 𝑎B = 0, 𝛿 = 1.4 eV, T = 373 K,ω2 = 1,𝜔−1 = 1.5. (b) The 

volcano plot for resonance behavior of Type I catalysts in Figure 6. The specific properties are 𝜔2 = −0.6, 

𝜔−1 = 2. For both (a) and (b), 𝑎A = 100, 𝑎B = 0, 𝛿𝑡[2]/𝛿𝑡[1] = 100, BEB
[1] = 0 eV, 

log10 [𝑘1
[1]
, 𝑘−1
[1]
, 𝑘2
[1]
, 𝑘−2
[1]
, 𝑘3
[1]
, 𝑘−3
[1]
] = [6.00, 31.91, 10.07,−8.84, 13.00, 6.00]. The frequency was 

chosen as the center of the resonance region, 𝑓 = √𝜆1
[2]𝜆2

[2]
.  

Figure 7b shows that the rate is positive for dynamic systems in resonance even when the reactant 

and products are at thermodynamic equilibrium. In eq. (21), 𝐾dyn is an exponential function of the 

oscillation amplitude, ΔBEB
[2]

, at quasi-static conditions, but eq. (21) does not apply at resonance 

frequencies. Determination of 𝐾dyn for dynamic catalysis resonance requires a different approach. We 

derive an expression for 𝐾dyn at resonance conditions by first recognizing that the dynamic equilibrium is 

defined as the condition where the dynamic reaction rate is zero. Figure 5 illustrates that, in the absence of 

product, eq. (22) describes well the time-averaged reaction rate for the resonance mechanism of dynamic 

operation of the reaction in Scheme 3. Deriving a general expression for the dynamic reaction rate, however, 

is intractable without making any simplifying assumptions; and, the nature of the requisite approximations 

required to describe the rate during dynamic resonance in the presence of product is not immediately clear. 

To find a reasonable approximation to the minimum 𝐾dyn, we consider the following thought experiment 

putatively re-enacting the mechanism of resonance in the presence of B: (i) during kinetic state 1, a bare 

surface is generated by desorbing all A* to A and all B* to B; (ii) kinetic state 2 persists for a short time 
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such that the surface remains mostly bare (𝜃∗(𝑡) ≈ 1). At these short timescales, we posit that 𝜃A∗ ≈

𝑘1
[2]
𝑎A𝑡 and 𝜃B∗ ≈ 𝑘−3

[2]
𝑎B𝑡 and the surface reaction step is rate-determining such that the time-averaged 

rate of the limit cycle is proportional to the net rate of A∗ → B∗ (eq. (25)): 

𝑟A∗→B∗(𝑡) = 𝑘2
[2]𝜃A∗(𝑡) − 𝑘−2

[2]𝜃B∗(𝑡) = (𝑘1
[2]𝑘2

[2]𝑎A − 𝑘−2
[2]𝑘−3

[2]𝑎B) 𝑡 (25) 

Thus, at worst, the reaction is driven in the forward direction if eq. (25) is positive, which sets an absolute 

lower bound on the optimal 𝐾dyn (eq. (26)): 

𝐾dyn =
𝑎B
eq

𝑎A
eq =

𝑘1
[2]𝑘2

[2]

𝑘−2
[2]𝑘−3

[2]
= 𝐾2

[2]
 (26) 

since 𝑘1
[2] = 𝑘−3

[2]
 in this example. We find that eq. (26) is not just a lower bound, but also an excellent 

approximation of the dynamic equilibrium constant, as shown in Figure 9, where the time-averaged rate is 

zero when 𝑎B/𝑎A = 𝐾2
[2]

 for a catalyst exhibiting resonance. This relationship is explicated more rigorously 

by deriving a closed-form solution for the rate in the presence of product by reducing the complexity of the 

model. This is accomplished by assuming that the desorption of B* and the interconversion of A* and B* 

do not impact the dynamics of the system (i.e., the eigenvalues), but do alter the reaction rate. Further, the 

optimal time 𝛿𝑡[2] is assumed equal to √𝜆1
[2]𝜆2

[2]
, which the center of the resonance frequency range. The 

resulting solution for the net rate of A* to B* formation during resonance was found by using the symbolic 

solver in Matlab (eq. (27): 

〈𝑟〉 ≈ (𝑘1
[2]𝑘2

[2]𝑎A − 𝑘−2
[2]𝑘−3

[2]𝑎B) 𝜒 (27) 
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𝜒 =
2√𝑘−1

[2]
𝑘−3
[2]
𝑎B

(1 + 𝛿𝑡[1]/𝛿𝑡[2]) (𝑘1
[2]
𝑎A + 𝑘−1

[2]
+ 𝑘−3

[2]
𝑎B − Λ)Λ

×

(

 1 − exp

(

 −
𝑘1
[2]
𝑎A + 𝑘−1

[2]
+ 𝑘−3

[2]
𝑎B − Λ

2√𝑘−1
[2]𝑘−3

[2]𝑎B )

 

)

  

Λ = [(𝑘1
[2]𝑎A)

2
+(𝑘−3

[2]𝑎B)
2
+(𝑘−1

[2])
2
+ 2(𝑘1

[2]𝑘−1
[2]𝑎A  + 𝑘1

[2]𝑘−3
[2]𝑎B − 𝑘−1

[2]𝑘−3
[2]𝑎B)]

1/2

 

Equation (27) is in excellent agreement with the numerically simulated reaction rate, as shown in 

Figure 9. Following a similar procedure, the optimal asymmetry ratio 𝛿𝑡[1]/𝛿𝑡[2] can also be written in 

explicit terms of rate constants to obtain a closed-form solution which we omit for the sake of brevity. Even 

with the model simplification, eq. (27) is quite complex but, nevertheless, evidently and unequivocally 

confirms that (i) at 𝑎B/𝑎A = 𝑘1
[2]𝑘2

[2]/𝑘−2
[2]𝑘−3

[2] = 𝐾2
[2]

, the net rate is zero, in agreement with our thought 

experiment detailed above (eq. (25)) and (ii) for dynamic catalysis resonance, the dynamic equilibrium 

constant is not a function of the oscillation amplitude and does not depend on the thermodynamic 

equilibrium constant—further illustrating the fundamental differences between quasi-static and resonance 

conditions. Furthermore, eq. (27) demonstrates that there is no guarantee that 𝐾2
[2]

 will be greater than 𝐾 of 

the overall reaction, indicating that not all systems with the appropriate 𝜔𝑗 values will exhibit resonant 

equilibrium enhancement. Just as the case for resonant rate enhancement, whether a resonant dynamic 

catalyst drives reactions against a thermodynamic gradient depends not only on the slopes of the scaling 

relations, 𝜔𝑗, but also on their intercepts (i.e., not all catalysts above the 𝜔2 = 𝜔−1 line are resonance 

catalysts). A final feature of resonance we highlight is the significant role of product inhibition; as B and A 

both rapidly adsorb on the catalyst during kinetic state 2, B* effectively blocks the adsorption of A, reducing 

both the reaction rate and temporal efficiency of dynamic forcing.  
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Figure 9. Rate as a function of 𝑎B/𝑎A/𝐾2
[2]

. The rate is zero at  𝑎B/𝑎A/𝐾2
[2]
= 1 because 𝐾dyn ≈ 𝐾2

[2]
 in 

agreement with eq. (25) A frequency at the center of the resonance region was chosen as 𝑓 = √𝜆1
[2]𝜆2

[2]
. 

The square points are an analytical approximation (eq. (27)) and the line is a numerical simulation. 

Conditions: 𝜔2 = 0.6,𝜔−1 = 2, BEB
[1]
= 0 eV, BEB

[2]
= 1.3 eV, 𝑎𝐴 = 50,  

log10 [𝑘1
[1], 𝑘−1

[1], 𝑘2
[1], 𝑘−2

[1], 𝑘3
[1], 𝑘−3

[1]
] = [6.00, 31.91, 10.07,−8.84, 13.00, 6.00]. 𝐾2

[2] = 22.42 and 𝑎B was 

varied. 

 The behavior for a type II catalyst shown in Figure 7 and Figure 8a is generally representative of 

the dynamic catalysts exhibiting resonance (types I-III and VII in Figure 6), with one exception. For catalyst 

types II, III, and VII, eq. (22) has a maximum located at BEB
[2]

 where 𝐾1
[2]
~1 that is designated as the 

volcano peak (Figure 8a). However, for type I catalysts (𝜔2 < 0,𝜔−1 > 1), eq. (22) increases without 

bound because 𝑘2
[2] ∝ exp (−𝜔2BEB

[2]/𝑅𝑇) and 𝐾1
[2] ∝ exp (𝜔−1BEB

[2]/𝑅𝑇) both diverge to infinity with 

increasing BEB
[2]

. This would suggest that the dynamic catalysis rate would increase indefinitely with 

increasing BEB
[2]

 at resonance conditions, but this is not observed (Figure 8b). Instead, at binding energies 

BEB
[2]

 much higher than where 𝐾1
[2]~1, a maximum rate is reached and the rate decreases with increasing 

BEB
[2]

 thereafter. We identify this peak as the point where there is a regime change in the rate-limiting 

process, transitioning from kinetic limitation to oscillation frequency limitation.  
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In the oscillation-frequency-limited regime (i.e., high BEB
[2]

), B* rapidly equilibrates with A* on 

the surface, and thus the fractional coverage of B* during kinetic state 2 is (eq. (28)): 

𝜃B∗
[2]
≈

𝐾1
[2]
𝐾2
[2]
𝑎A

1 + 𝐾1
[2]
𝑎A + 𝐾1

[2]
𝐾2
[2]
𝑎A
≈ 𝐾2

[2]
 (28) 

where 𝐾1
[2]𝑎A ≫ 1,𝐾1

[2]𝐾2
[2]𝑎A (i.e., 𝜃A∗

[2] ≈ 1).  In kinetic state 1, B* is removed from the surface and 

converted to B, with a maximum yield of 𝜃B∗
[2]

. Thus, the rate of this reaction is equal to 𝜃B∗
[2]

 multiplied by 

the number of oscillations per unit time, or the frequency, 𝑓. This frequency cannot be infinitely fast because 

it needs to remain in the resonance regime (otherwise the reaction will enter the quasi-static regime which 

does not exhibit rate enhancement for type I catalysts, as was illustrated in Figure 4), and thus this limit on 

the oscillation frequency imposes an upper bound on the reaction rate. The rate-control of the oscillation-

frequency limit for sufficiently large BEB
[2]

 is evident in Figure 8b which illustrates that the kinetic bound 

per eq. (22), shown by the dash-dot line, and 𝜃B∗
[2]
𝑓 per eq. (28), shown by the dashed line, respectively 

coincide with 〈𝑟〉 as a function of BEB
[2]

. Therefore, at low BEB
[2]

, the reaction is kinetically limited by the 

conversion of A∗ → B∗, and at high BEB
[2]

 the reaction is limited by the maximum resonance frequency. The 

optimal BEB
[2]

 sits at the transition between these two kinetic regimes and is approximately where 𝑘2
[2] =

𝐾2
[2]𝑓 which simplifies to 𝑓 = 𝑘−2

[2]
. Thus, resonance in type I catalysts also exhibits volcano-plot-like 

behavior, except instead of each regime corresponding exclusively to different kinetic or thermodynamic 

limitations, the turnover frequency for these catalysts can be limited by the frequency of the kinetic 

oscillation. 
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 We showed above that resonance catalysts have the property that 𝜔−1 > 𝜔2, which includes 

catalyst types I-III and VII, but also types V, VI, IX, and X. When operating at frequencies in the resonance 

regime, catalyst types V, VI, IX, and X will exhibit similar behavior to that shown in Figure 7-Figure 9. 

However, these four catalyst types are best operated at the high frequency limit under quasi-static 

conditions. Catalysts of these types have multi-variable volcano plots like those shown in Figure 10a. The 

static kinetics volcano plot has a Sabatier maximum at BEB
[1] = BEB

[2]~1.5 eV; the dynamic kinetics volcano 

plateaus near BEB
[1]
< 0.5 eV, BEB

[2]
> 2.0 eV, where further decreasing BEB

[1]
 or increasing BEB

[2]
 has 

negligible impact on the time-averaged rate. At these conditions, the reaction rate is 〈𝑟〉 ≈ 𝑘1𝑎A =

9.8 × 107 s−1, implying that the adsorption of A is the rate-controlling process for the conversion of A to 

B at these conditions. The rate constant 𝑘1 is not a function of BEB, and the rate of this step cannot be 

increased. At these conditions, the Sabatier limit has been completely circumvented; the rate of conversion 

is no longer limited by the fundamental kinetics of the reaction, but instead is limited by the rate at which 

reactant A adsorbs on the catalyst surface. 

 

Figure 10. The multi-dimensional dynamic catalysis volcano plot at quasi-static conditions with 𝜔2 =

−1,𝜔−1 = −0.5. At BEB = 0 eV,  log10[𝑘1, 𝑘−1, 𝑘2, 𝑘−2, 𝑘3, 𝑘−3] =

[6.00,−15.36,−20.19, 8.18, 13.00, 6.00] (a) 𝑎A = 98, 𝑎B = 2 and (b) thermodynamic equilibrium (𝑎A =

𝑎B = 50). The diagonals in (a) and (b) are the static catalysis volcano plots, which is 0 at all points at 

thermodynamic equilibrium in (b). 
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Recall from the analysis of 𝐾dyn at quasi-static conditions (eq. (21)) that the dynamic equilibrium 

limit was solely a function of ΔBEB = BEB
[2]
− BEB

[1]
 and not of the values of the oscillation endpoints 

themselves. While 𝐾dyn is only a function of the amplitude, the reaction rate at thermodynamic equilibrium 

(𝑎A = 𝑎B) is a function of the oscillation endpoints, as shown in  Figure 10b. In Figure 10b, the rate is 

positive everywhere on the dynamic volcano plot except at static conditions (BEB
[2]
= BEB

[1]
) where the rate 

is zero. Aside from the BEB
[2] = BEB

[1]
 line, the rate does not perceptibly change between nearly irreversible 

(Figure 10a) and thermodynamic equilibrium (Figure 10b) conditions. This is because at static catalysis 

conditions, the reaction rate of a reversible reaction is given by 〈𝑟〉 = 〈𝑟〉(1 − 𝑎B/𝑎A/𝐾dyn), where 〈𝑟〉 is 

the time-averaged forward reaction rate. For the catalyst in Figure 10a, there is no product inhibition so 〈𝑟〉 

is not a function of 𝑎B, and because 𝐾dyn ≫ 𝐾 for even modest oscillation amplitudes due to its exponential 

dependence on ΔBEB, the dynamic kinetic rates are nearly unimpeded by the accumulation of product at 

thermodynamic equilibrium (Figure 10b). 

The final case study we consider is that of a type IV catalyst that exhibits enhanced dynamic 

equilibrium under asymmetric kinetic oscillations. In Figure 11, the reaction rate and optimal asymmetry 

at irreversible ((a) and (b)) and thermodynamic equilibrium ((c) and (d)) conditions are reported. At 

irreversible conditions, the rate is only increased by ~2× over the Sabatier maximum by asymmetric 

oscillations, suggesting that this catalyst type is not optimal for increasing reaction rates. However, at 

thermodynamic equilibrium (Figure 11b), the reaction rate is positive at all BEB
[2] ≠ BEB

[1]
, and the dynamic 

equilibrium constant is theoretically driven to infinity with large oscillation amplitudes by these asymmetric 

oscillations (eq. (21)), and thus these catalysts are good for driving reactions beyond thermodynamic limits. 

One challenge for these catalysts is that the optimal ratio 𝛿𝑡[2]/𝛿𝑡[1] for maximizing dynamic equilibrium 

is exponentially dependent on the oscillation amplitude (eq. (14)), as is 𝐾dyn (eq. (21)), and thus achieving 

large 𝐾dyn with type IV catalysts requires large 𝛿𝑡[2]/𝛿𝑡[1]; when compounded with the high frequency of 

the oscillation, this may be technically infeasible in real applications. 
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Figure 11. Multi-dimensional dynamic catalysis volcano plots for asymmetric oscillations for a catalyst 

with 𝜔2 = 2,𝜔−1 = 1.5 and (a) 𝑎A = 98, 𝑎B = 2 or (b) 𝑎A = 𝑎B = 50. The optimal 𝛿𝑡[2]/𝛿𝑡[1] ratio for 

(c) 𝑎A = 98, 𝑎B = 2 and (d) 𝑎A = 𝑎B = 50. For both simulations, at BEB = 0 eV,  

log10[𝑘1, 𝑘−1, 𝑘2, 𝑘−2, 𝑘3, 𝑘−3] = [6.00, 22.45, 36.54, 27.08, 13.00, 6.00]. 

3.2.4. Identifying dynamic catalyst properties for enhanced selectivity and yield 

 Heretofore, we have detailed a methodology for identifying catalyst properties necessary to achieve 

supra-Sabatier maximum reaction rates and supra-equilibrium conversions and explicated the optimal 

dynamic catalysis operating conditions for various catalyst types. We conclude this work by considering a 

short example for finding the optimal catalyst properties to achieve maximum selectivity for an intermediate 

product for the series reaction shown in Scheme 4. In this reaction, our desired product, B, is an intermediate 

product en route to C. In this example, the rate constants for adsorption are invariant with BEB, and 𝜔𝑗 are 

defined in terms of BEB (eq. (29)): 
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𝜔𝑗 =
ΔΔG𝑗

o‡

ΔBEB
 (29) 

There are two constraints on 𝜔𝑗 which require that Δ𝐺A→B
o  and Δ𝐺B→C

o  are constant. The ten 𝜔𝑗 are 

summarized in Scheme 4 with these thermodynamic constraints and with the assumption of barrierless 

sorption with rate constants that are independent of BEB. There are four independent 𝜔𝑗 (𝜔−1, 𝜔2, 𝜔4, and 

𝜔5), and the problem of optimizing selectivity towards B initially appears complex. However, by following 

the same strategies detailed above, the dynamic catalyst properties that maximize selectivity are easily 

determined. 

Scheme 4. Multi-product five-step reaction sequence. 

Reaction 𝜔𝑗 𝜔−𝑗 

1.  A +∗⇄ A∗ 0 𝜔−1 

2.  A∗ ⇄ B∗ 𝜔2 1 − 𝜔−1 +𝜔2 

3.  B∗ ⇄ B+∗ 1 0 

4.  B∗ ⇄ C∗ 𝜔4 𝜔5 − 1 + 𝜔4 

5.  C∗ ⇄ C +∗ 𝜔5 0 

 

 The selectivity towards B at dynamic equilibrium is defined by the dynamic equilibrium constant 

for the A → B and the C → B reactions—both of which need to be large for high selectivity and yield of B. 

The dynamic equilibrium constants for the reaction A to B is unchanged from the example for Scheme 2 

and is thus given by eq. (21) and depends only on 𝜔−1, 𝜔2, and ΔBEB. Likewise, the dynamic equilibrium 

constant for the C to B reaction depends only on 𝜔4, 𝜔5, and ΔBEB (eq. (30)): 

𝐾dyn
C→B

𝐾C→B
=
𝑎B
eq

𝑎c
eq =

〈𝑘−5〉〈𝑘−4〉〈𝑘3〉

〈𝑘5〉〈𝑘4〉〈𝑘−3〉
=
(1 + exp (−(𝜔5 − 1 + 𝜔4)

ΔBEB
𝑅𝑇 ))(1 + exp (−

ΔBEB
𝑅𝑇 ))

(1 + exp (−𝜔5
ΔBEB
𝑅𝑇 ))(1 + exp (−𝜔4

ΔBEB
𝑅𝑇 ))

 (30) 

where we consider here a symmetric square-wave oscillation. Since 𝐾dyn
C→B (eq. (30)) and 𝐾dyn

A→B (eq. (21)) 

are independent (besides a mutual dependence on ΔBEB), there must exist a set of 𝜔𝑗 that gives 100% 
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selectivity and yield of B at ΔBEB → ∞. Equation (30) is plotted as a function of 𝜔4 and 𝜔5 in Figure 12, 

with the iso-equilibrium lines shown as dashed lines and lines that separate regions where 𝜔𝑗 change signs 

are shown as solid lines. Figure 12 (and eq. (30)) is identical to Figure 1b (and eq. (21)) with the 

substitutions 𝜔4 = 𝜔−1 and 𝜔5 = 𝜔2 + 1 − 𝜔−1. Based on the results detailed hereinbefore for 

maximizing 𝐾dyn
A→B and the results shown in Figure 12 for maximizing 𝐾dyn

C→B, a dynamic catalyst with 𝜔4 <

1,𝜔5 < 1, and 𝜔5 < 1 − 𝜔4 will give 𝐾dyn
C→B > 𝐾C→B, while 𝜔−1 < 1, 𝜔2 < 0, and 𝜔2 < 𝜔−1 gives 

𝐾dyn
A→B > 𝐾A→B. When all these criteria are satisfied, selectivity and yield of B are driven to 100% as 

ΔBEB → ∞. 

 

Figure 12. 𝐾dyn for the conversion of C to B in Scheme 4 as a function of 𝜔4 and 𝜔5 for a square-wave 

oscillation with ΔBEB/𝑅𝑇 = 100. 

4.  Conclusion 

Dynamic catalysis proffers the ability to obtain greater reaction rates, conversions, and selectivities 

than static catalysis, but a precise description of the necessary catalyst properties for achieving this has 

heretofore been unestablished. This work explores dynamic catalysis behavior in the context of linear free 

energy (LFE) relationships that give rise to traditional Sabatier volcano plot behavior in static catalysis. 

The ability of a dynamic catalyst to drive conversion beyond the thermodynamic limit, increase the reaction 

rate, and increase selectivity is demonstrated to be rigorously identifiable in terms of simple governing 
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relationships between LFE scaling parameters. In particular, classification of dynamic catalytic properties 

based on LFE parameters reveals two main classes of dynamic catalysts: (i) those optimized during quasi-

static conditions, where the oscillation frequency is sufficiently fast such that the activities of all surface 

species are approximately constant, and (ii) those optimized during “resonant” conditions, for which 

enhanced reaction rates and conversions are observed only within a finite resonance frequency band. Within 

quasi-static dynamic catalysis, we further identify two catalyst sub-types optimized via (i) symmetric or (ii) 

asymmetric oscillation waveforms. The distinction between symmetric and asymmetric quasi-static 

catalysts, and the disparate LFE parameters which define their classification, corroborate recent 

experimental and computational observations that suggest temporal asymmetry can be a powerful lever to 

enhance rate, conversion, and selectivity in dynamic catalysis.  

Derivation of closed-form expressions for rate and conversion enhancement during dynamic catalysis 

demonstrate that there is an intimate connection between the LFE parameters required to (i) overcome the 

Sabatier limit to turnover rate and (ii) circumvent thermodynamically-prescribed limits to conversion, 

quantified by comparison of the dynamic equilibrium constant, 𝐾dyn, to the thermodynamic equilibrium 

constant, 𝐾. We derive simple, closed-form expressions for 𝐾dyn under quasi-static conditions to 

demonstrate that 𝐾dyn is an exponential function of the oscillation amplitude. Thus, with the optimal LFE 

scaling parameters, a dynamic catalyst can theoretically drive any reaction to 100% conversion, regardless 

of stringency of limits set by reaction thermodynamics. Insights drawn from analytical expressions of 𝐾dyn 

extend to product selectivities for which we derive the exact conditions required for 100% selectivity of 

any specified intermediate or terminal species.  

 From detailed study of multiple dynamic catalytic systems, we conclude that the mechanism of 

resonance in dynamic catalysis is reaction-network specific and may require a case-by-case understanding 

to develop generalizable theories for identifying which conditions give rise to finite frequency bands with 

enhanced reaction rates. The necessary occurrence of resonance phenomena at conditions where the 

thermodynamic activities of species change more slowly than the frequency of oscillation requires 



40 
 

integration of differential equations to find time-averaged rates of reaction, which may not always have 

analytical solutions for non-linear reaction schemes. Furthermore, resonance-regime dynamic catalysis 

have been demonstrated to converge to multiple limit cycles (i.e. multiple dynamic steady states), 

introducing significant challenges that may arise in the analysis and control of interconnected and/or non-

linear reaction schemes. 
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