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1 Introduction

Over the past decade, researchers in computational chemistry have witnessed

a resurgence in the development and application of semi-empirical methods

for treating large chemical/material systems. In particular, the density func-

tional tight binding (DFTB) formalism1–4 has garnered immense popular-

ity for probing the electronic properties of biomolecules,5 molecules/clusters

with numerous conformations,6,7 and immense nanostructures.8 While classi-

cal molecular dynamics can handle hundreds of thousands of atoms, it cannot

provide a first-principles-based description of large systems at a quantum me-

chanical (i.e., electronic) level of detail. At the other extreme, conventional
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Kohn-Sham density functional theory (DFT) methods can access the true

quantum mechanical nature of matter, but they cannot tackle the large sizes

and complex chemical environments relevant to many of the large systems

mentioned previously. To bridge these immense size scales, the DFTB formal-

ism was developed to probe these chemical/materials systems with a viable

approach that is both computationally efficient and quantum mechanical in

nature.

While there have been a number of good reviews on DFTB,9–12 in this re-

view focuses on the application of DFTB to electronic-excited states, which

has attracted significant attention for extending this computationally effi-

cient approach to the time-domain. Although the field of chemical dynamics

is incredibly vast, we concentrate our attention on the application of DFTB

to real-time electron dynamics and non-adiabatic dynamics calculations. We

first give a brief discussion of the underlying theory in each of these areas,

followed by a didactic tutorial on simple molecules or model systems to show

how these computational approaches and techniques are carried out in prac-

tice. These simple tutorials are written in a stepwise, instructive fashion to

provide practicing researchers a detailed “look under the hood” to obtain a

deeper understanding of how these techniques can be used to understand,

probe, and even control the chemical dynamics of large systems. We then

conclude each of these respective sections with a “real-life” application of

these DFTB-based approaches on large dynamical systems to demonstrate

their usefulness in contemporary areas of chemistry and materials science.
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2 REAL-TIME TIME-DEPENDENT DFTB

(RT-TDDFTB)

2.1 Theory and Methodology

Over the past few years, the use of real-time time-dependent DFTB (RT-

TDDFTB) has attracted significant attention as a promising approach for

extending the DFTB formalism to the non-equilibrium electron dynamics of

extremely large chemical systems. As specific examples, this method has

been used to calculate photo-injection dynamics in dye-sensitized TiO2 so-

lar cells,13–15 optical properties of photosynthetic pigments,16,17 molecular

aggregates,18 graphene nanoflakes,19 DNA intercalation complexes,20 many-

body interactions in solvated nanodroplets,21 and excitation energy transfer

dynamics in plasmonic arrays.22,23 To carry out an RT-TDDFTB dynamics

calculation, one must first compute the ground-state Hamiltonian, overlap

matrix elements, and the initial single-electron density matrix within the

self-consistent DFTB approach. The open-source DFTB+ code24 provides a

practical way to obtain these quantities, and a more detailed description of

ground-state DFTB can be found in previous publications.25,26

Once the ground-state Hamiltonian, overlap matrix elements, and the

initial single-electron density matrix are calculated, they can be used as ini-

tial input conditions in subsequent real-time quantum dynamics calculations.

These RT-TDDFTB quantum dynamics calculations are carried out in prac-

tice by applying a time-dependent electric field to the initial ground state

density matrix, resulting in the Hamiltonian

Ĥ(t) = Ĥ0 − E0(t) · µ̂(t), (1)

where E0(t) is the applied electric field, and µ̂ is the dipole moment oper-

ator. Because the Hamiltonian in Eq. (1) is explicitly time dependent, the

density matrix, ρ̂, evolves according to the Liouville-von Neumann equation

3



of motion which, in the nonorthogonal-DFTB basis, is given by27

∂ρ̂

∂t
=

1

ih̄
(S−1 · Ĥ[ρ̂] · ρ̂− ρ̂ · Ĥ[ρ̂] · S−1) (2)

where Ĥ is the Hamiltonian matrix (which implicitly depends on the density

matrix), S−1 is the inverse of the overlap matrix, and h̄ is Planck’s constant.

Furthermore, because the quantum system is directly propagated in the

time domain, one can choose E0(t) to have any time-dependent form. For

example, if E0(t) is chosen to have the form of a Dirac delta function given

by

Edelta(t) = E0δ(t− t0), (3)

this “kick” perturbation instantaneously changes the velocity field of the

electrons and causes a time-varying dipole moment. As a result, the state

of the system is no longer an eigenfunction of the Hamiltonian. In practice,

Edelta is implemented as a linearly polarized Gaussian-type perturbation or

as a phase in the initial electron density28 given by:

Edelta(t) = E0exp

[
−(t− t0)2w2

2

]
n̂. (4)

where n̂ is the polarization vector. The temporal evolution of the density

matrix is carried out iteratively where the atomic charge on atom α is first

calculated using the Mulliken approximation:

qα =
∑
µ∈α

[ρ(t)S]µµ. (5)

Afterwards, the self-consistent charge Hamiltonian matrix is constructed as4

Hµν = 〈φµ|Ĥ0|φν〉+
1

2
S
∑
ξ

(γαξ + γβξ)∆qξ, (6)

where φµ are DFTB Slater-type orbital basis functions centered on the atomic
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sites, and γαξ is a function of the inter-atomic separation and the Hubbard

parameter U .29 Finally, the density matrix is updated using a three-point

integration algorithm:

ρ̂(t0 + ∆t) = ρ̂(t0 −∆t)− 2
i

h̄
˙̂ρ∆t+O[(∆t)2], (7)

which is accurate to order (∆t)2.

However, if one chooses E0(t) to take the form of a sinusoidal perturbation

given by

Elaser = E0sin(ωt), (8)

it represents a continuous interaction of the system with monochromatic

light (i.e., a laser) in the time domain, and this perturbation is added to the

Hamiltonian in the iterative procedure:

Ĥ(t) = Ĥ0 +
1

2

[
SV̂ (t) + V̂ (t)S

]
, (9)

where V̂ (t) is set to −E0sin(ωt) · µ̂(t) or the expression for the delta per-

turbation (Eq. (4)). It is worth mentioning that both of these different

choices for the electric field give different but complementary viewpoints of

quantum dynamics, as will be explained in both the tutorial and example

sections that follow. To more easily understand this entire procedure, the

following pseudocode flowchart shows the sequential steps for carrying out

an RT-TDDFTB electron dynamics calculation.30

In summary, the RT-TDDFTB algorithm commences by reading the fol-

lowing files from a ground-state DFTB+ calculation: the non-self-consistent

Hamiltonian matrix (H0), the self-consistent Hamiltonian matrix (HSCC), the

single-electron density matrix in the molecular orbital representation (ρMO),

and the overlap matrix (S). Next, the inverse of the overlap matrix (S−1) is

computed, and HSCC is diagonalized. The diagonalization of this matrix gives

the one-electron reduced density matrix of the ground state in the atomic
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Algorithm 1 Pseudocode for RT-TDDFTB dynamics
Read H0, HSCC, ρMO, and S from DFTB+ output files

Compute S−1

Solve equation: HSCCC = S C E

Calculate ρ0 = CρMOC
†

do i = 0 to N

t = i∆t

Compute q(t) (Eq. (5))

Compute H(t) (Eq. (6))

Add electric field to H(t)

Update ρ (Eqs. (2) and (7))

Compute electronic properties of the system.

end do

orbital basis.

2.2 Tutorial on RT-TDDFTB Electron Dynamics for

a Naphthalene Molecule

With the basic theoretical concepts of RT-TDDFTB outlined in the previous

section, we now give two tutorials showing how to (1) compute an absorption

spectrum of a simple naphthalene molecule and (2) probe the time-dependent

dynamics of naphthalene in the presence of monochromatic light (i.e., a laser

perturbation) using the RT-TDDFTB approach.

2.3 Absorption Spectrum for Naphthalene

As mentioned in the RT-TDDFTB theory and methodology section, a ground-

state DFTB+ calculation for naphthalene must be carried out first before

performing an RT-TDDFTB calculation. With the ground-state DFTB+

calculation for naphthalene properly converged, one obtains the non-self-
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consistent Hamiltonian matrix, the self-consistent Hamiltonian matrix, the

initial single-electron density matrix, and the overlap matrix as output files.

Next, to compute an absorption spectrum of naphthalene, 3 independent

simulations must be carried out in which the system is excited with a very

short electric pulse (i.e., a Dirac delta pulse) that is applied in 3 mutually

orthogonal directions to compute the polarizability tensor. Once the RT-

TDDFTB electron dynamics calculation finishes, the time-dependent dipole

moment is obtained, as shown in Fig. 1.
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Figure 1: Time-dependent dipole moment for a naphthalene molecule ob-
tained by applying a Dirac delta electric field pulse to the system.

In the limit of very weak perturbations, the system is said to be in the

linear response regime, and the induced dipole moment of the system is given

by

µ(t) =

∫ ∞
−∞

α(t− τ)E(τ)dτ (10)

where τ is the time difference between the electric field and induced dipole

moment, E is the electric field used to induce a rearrangement of charges

inside the system, and α is the polarizability tensor. The quantity most

easily accessible experimentally is the photo-absorption cross section given
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by:

σ(ω) =
4πω

c
Im(α), (11)

where c is the speed of light, and Im(α) is the imaginary part of the aver-

age polarizability. Im(α) is obtained by the application of the convolution

theorem, and Eq. (10) can be expressed in the frequency domain as

µ(ω) = α(ω)E(ω). (12)

To mimic the experimental absorption spectrum within this formalism, a

damping term is typically included in Eq. (12). This effectively incorporates

a finite lifetime of the excited state in the response function, which produces a

broadening in the absorption spectrum peaks31,32. The damping factor used

in this tutorial on naphthalene is 0.01 fs−1 (see left panel of Fig. 2). This

approach gives the polarizability along the direction of the initially applied

field, and the full polarizability tensor is obtained from three independent

time propagations where the only quantity that is altered is the direction of

the external electric field.33 The average of the polarizability along the three

Cartesian axes is taken as the absorption spectrum of naphthalene, as shown

in the right-hand side of Fig. 2.
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Figure 2: (left) Damped time-dependent dipole moment for a naphthalene
molecule, and (right) absorption spectrum for naphthalene obtained from the
Fourier transform of the damped time-dependent dipole moment.
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2.4 Electron Dynamics of Naphthalene with a Laser-

Type Perturbation

With the absorption spectrum of naphthalene properly computed, one can

apply a laser-type perturbation tuned to the lowest excitation energy (i.e.,

5.63 eV) of the system. As in the case of the Dirac delta pulse, one can

also set the polarization of the laser field to any orientation with respect to

the molecule; however, for this example on naphthalene, we have oriented

the laser field in the direction of maximum polarizability to produce the

maximum variation of the dipole moment as a function of time, as shown in

Fig. 3.
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Figure 3: Time-dependent dipole moment for a naphthalene molecule ob-
tained by applying a laser field tuned to the lowest excitation energy (5.63
eV) of the system.

It can be noted from Fig. 3 that the naphthalene molecule exhibits a

linearly increasing dipole moment, as expected from a quantized system in

the linear response regime that is continuously excited and in the absence of

any dissipative mechanisms.34 As such, this can be used to check that the

laser is in tune with the electronic excitation energy and that the simulation

is indeed in the linear response regime.
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2.5 RT-TDDFTB Electron Dynamics of a Realistic Large

Systems

In this final section on RT-TDDFTB dynamics, we give an example of the

techniques used in the previous tutorial section on a “real-life” application to

a large system. In particular, we focus on the real-time electron dynamics of

excitation energy transfer (EET) in a large plasmonic nanoantenna system

using the RT-TDDFTB formalism.22,23 Understanding and achieving a con-

trolled transfer of energy in these novel systems has been a continual area of

interest in various technologies including nanophotonic circuits,35–38 waveg-

uide materials,39–41 and other natural light-harvesting antenna systems.42,43

Absorption Spectrum of a Single Plasmonic Nanoparti-

cle

We begin our analysis of EET by first characterizing the plasmon resonance

energy of a single nanoparticle (NP) containing 55 silver atoms and having an

icosahedral shape. The geometry of this NP was optimized with the DFTB+

package using the hyb-0-2 set of DFTB parameters (available at dftb.org),

and its absorption spectrum was obtained in the same manner as described

in the tutorial section on naphthalene. As can be seen in Fig. 4, a prominent

peak, corresponding to the plasmon resonance is observed around 3.23 eV.

This result is in good agreement with a time-dependent density functional

theory (DFT) calculation of 3.6 eV44 and a recent experimental result of 3.8

eV45 for similar-sized Ag nanoparticles.

Exploring Excitation Energy Transfer in Ag Nanopar-

ticle Chains

With the energy of a single Ag nanoparticle characterized, we can now pro-

ceed to an analysis of EET in plasmonic NP assemblies. Accordingly, we can
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Figure 4: Absorption spectrum of a 55 atom icosahedral silver nanoparticle.
A prominent plasmon resonance peak is observed around 3.23 eV. Source:
from Ref. 23 with permission from The Royal Society of Chemistry.

use the single Ag NP to construct a variety of NP antenna configurations,

each with interparticle distances (d) varying from 5 to 0.5 Å. We define the

interparticle distance as the edge-to-edge distance between the NPs, and two

of the model NP waveguides are shown in Fig. 5. We can also construct a

NP chain where the NPs “touch” each other (d = 0 Å) in which the center-

to-center distance between two atoms from adjacent NPs is less than the

Ag-Ag bond-forming distance (the Ag-Ag atom bond length is 3.00 Å). Note

that each of these chains are extremely large systems containing a total of

440 atoms and, therefore, would be computationally prohibitive to calculate

with conventional real-time TDDFT approaches.

To simulate EET along the NP chains, we excite only the first Ag NP in
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Figure 5: Pictorial representation of two finite chains with 8 Ag NPs of
radius ≈ 1.23 nm and interparticle (edge-to-edge) distances equal to (a) 1 Å
and (b) 5 Å. Source: from Ref. 23 with permission from The Royal Society
of Chemistry.

the chain using a monochromatic laser (using a similar approach discussed in

the tutorial section) with an energy equal to the plasmonic resonance energy

of a single Ag NP (3.23 eV). With this chosen initial condition, the entire

system is allowed to evolve in time according to Eq. (2). To quantify the

EET efficiency along the chain, we can compute the electric field intensities,

I =
√
ε0/µ0 × |E|2, at identical points between each of the NPs along the

axial direction shown in Fig. 6. E is the total electric field, and ε0 and µ0

are the permittivity and permeability of free space, respectively.

Fig. 7 shows the intensity trends of the NP chains with interparticle

distances ranging from 0 to 5 Å. From the intensity trends in Fig. 7, we

observe a monotonic increase in the EET efficiency (i.e., the slope of the

intensity lines decreases) as the interparticle distance is reduced from 5 to

about 2 Å. This result is in qualitative agreement with previous studies on

similar systems using classical electrodynamic methods.46,47 This increase
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Figure 6: The field intensity values are taken at identical positions in each
nanoparticle chain as shown by the black dots. The points lie exactly between
two nanoparticles and on a line approximately 1 Å below the lowest atom in
the NP. Source: from Ref. 23 with permission from The Royal Society of
Chemistry.

in EET efficiency can be attributed to an increase in capacitive coupling

between the Ag NPs as the interparticle distance between them is reduced.

In other words, this phenomenon is analogous to a charged capacitor,48 where

the capacitance of a capacitor increases as the charged plates are brought

closer together. However, as the interparticle distance is further reduced

below 2 Å, we observe an opposite trend of the EET efficiency. In particular,

we see a sudden drop in EET efficiency for interparticle distances below 2 Å

(i.e., the slope of the intensity line increases). This result is qualitatively

opposite to what has been predicted by previous computational studies that

have observed a decrease in EET when the NPs directly touch each other.46,47

Analyzing the Electronic Couplings in NP Chains

To understand these interesting dynamical effects, we can use RT-TDDFTB

to analyze in detail the electronic couplings between the NPs in the plasmonic

chain. To this end, we plot the RT-TDDFTB absorption spectra of Ag NP

dimers with varying interparticle distances in Fig. 8. On careful observation

of Fig. 8, we note that a single prominent peak, close to the value of the

single NP plasmonic energy, can be observed for all interparticle distances.

However, for interparticle spacings less than 2 Å, an additional peak (marked

with arrows in Fig. 8) forms in the absorption spectrum. The prominent
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Figure 7: Field intensities along silver NP chains with varying interparti-
cle distances. The first nanoparticle in each of the chains is excited at the
plasmon resonance energy, and the intensity values are computed at the in-
terparticle gaps of the NPs as shown in Figure 6. The excitation energy used
in the simulation is equal to the plasmon resonance energy of the single Ag
nanoparticle. A drastic drop in the field intensity is seen for Ag chains with
interparticle spacings less than 2 Å. Source: from Ref. 23 with permission
from The Royal Society of Chemistry.

peak normally arises due to interactions (hybridizations) between the basic

plasmon resonances of the elementary nanostructures (in this case, the single

Ag NP). This excitation is the bonding (symmetric) mode, normally known

as the Bonding Dipole Plasmon, or BDP, and is characterized by charge

oscillations of the NPs in phase with each other.49 The other peak appearing

at lower energies and smaller interparticle distances is normally observed

when an optical-frequency conductive pathway is established between two

NPs, enabling the transfer of charge between them. This conductive pathway

can be physical, due to a physical bridge or due to quantum tunneling. This
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is known as a Charge Transfer Plasmon, or CTP.50 Unlike the BDP, the CTP

is characterized by a total charge moving between the two nanoparticles of

the dimer, which we observe as the lower-energy peak in our absorption

spectrum. In our case of non-touching NPs, the CTP excitation can be

attributed completely to quantum tunneling that establishes a conductive

pathway between the two NPs of the dimer. While charge transfer plasmons

have been previously observed theoretically in DFT and quantum-corrected

classical models,48,50,51 this is the first example of predicting CTPs using

RT-TDDFTB calculations.

Figure 8: Absorption spectrum for Ag NP dimers with varying interparticle
separations. An additional lower-energy peak (corresponding to a charge
transfer plasmon excitation) emerges in the absorption spectrum for dimers
having an interparticle spacing less than 2 Å, denoted by arrows. Source:
from Ref. 23 with permission from The Royal Society of Chemistry.
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Investigating the Nature of Plasmonic Excitations

To understand these drastic drops in EET efficiency for smaller interparticle

spacings, we need an intuitive way to analyze these excitations. Fig. 9 shows

the charge distributions and the time-dependent changes in Mulliken charges

for the NP dimer with an interparticle spacing of 1 Å. In the panels of this fig-

ure, we compare the time-dependent dynamics when the NP dimer is excited

at either the BDP or CTP energy peak. When the NP dimer is excited at the

CTP peak, one of the NPs shows a predominantly positive charge, while the

other one shows a negative charge (Fig. 9(a)). The time-dependent changes

in Mulliken charges confirm this observation in Fig. 9(c). This behavior is

characteristic of a CTP excitation, where an oscillating current occurs be-

tween the two NPs of the dimer. Also note in Fig. 9(a) that we observe a

slight dipolar nature of charge distributions near the particle edges. This can

be attributed to the atomistic treatment of the nanoparticles, whereby the

charge transfer plasmon induced on the nanoparticle dimers also establishes

a small opposing dipole on the inner edges of the same nanoparticles due to

inter-atomic electrodynamic interactions.

However, when the NP is excited at the BDP peak, we observe some

charge transfer from one NP to the other, which is uncharacteristic of a BDP

excitation.22 In particular, we observe that at subnanometer interparticle

spacings, the pure BDP excitation forms a hybridized excitation that has

some CTP character. As such, the decrease in the EET efficiency in smaller

interparticle spacing chains can be attributed to the formation of this hy-

bridized BDP. Because the hybridized BDP allows for a small charge transfer

between the NPs, it reduces the capacitive coupling between the NPs. Going

back to the capacitor analogy used previously, this can be thought of as a

leaking capacitor. This, in turn, is ultimately responsible for the reduction in

capacitive coupling between the NPs and hence the drop in EET efficiency,

as revealed by these RT-TDDFTB calculations.
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Figure 9: Snapshot of charge distributions at one instance in time for a Ag
NP dimer with an interparticle distance equal to 1 Å excited at (a) the CTP
peak and (b) the BDP peak. The CTP peak distributions show a total charge
separation between the two NPs, while the BDP peak distributions show
dipolar charge distributions within each of the NPs. The time-dependent
changes in Mulliken charges are shown for the (c) CTP and (d) BDP peak
for the same Ag NP dimer. For both the CTP and the BDP excitations, a
net charge fluctuation is seen between the NPs, which indicates a hybridized
nature of the BDP peak at subnanometer spacings. Source: from Ref. 23
with permission from The Royal Society of Chemistry.

17



3 DFTB-BASED NONADIABATIC ELEC-

TRON DYNAMICS

3.1 Adiabatic Vs. Nonadiabatic Dynamics

Until now, we have highlighted the use of RT-TDDFTB to probe the elec-

tron dynamics of large systems in external electric fields where the nuclei are

held fixed. However, in this section, we discuss and give examples where this

constraint is relaxed, and the nuclei are allowed to evolve nonadiabatically

on different potential surfaces. We first give a general overview of nonadia-

batic dynamics and present a specific example of how DFTB can be further

extended to give mechanistic insight in these excited-state processes.

In conventional electronic structure methods (such as DFT or even DFTB),

one can solve the time-independent Schrödinger equation (TISE), ĤΦ = εΦ,

for a given set of nuclear coordinates (R). Specifically, the electronic Hamil-

tonian is diagonalized to obtain a set of eigenvectors and eigenvalues that

depend on the nuclear coordinates and, therefore, are known as the adiabatic

eigenvectors and eigenvalues. When the TISE is solved for several sets of nu-

clear coordinates, we obtain the adiabatic potential energy surfaces (PESs).

In many chemical reactions, the wavefunction of the entire system can

be expressed as a single adiabatic potential energy surface (instead of a lin-

ear combination of several adiabatic surfaces). Often, this adiabatic PES

corresponds to the ground-state of the species involved in the chemical re-

action. For example, when we draw a reaction path depicting the transfor-

mation of the reactants (HCl + C2H5Br) into the products (HBr + C2H5Cl)

through a transition state (C2H5BrCl), we inherently assume that these re-

actions occur along the ground-state PES (through a specific reaction coor-

dinate). These chemical processes, where the wavefunction is confined to a

single PES, are termed as adiabatic processes (see left panel of Fig. 10) and

can be accurately described by the TISE (i.e., when the nuclear dynamics
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are governed by a single adiabatic PES, it is within the realm of the adia-

batic dynamics). Born-Oppenheimer molecular dynamics and Car-Parrinello

molecular dynamics are examples of such ab-initio adiabatic dynamics, and

many electronic structure packages such as CP2K,52 Quantum Espresso,53

VASP,54 SIESTA,55 NWChem,56 and DFTB+57 are routinely used by many

researchers to calculate on-the-fly adiabatic dynamics.

Ex
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Reaction Coordinate

Adiabatic

Ex
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gy

Reaction Coordinate

Nonadiabatic

Figure 10: In an adiabatic processes (left panel), the wavefunction of the
entire system is confined to a single PES, typically the ground-state (GS)
surfacce. In a nonadiabatic process (right panel), the electronic amplitudes
of the wavefunction will evolve over many PESs (i.e., the wavefunction is
expressed as a linear combination of several adiabatic states).

In contrast to adiabatic dynamics, in most photochemical processes, the

wavefunction of the entire system spans several PESs. A well-known example

of this is fluorescence (i.e., the decay of a system from an excited (Ex) to the

ground state (GS) by emitting radiation), and the wavefunction of the entire

system cannot be solely described as either the ground or excited state, but

can only be expressed as a superposition of these states. These processes,

where the electronic amplitudes of the wavefunction evolve over many PESs,

are known as nonadiabatic processes (right panel of Fig. 10). Furthermore,

the nuclear motion that is described by several adiabatic PESs is known as

nonadiabatic molecular dynamics (NAMD). Compared to adiabatic dynam-
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ics, only a few software packages such as Q-Chem58 and Octopus33 have im-

plemented direct on-the-fly nonadiabatic molecular dynamics (i.e., the entire

NAMD simulation can be performed within the same package). Although

direct on-the-fly implementations are scarce, many software packages such

as PYXAID,59 NEWTON-X,60 SHARC,61 QMFlows,62 and LIBRA63 have

implemented various NAMD methods. Also, most of these packages have

an interface with traditional electronic structure packages such as Quantum

Espresso and others, enabling us to perform NAMD calculations on both

molecular and periodic systems. In this review, we present a tutorial and ex-

ample of the Fewest-Switches Surface Hopping method (a NAMD method),

which we implemented in the DFTB+ software package.

To accurately capture nonadiabatic effects, a full quantum mechanical

treatment of both the electronic and nuclear degrees of freedom is necessary.

However, such a treatment is computationally prohibitive even for systems

with moderate sizes (∼ 50-100 atoms). To circumvent this computational

burden, only the electrons are treated quantum mechanically, and the nuclear

motion is described classically. Among these so-called “mixed quantum-

classical” approaches, the Fewest-Switches Surface-Hopping (FSSH) method

is one of the most popular methods, and in this review, we use it to study

the nonadiabatic electron dynamics in organic systems.

3.2 Equations Governing Nonadiabatic Electron Dy-

namics

In any mixed quantum-classical (MQC) method, the electron dynamics is

captured by a time-dependent total wavefunction, Ψ(r, t), which satisfies the

time-dependent electronic Schrödinger equation (TDSE):

ih̄
∂

∂t
|Ψ(r, t)〉 = Ĥel(r,R(t))|Ψ(r, t)〉. (13)

Here, Ĥel(r,R(t)) is the electronic Hamiltonian operator for a set of nu-
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clear coordinates, R, at time t. Using an electronic structure method such as

DFT, the electronic Hamiltonian can be solved to obtain the adiabatic eigen-

vectors Φi(r,R(t))〉 and eigenvalues εi(R(t)). These adiabatic eigenvectors

can correspond to molecular orbitals, Slater determinants, etc., depending on

the employed electronic structure method. Accordingly, the corresponding

eigenvalues can represent the molecular orbital energies, ground or excited

state energies, etc.

By assuming that these adiabatic eigenvectors form a complete orthonor-

mal basis, we can express the total wavefunction as their linear combination,

i.e.,

|Ψ(r, t)〉 =
∑
i

ai(t)|Φi(r,R(t))〉. (14)

Inserting the above ansatz (Eq. (14)) into the TDSE (Eq. (13)), and multi-

plying the resulting expression with 〈Φj(r,R(t))| from the left gives us the

following differential equation:

ȧj(t) = − i
h̄
aj(t)εj(R(t))−

∑
i

ai(t)〈Φj(t)|
∂

∂t
Φi(t)〉. (15)

In this expression we have used the shorthand notation |Φi(t)〉 ≡ |Φi(r,R(t))〉,
and the non-adiabatic coupling elements, Cji ≡ 〈Φj(t)| ∂∂tΦi(t)〉 are related to

the derivative coupling vectors, dji, through

Cji = Ṙ〈Φj(r,R(t))|∇R|Φi(r,R(t))〉 ≡ Ṙdji. (16)

It is important to note that the coupling elements, Cji, are responsible

for the nonadiabatic electronic transitions between any two adiabatic states

j and i. Integrating Eq. (15) gives us the wavefunction coefficients, aj(t),

at each time-step, allowing us to completely specify the total wavefunction,

|Ψ(r, t)〉 (we already know the adiabatic eigenfunctions at each nuclear step

by solving the TISE). As a reminder, the set of {|Φp(r,R(t))〉} is known as

an adiabatic basis because it explicitly depends on the nuclear positions, R.
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3.3 The Classical Path Approximation

As mentioned earlier, in MQC methods, the nuclei are propagated according

to classical mechanics, and the forces acting on the nuclei at each nuclear

time-step can be obtained using the Hellmann-Feynman theorem:

FI = −〈Ψ(r, t)|∇IĤel(r,R(t))|Ψ(r, t)〉. (17)

Thus, the changes in the total wavefunction with time will have a direct

influence on the nuclear motion. Often, to decrease computational costs, the

electronic “back reaction” on the nuclear motion is neglected, and this ap-

proximation is known as the classical path approximation (CPA). As such,

within the CPA, the nuclear motion is not affected by the electron dynamics.

Nonetheless, the electron dynamics still depends on the nuclear coordinates

(due to the parametric dependence of the adiabatic eigenvectors on the nu-

clear coordinates at each time-step), and the CPA is generally valid when

the ground and excited state PESs differ slightly.
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Figure 11: Number of trajectories in the excited (NEx) and ground state
(NGS) at times (a) t = 0, (b) t = 1, satisfying the fewest switches criterion,
and (c) t = 1, without satisfying the fewest switches criterion. Trajectories
that are present in the excited (ground) state at time t = 0 are shown in
gray (black) to emphasize the fewest switches criterion at time t = 1.
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3.4 Surface Hopping and Fewest Switches Criterion

Surface hopping is a general MQC nonadiabatic dynamics methodology with

many variants, such as Fewest Switches Surface Hopping (FSSH),64,65 Deco-

herence Induced Surface Hopping (DISH),66 Independent Electron Surface

Hopping (IESH),67 and others.68 The similarities in most of these variants

include the following:

1. The nuclei are propagated according to classical mechanics, and the

forces on the nuclei, at any given instant of time, arise from a single

adiabatic PES.

2. The nonadiabatic electron dynamics are captured by evolving the wave-

function using a stochastic algorithm for each trajectory and by aver-

aging the results over a swarm of trajectories.

For each Surface Hopping (SH) trajectory, we start our simulation from a

single adiabatic PES (known as the active state). Next, we compute the

probabilities for an electron to hop from this active state to all the other

states (i.e., the adiabatic PESs). These computed probabilities are then

compared with a uniformly generated random number. If the probability to

jump from the active state to any other state is greater than the generated

random number, the hop is accepted; otherwise, it will be rejected. This

process is repeated for a swarm of trajectories, and the results are averaged

over them to obtain the electron dynamics (as further explained in the next

section).

Among the variants of surface hopping approaches, the FSSH method is

the most successful.59,68–71 In this method, the number of hops (switches)

between the states is minimized, as described in the following example. Let

us assume that our system has only two states or PESs (namely, ground and

excited states), and we are running 10 surface hopping trajectories. Let us

also consider that at a particular instant of time (say, t = 0), 5 of these 10

trajectories are in the excited state, while the other 5 are in the ground state;
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i.e., [NGS, NEx] = [5, 5] (see Fig. 11a). Finally, let us assume that in the next

time step (t = 1), there are six trajectories in the ground state (NGS = 6),

and four in the excited state (NEx = 4). We can obtain this configuration,

[NGS, NEx] = [6, 4], in several ways including: (1) switching 3 trajectories

from the excited state to the ground state, and only 2 trajectories from the

ground to the excited state (Fig. 11c) or (2) allowing 2 trajectories to hop

from the excited state to the ground state, and only 1 trajectory to hop

from the ground to the excited state, and so on. There will always be a way

to achieve the desired configuration with the least number of switches/hops

between the potential energy surfaces. To achieve the desired configuration

with minimum switches in the present example, only 1 trajectory in the

excited state should switch to the ground state, and zero trajectories should

switch from the ground state to the excited state (Fig. 11b). This criterion is

known as the fewest-switches (FS) criterion, and using this constraint, Tully

proposed the FSSH mechanism to capture nonadiabatic electron dynamics

phenomena. We use the CPA version of FSSH in conjunction with DFTB

(as the underlying electronic structure method), as explained below.

3.5 Implementation Details of CPA-FSSH-DFTB

To understand charge transfer dynamics in large organic photovoltaic sys-

tems, we use the CPA-FSSH method in the DFTB+ software package (ver-

sion 17.1). In particular, we use the DFTB3 variant72 as our electronic struc-

ture method to obtain the adiabatic eigenvectors and eigenvalues at each nu-

clear time step. For this implementation, we assume that the photoinduced

excited state dynamics can be well described with a single-electron wave-

function. Hence, we adapt the single particle version of the time-dependent

Kohn-Sham (TDKS) approximation,73 which assumes the time-dependent

excited state wavefunction |Ψ(r, t)〉 can be represented as a linear combina-

tion of the ground state KS orbitals |Φi(r,R(t))〉, as given in Eq. (14). This

definition of |Ψ(r, t)〉 has been shown to provide reasonable photoinduced
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charge transfer dynamics.74–78 Using the above definition, Eq. (15) can be

numerically integrated using the fourth-order Runge-Kutta (RK4) method

to obtain the expansion coefficients, ai(t), at each time step. During the

integration, to compute the non-adiabatic coupling elements (Eq. (16)), we

use the following well-established approximation64

〈Φj(t)|
∂

∂t
Φi(t)〉 =

1

2τ

[
〈Φj(t)|Φi(t+ τ)〉 − 〈Φj(t+ τ)|Φi(t)〉

]
. (18)

This quantity needs to be carefully calculated by following the random phases

generated during the electronic structure calculations to obtain the adiabatic

eigenvectors, |Φi(r,R(t))〉.79–81 In DFTB+, these eigenvectors (MOs) are

expanded as a linear combination of the atomic orbitals (AOs); i.e.,

|Φi(r,R(t))〉 =
∑
µ

Cµi(r,R(t))|ϕµ(r,R(t))〉, (19)

and in Eq. (18), the overlap between the adiabatic basis at two different time

steps is computed as

〈Φj(r,R(t+ τ))|Φi(r,R(t))〉 =
∑
µν

Cµj(r,R(t+ τ))Cνi(r,R(t))Sµν(t+ τ, t).

(20)

Here, Sµν(t + τ, t) is the overlap between two atomic orbitals (AOs) at two

different time steps

Sµν(t+ τ, t) = 〈ϕµ(r,R(t+ τ))|ϕν(r,R(t))〉 . (21)

These AO overlap integrals are explicitly evaluated with our in-house version

of the DFTB+ code.

After obtaining the eigenvectors, eigenvalues, wavefunction expansion co-

efficients, and the coupling elements at each time step, the surface hopping

simulation is carried out using the CPA-FSSH scheme proposed by Akimov
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and Prezhdo,59 which is an adaptation of the original FSSH scheme proposed

by Tully and Hammes-Schiffer (with some modifications).64 In CPA-FSSH,

an instantaneous active state is assigned and the probability of switching

from the current state, |Φi(r,R(t))〉, to any other state, |Φj(r,R(t))〉, during

a small time interval, t ∈ [t, t+ δ] is calculated as

g̃ij(t) = −
2Re

[
ρij(t)〈Φj(t)| ∂∂tΦi(t)〉

]
ρii(t)

δt, (22)

where, ρij(t) = a∗i (t)aj(t) are the adiabatic electronic density matrix ele-

ments. Because of the classical path approximation, one can ignore the back

reaction of the electronic-non-adiabatic transition on the nuclear degrees of

freedom. Hence, we do not re-scale the velocity, which is one of the key ingre-

dients in the original FSSH algorithm. Instead, following earlier work,59,82

the transition probabilities are rescaled to preserve the energy conservation

with the following expression:

gij(t) = max

[
g̃ij(t) ∗ bij(t), 0

]
(23)

with bij(t) = e−(εj−εi)/kBT for εj > εi, and bij(t) = 1 for εj ≤ εi, where

kB is Boltzmann’s constant, and T is the temperature of the system, which

is assumed to be constant during the non-adiabatic dynamics. Eq. (23)

considers only the positive probability flux. Finally, a switch from the state

|Φi(r,R(t))〉 to any other state, |Φj(r,R(t))〉, is accepted only when

k=j−1∑
k=1

gik < ξ ≤
k=j∑
k=1

gik, (24)

where ξ is a uniform random number between 0 and 1.

An ensemble of CPA-FSSH trajectories are generated by propagating the

nuclei using Eq. (17), by computing the electronic amplitudes using Eq.

(15), and by determining the active state using Eq. (24).
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3.6 Post-processing Tools

With the generated ensemble of CPA-FSSH trajectories, we compute the

adiabatic reduced density matrix as

ρ̄ij(t) = 〈ρij(t)〉 (25)

where 〈...〉 represents the ensemble average. The estimator, ρij(t), is ex-

pressed as

ρii(t) = 〈Φi(r,R(t))|Φα(r,R(t))〉 = δiα (26)

ρij(t) = a∗i (t)aj(t) (for i 6= j).

Here, the diagonal elements of ρ̂ (i.e., ρii(t)) are chosen based on the active

state |Φα(r,R(t))〉. Along a specific trajectory, R(t), the instantaneous pop-

ulation at time t is considered as 1 for the active state |Φα(r,R(t))〉, and 0

for all other states. The off-diagonal elements are computed based on the

wavefunction expansion coefficients, aj(t).

Apart from the above adiabatic populations, we also need the time-

dependent diabatic/charge populations, on each moiety of the entire system,

to characterize the photo-induced charge transfer dynamics. The charge pop-

ulation on a specific fragment is obtained by projecting the adiabatic reduced

density matrix onto the AO basis associated with that molecular fragment,

N , as:

PN(t) = Re

[ ν∑
µ∈N

∑
ij

ρij(t)Cµi(t)Sµν(t)Cνj(t))

]
, (27)

where Sµν(t) = 〈ϕµ(r,R(t))|ϕν(r,R(t))〉 is the AO overlap matrix at time t.

The expectation value of the charge population is thus

P̄N(t) = 〈PN(t)〉, (28)

where 〈...〉 represents the ensemble average over the CPA-FSSH trajectories.
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4 Computational Details

To describe nonadiabatic electron dynamics in large organic systems, we use

the mixed quantum-classical CPA-FSSH method in conjunction with DFTB,

which has been shown to give accurate electronic structures for model or-

ganic photovoltaic systems83,84. The electronic structure calculations are

performed at the DFTB3 level of theory72 with the 3ob-3-1 Slater-Koster

parameter set85 as implemented in the DFTB+ package57. Dispersion inter-

actions between the atoms are incorporated using the Lennard-Jones poten-

tial with UFF parameters86.

The initialized wavefunction, |Ψ(r, 0)〉, is the LUMO of the donor moiety,

|ΦD
LUMO〉, which is a widely used approximation for simulating photoinduced

charge transfer dynamics.74,75 Here, the LUMO of the donor moiety is ob-

tained from a separate DFTB calculation performed for the isolated donor.

From the set of eigenvectors (MOs) of the entire system at the zeroth time-

step, {|Φi(r;R(0))〉}, an MO maximizing the overlap 〈ΦD
LUMO|Φi(r;R)〉 is

selected.

As explained above, the wavefunction |Ψ(r, 0)〉 at the initial time-step is

represented as one of the MOs of the entire system. This choice provides

a reasonable single-electron picture of the localized photo-excitation in the

system. At all other time-steps, to reduce computational cost, the size of the

MO basis is truncated to a smaller set containing the LUMO to LUMO+9

orbitals, which are low-lying orbitals that participate directly in the photo-

induced charge transfer process.

Several nuclear configurations are then generated with the following pro-

cedure. First, the system is equilibrated in an NVT ensemble for 50 ps

with a 1 fs nuclear time step using the Nosé-Hoover chain thermostat as

implemented in the DFTB+ package. From this NVT trajectory, 30 differ-

ent nuclear conditions (coordinates and velocities at every 1 ps interval) are

collected for the subsequent 4 ps-long quantum dynamics propagation. For

each of these 30 nuclear trajectories, 104 FSSH trajectories should be carried
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out to achieve convergence. To compute the charge transfer population, an

ensemble average over both the FSSH and nuclear trajectories is considered.

5 An Example on Charge Transfer Dynamics

in Organic Photovoltaics

Earlier, we provided an overview of our implementation of mixed quantum-

classical CPA-FSSH DFTB for treating CT dynamics. Here, we illustrate

the CT dynamics of Phenyl-C61-butyric acid methyl ester/Polythiophene

(PCBM-PT), which is a model system for understanding photo-induced charge

transfer dynamics in organic photovoltaics.87–90

Figure 12: Variations in the energies of the LUMO to LUMO+5 orbitals
(adiabatic states) of Phenyl-C61-butyric acid methyl ester/Polythiophene
(PCBM-PT) system are shown for a specific nuclear trajectory. Changes in
the energy of the active state for a specific FSSH trajectory are also shown.
For this FSSH trajectory, the active state switches between the LUMO+3
and LUMO+4 during the first 300 fs of the simulation. Later, it switches
to the LUMO+2, the LUMO+1, and finally to the LUMO. Note that, ten
thousand FSSH trajectories are considered for each nuclear trajectory.

The simulation begins by initializing the entire system’s wavefunction,

|Ψ(r, 0)〉, by populating the LUMO of the PT molecule, |ΦPT
LUMO〉, and al-
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Figure 13: Charge density of the active state in Fig. 12 at various time steps.
Carbon and Hydrogen (Oxygen and Sulfur) atoms are represented using gray
and white sticks (balls), respectively. The charge density is shown as a black
mesh. An iso-value of 0.001 e/(Bohr)3 is used.

lowing it to evolve for a few picoseconds according to the CPA-FSSH-DFTB

methodology. In Fig. 12 the time-dependent MO energies of the LUMO to

LUMO+5 are displayed for a single CPA-FSSH nuclear trajectory during

the first 500 fs. Variations in the active state as a function of time for a

single FSSH trajectory are also provided in the same panel. At 0 fs, the

active state corresponds to the LUMO+3 orbital of the entire system; i.e.,

|Ψ(r, 0)〉 ≡ |ΦPCBM−PT
LUMO+3 〉, which is primarily localized on the PT molecule

(|ΦPCBM−PT
LUMO+3 〉 ∼ |ΦPT

LUMO〉) as shown at the left of Fig. 13. In contrast, the

LUMO+2 and LUMO+4 orbitals are localized on the PCBM molecule. As

the simulation proceeds, the LUMO+3 continues to be the active state un-

til ∼ 50 fs. At this stage, the active state hops from the LUMO+3 to the

LUMO+4, but quickly returns to the LUMO+3. At the avoided crossings

of the LUMO+3 and LUMO+4 (∼ 50 or 190 fs), we find that both of these

orbitals have a mixed character, as shown at the center of Fig. 13. Hops

between the LUMO+3 and LUMO+4 are also observed until 300 fs. There-

after, the active state switches to the low-lying LUMOs (which have a strong

PCBM character) and retains its acceptor character until the end of the sim-

ulation (as shown at the right of Fig. 13). The hops between the LUMOs
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correspond to the nonadiabatic transitions.

Figure 14: (a) Adiabatic MO and (b) charge population of the PCBM-PT
system for a single nuclear trajectory. The same nuclear trajectory as in
Fig. 12 is used, but the results are averaged over 10,000 FSSH trajectories.
MO colors in (a) are the same as in Fig. 12. Due to the nonadiabatic
transitions between the various states, the MO populations change with time.
For this nuclear trajectory, an oscillation in the MO population between the
LUMO+3 (localized on PT) and LUMO+4 orbitals (localized on PCBM) is
observed during the first 100 fs. The same oscillation is also reflected in the
charge population plot (panel b), where the gray and black curves represent
the charge populations of the PT and PCBM molecules, respectively.

In Figs. 14a and b, we present the adiabatic MO and charge popula-

tions calculated for the same nuclear trajectory in Fig. 12, but averaged over

10,000 FSSH trajectories. Due to the nonadiabatic transitions between the

various states, the MO populations change with time. However, due to the

stochastic nature of the method, these changes are not smooth if we con-

sider only a single CPA-FSSH nuclear trajectory. For example, as shown

in Fig. 14a, at 0 fs, the MO population is entirely on LUMO+3. However,

as shown in Fig. 12, until ∼ 300 fs, an active state can continuously hop

between the LUMO+3 (localized on PT) and LUMO+4 orbitals (localized

on PCBM) due to the presence of several avoided crossings between these
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MOs for this nuclear trajectory. Due to these continuous hops, the MO

population oscillates, and the same oscillation is also reflected in the charge

population (Fig. 14b). Note that, although the same nuclear trajectory is

used in obtaining both Figs. 12 and 14a, a one-to-one comparison cannot

be made between them. This situation arises because the results in Fig. 14a

are averaged over 10,000 FSSH trajectories, whereas the results in Fig. 12

are presented for a single FSSH trajectory. Since the MO energy fluctuations

are same for all the 10,000 FSSH trajectories, understanding the nature of

a single FSSH trajectory could be useful in understanding the averaged be-

havior of ten thousand FSSH trajectories. Finally, it is important to note

that one cannot accurately assign the charge transfer time-scales using the

oscillating charge populations; to obtain any meaningful results, one needs

to run at least a few tens of nuclear trajectories.

Figure 15: (a) Adiabatic MO and (b) charge population of the PCBM-PT
system, averaged over several nuclear and FSSH trajectories. The colors
in panel (a) are the same as those used in Fig. 12. The LUMO+3 orbital
(localized on PT) loses its population to the LUMO and LUMO+1 orbitals
(localized on PCBM), suggesting a charge transfer from the donor to the
acceptor. The gray and black curves in panel (b) denote the populations of
the PT and PCBM molecules, respectively.

.
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The MO and charge populations obtained after averaging over 30 nu-

clear trajectories and 10,000 FSSH trajectories for each nuclear trajectory

are depicted in Fig. 15. In Fig. 15a, the decaying MO population corre-

sponds to the PT-donor molecular orbital (the LUMO+3) while the increas-

ing MO populations correspond to the PCBM-acceptor orbitals (the LUMO

and LUMO+1). Due to the presence of more than one acceptor orbital, the

increasing MO populations continued to exhibit minor oscillations. However,

as both of these MOs correspond to the PCBM moiety, such oscillations are

not present in the charge populations (recall that the charge populations

are obtained by projecting the adiabatic MO populations onto the diabatic

AO basis). From the charge populations, we find a complete charge transfer

within ∼ 2 ps, but most of the population has been transferred by the first

picosecond of the simulation. These simulated charge transfer time-scales are

in good agreement with earlier ab initio theoretical calculations on similar

PCBM-PT models.87–90

6 CONCLUSION AND OUTLOOK

An overview of DFTB-based excited-state dynamics with applications to

both real-time time-dependent DFTB (RT-TDDFTB) and nonadiabatic dy-

namics has been presented in this review. In both of these formalisms, a

series of didactic tutorials and examples demonstrate how each approach is

used in practice to reveal dynamical effects in chemical/material systems of

contemporary interest. Within the sections on RT-TDDFTB, we demon-

strated how this computational approach can be used to either calculate an

electronic absorption spectrum or probe the electron dynamics of a chem-

ical system in the presence of monochromatic light. Both of these choices

give a different but complementary view of electron dynamics in large sys-

tems, as demonstrated by our example on plasmonic nanoparticles. Within

the sections on nonadiabatic dynamics, we explained our implementation

33



of CPA-FSSH-DFTB, which was applied to study charge transfer dynam-

ics in an organic photovoltaic system. By computing the charge transfer

time-scales in a model PCBM-PT system, which are in good agreement with

earlier ab initio results, this approach shows immense promise for probing

charge-transfer dynamics in even larger mesoscopic systems. Together, both

of these examples in RT-TDDFTB and nonadiabatic dynamics extend the

computational efficiency of DFTB to emerging areas of excited-state chemical

dynamics, creating an exciting opportunity for understanding these dynam-

ical effects in large, complex systems.

7 ACKNOWLEDGEMENTS

The RT-TDDFTB research and applications described in this work were

supported by the U.S. Department of Energy, Office of Science, Early Ca-

reer Research Program under Award No. DE-SC0016269. S. S. R. K. C.

Y. acknowledges Prof. Pengfei Huo at the University of Rochester for sev-

eral helpful discussions related to the CPA-FSSH-DFTB part of the review

and for providing computing resources through the Center for Integrated Re-

search Computing (CIRC) at the University of Rochester. M.B.O. acknowl-

edges financial support by the Agencia Nacional de Promoción Cient́ıfica

y Tecnológica (ANPCyT-FONCyT PICT-2017-0795). The authors also ac-

knowledge the Office of Naval Research (grant N00014-18-1-2740) for finan-

cial support associated with the extensive research and preparation of this

book review.

REFERENCES

[1] T. Frauenheim, F. Weich, T. Köhler, S. Uhlmann, D. Porezag, and
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