
1 

 

Defining the Temperature of an Isolated Molecule 

Mario Barbatti 

Aix Marseille University, CNRS, ICR, Marseille, France 

 Institut Universitaire de France, 75231 Paris, France 

mario.barbatti@univ-amu.fr | www.barbatti.org   

Abstract 

The microcanonical temperature of an isolated molecule is derived in terms of Boltzmann 

and Gibbs volume entropies within the quantum harmonic vibrational and equivalent degenerated 

model approximations. The effects of the entropy functional choice and various approximations 

are examined. The difference between Boltzmann and Gibbs volume temperatures is negligible 

for molecules bigger than ten atoms. However, it is significant for smaller systems, opening a way 

to probe them experimentally. A simple, analytical expression of the temperature as a function of 

the vibrational energy is provided, allowing predictions with a 3% margin of error. The 

microcanonical temperature is discussed and exemplified with polycyclic aromatic hydrocarbon 

molecules and other molecules of astrophysical interest.  
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1. Introduction 

Any excess of vibrational energy in a molecule above its zero-point level may induce 

physical-chemical reactions like isomerization, dissociation, or rearrangement. The role of such 

vibrational energy excess is particularly relevant when a light-excited molecule transfers the 

photon energy to the ground state without emitting radiation. The classic example is the vision 

mechanism, where a complex sequence of events is triggered in the rhodopsin protein after the 

retinal chromophore converts photon into vibrational energy.1 

We often say that a molecule with large vibrational energy is hot. However, if we ask what 

the molecule’s temperature is, the question sounds odd. The fundamental thermochemistry of a 

canonical system tells that the environmental temperature determines the vibrational excess 

through  
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where EZP is the vibrational zero-point energy, Te is the environmental temperature, kB is the 

Boltzmann constant, h is the Planck constant, and the sum runs over the vibrational degrees k with 

frequency k. Nevertheless, an isolated molecule cannot count on the environment to thermalize. 

The vibrational energy excess will be trapped there until it is irradiated or induces a chemical 

reaction. 

A hot, isolated molecule is a microcanonical system with constant total energy, and, 

different from the canonical problem, we want to determine ( )mT E , the microcanonical 

temperature as a function of the energy. Defining the temperature of such an isolated molecule 

could be worth doing,2 especially if we aim at describing large systems. Indeed, the temperature 

of isolated molecules and small finite systems has been under scrutiny for decades in diverse fields. 

It is needed for computing unimolecular reaction rates,2-4 sampling initial conditions for 

dynamics,5 studying fragmentation and radiative cooling of electrostatically trapped ions,6-8 

determining thermionic electron emission of clusters beams,9 characterizing phase transitions in 

clusters,10 or assigning molecular species in the interstellar medium.11-13 Indeed, defining such a 

temperature may be helpful even for understanding the photophysics of chromophores in vacuum-

like hydrophobic cavities of proteins.14 
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On the one hand, the temperature of isolated systems has been addressed pragmatically 

using phenomenological approaches for applied purposes. Berry and Smirnov,10 for instance, 

started from a reasonable estimate for the heat capacity of isolated clusters to derive their 

temperature. Another common approach has been to derive the canonical temperature for a 

canonical ensemble with kinetic averages equivalent to those of the microcanonical system.3 

Andersen, Bonderup, and Hansen15 followed this way to derive a high-energy approximation for 

the molecular temperature. D’Hendecourt and co-workers11 estimated the properties of molecules 

in the interstellar medium from the observed temperature, also using an equivalent canonical 

approach. Most of these works, however, either do not rest on a solid statistical basis or have a 

limited validity domain. 

On the other hand, more statistical-mechanics-oriented works have provided much 

knowledge on small, isolated systems. We know, for instance, that the microcanonical temperature 

can be defined independently of the probe,16 the type of fluctuation we may expect, including the 

dependence on different entropy definitions,17-20 and how to count microstates of finite coupled 

systems.21, 22 Nevertheless, these works usually do not allow for a practical estimate of the 

temperature in applied cases of interest. 

This paper aims to bridge this gap between theory and applications by deriving a 

microcanonical temperature for an isolated molecule that can be routinely used in diverse applied 

fields, has an extended validity domain, and is based on solid statistical mechanics grounds.   

2. Theoretical model 

To define the microcanonical temperature of an isolated molecule, we must go back to the 

principles of statistical thermodynamics. For a system with total energy E, the temperature is 

defined as  

 

1

,
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E

−
 

=  
 

  (2) 
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where ( )S E  is the entropy, which is a function of the number of microstates at energy E. Later, 

we will discuss what functional of E is the most adequate when dealing with a small system far 

from the thermodynamical equilibrium.   

If we approximate our isolated molecule by an ensemble of N quantum harmonic 

oscillators, the total molecular energy is 

 ,ZP k k

k

E E n h = +   (3) 

where nk is the number of quanta deposited in vibrational mode k, and  denotes a particular 

ensemble  kn . Thus, to know the number of microstates, we must determine the number of 

solutions of Eq. (3). This means the number of ways we can distribute different values of nk among 

the vibrational modes, keeping E constant. Despite the simplicity of this formulation, it is a 

formidably tricky problem to solve analytically. We can approach it numerically, but the number 

of microstates is so large that it may become unattainable to compute even for a molecule with 

only six atoms.  

Fortunately, as I will also show later (Section 2.5.3), we can get an approximated solution 

for the number of microstates by supposing the ensemble of vibrational frequencies  k  can be 

replaced by a single average frequency  . The degenerated problem, which simplifies to 

 ,
2

M

N
E M hv

 
= + 
 

  (4) 

where 
kk

M n= , is a very well-known statistical-mechanics textbook example.23, 24 

2.1. Modeling an isolated molecule 

For modeling the molecule, we assume 1) that it is rigid enough, so its vibrational modes 

are harmonic; 2) there are no external fields; 3) it populates only a single electronic state.  

The first assumption implies that we will not describe strongly anharmonic modes, like 

intramolecular hydrogen bonds or internal rotations (like those methyl groups are prone to). We 

can consider an isolated molecule as an ensemble of weakly coupled quantum harmonic 
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oscillators. By “weakly coupled,” I mean that energy can flow between vibrational modes, but the 

vibrational energy is still approximately given by Eq. (3). This energy flow is crucial for the 

molecule to ensure that all microstates sharing the same energy are equally probable. For instance, 

suppose the molecule has 1 = 300 cm-1 and 2 = 600 cm-1, a microstate with n1 = 2 and n2 = 0 

should be as likely to occur as another one with with n1 = 0 and n2 = 1 (assuming that nk for k > 2 

is the same in both microstates). Although a weak coupling is assumed, it is never explicitly 

considered here.  

The second assumption implies that we will also not discuss temperature associated with 

the energy allocated in the translational and rotational modes. Note, however, that these 

components are relevant when probing the isolated molecule.25 The third assumption means that 

we will not deal with the sudden vibrational energy change observed during internal conversion. 

2.2. Reviewing the statistical mechanics’ concepts 

Before proceeding with the discussion, it is worth revisiting some fundamental concepts 

from statical mechanics.18 The basic quantities we need are the density of states 

 ( ) ( )( ), Tr , ,E Z E H Z   = −    (5) 

and the integrated density of states 

 ( ) ( )( ), Tr , .E Z E H Z  =  −    (6) 

In these equations, E is the energy of a system with a Hamiltonian ( ),H Z . Z comprises all 

external control variables like volume or fields, and  describes the microscopic state (in our case, 

 collects the quantum numbers nk in Eq. (3)). In Eq. (5),  is the Dirac function and, in Eq. (6),  

is the unit-step function. The trace Tr denotes the integral over the Hilbert space. 

The entropy can be defined in different ways. For regular systems in the thermodynamic 

limit ( )N → , they all tend to converge to the same result. Nevertheless, when dealing with an 

isolated molecule, the number N of degrees of freedom is small, and we cannot assume such 

equivalence. Among several possibilities, we will discuss two entropy formulations, the 

Boltzmann entropy26 
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 ( ) ( ), ln , ,B BS E Z k E Z =      (7) 

and the Gibbs volume entropy18, 26, 27 

 ( ) ( ), ln , .G BS E Z k E Z=      (8) 

In Eq. (7),  is a small energy constant.  

With either entropy formulation, the microcanonical temperature can be calculated with 

Eq. (2) and the heat capacity with 

 

1

.
T

C
E

−
 

=  
 

  (9) 

2.3. Counting microstates 

We can directly count the microstates contributing to either ( )E  or ( )E , compute 

the entropy, and evaluate the derivative in Eq. (2) numerically to get the Boltzmann
( )( )n

BT  and the 

Gibbs volume 
( )( )n

GT  temperatures. The superscript (n) denotes the numerical approach to 

distinguish from other approaches discussed below. To apply the numerical procedure, we note 

that the molecular energy given by Eq. (3) changes by no less than the energy of the slowest normal 

mode 1 . Thus, the number of microstates with energy between 1k ZPE E kh= +  and 1kE h+  

( )0,1,2k =  is 

 ( ) ( )
1

1

1 ,
N

N

k n n k

n n

h E E E  =    (10) 

where  

 ( ) 1 11 if ,

0 otherwise.

Nk n n k

k

E E E h
E




  +
= 


  (11) 

The integrated density of states is 
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 ( ) ( )1

0

.
k

k j

j

E h E 
=

 =   (12) 

For more advanced strategies to count microstates considering coupled modes, see Ref. 21 

2.4. Solving the degenerated problem 

As mentioned, the degenerated problem is used below (Section 2.5) as an approximation 

for the molecular problem. Besides that, it is also helpful to check some basic hypotheses and 

approximations underlying the temperature definition, namely: 

• the equivalence between Gibbs volume and Boltzmann entropy; 

• the extension of discrete into continuous variable needed to compute derivatives; 

• the effect of Stirling’s approximation, which is commonly used to simplify the results of the 

microstates’ counting; 

• the impact of the 2N  approximation, also commonly applied to simplify the results.  

In the following two subsections, we will discuss the solution of the degenerated problem 

in the Boltzmann and Gibbs volume formulations. Although the solution in the Boltzmann 

formulation discussed in the previous section is well known,23, 24 I am not aware of any 

demonstration using the Gibbs volume formulation so far. Subsection 2.4.3 compares both results 

and shows how the Boltzmann temperature to Gibbs  volume temperature for large N. 

2.4.1. The Boltzmann formulation 

The number of microstates satisfying Eq. (4) is the number of ways of allocating 

/ / 2MM E h N= −  quanta in N vibrational modes. Thus, the number of microstates between E  

and E h+  is the number of multisets of length M on N elements: 

 ( )
( )

( )

1 1 !
,

1 ! !
M

N M N M N
E

M M N M


  + − + −   
= = =    

−    
  (13) 
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where 
m

n

  
  
  

 and 
m

n

 
 
 

 denote the number of multisets and the binomial coefficient, respectively. 

The dependence on EM is implicit in M. Taking h =  in Eq. (7) allows directly compute the 

Boltzmann entropy as  

 ( )
( )

( )

1 !
ln .

1 ! !
B M B

M N
S E k

N M

 + −
=  

− 

  (14) 

The extension of this equation from a discrete to a continuous variable ( ME E→ ) allows using 

Eq. (2) to get 

 ( )
1

1 ,
2 2

e

B

B

E N E N h
T

h h k



 

−

    
=  + − − +    

    
  (15) 

where  is the digamma function defined as 

 ( ) ( )ln
d

x x
dx

 =      (16) 

and  is the gamma function. The superscript (e) indicates this is an extended-to-continuous 

approximation.  

Alternatively, we can employ Stirling’s approximation ( ) ( )ln ! lnn n n n −  in Eq. (14). 

Then, with Eq. (2), we get  

 
( ) ( )( )

( )

1

2 2
ln ,

2

s

B

B

E N h h
T

E Nh k

 



−

  + −
 =  
 −   

  (17) 

where the superscript (s) indicates Stirling’s approximation. Finally, for large systems, we have 

2N , and we get the well-known result 

 
( )

1

2
ln .

2

l

B

B

E Nh h
T

E Nh k

 



−

 +  
=   −  

  (18) 

Schwabl28 offers an alternative approach to computing BT . Instead of using combinatorial 

to estimate ( )E , he rewrites this quantity in terms of the Fourier transform of the Dirac function 
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in Eq. (5). The resulting integral is evaluated via the Laplace method, which requires N → . 

This approximation once more yields 
( )l

BT . 

2.4.2. The Gibbs volume formulation 

To solve the degenerated problem in the Gibbs volume formulation, we proceed along the 

same lines as in the previous section, but employing the integrated density of states in Eq. (6). For 

the quantum harmonic oscillator, this quantity is the number of microstates with energy between 

0 and E,  

 

( )

( )

0 0

1

!
,

! !

M M

M

K K

N K N
E

K K

M N M N

M N M

= =

  + −   
 = =    

    

+ + 
= = 
 

 
  (19) 

where the sum runs over the density of states defined in Eq. (13) and is evaluated using the hockey-

stick identity.29 Thus, the Gibbs volume entropy is 

 ( )
( )!

ln .
! !

G M B

M N
S E k

N M

+ 
=  

 
  (20) 

Replacing it in Eq. (2) gives the extended-to-continuous ( ME E→ ) approximation for the 

microcanonical temperature 

 ( )
1

1 1 .
2 2

e

G

B

E N E N h
T

h h k



 

−

    
=  + + − − +    

    
  (21) 

Alternatively, with Stirling’s approximation in Eq. (20), we have 

 
( )

1

2
ln .

2

s

G

B

E Nh h
T

E Nh k

 



−

 +  
=   −  

  (22) 

Replacing 
( )s

GT  in Eq. (9) gives the heat capacity 

 ( )
2 2

2 2
1 ln .

4 2

s B
G

Nk E E Nhv
C

Nhv E Nhv

  +   
= −      −    

  (23) 
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2.4.3. Comparing Boltzmann and Gibbs volume formulations 

Let us now compare the previous results for the degenerated problem for a particular 

example of a system composed of six quantum harmonic oscillators, all with frequency 1015 cm- 1. 

Its number of states ( )E  and the integrated density of states ( )E  are plotted in Figure 1-top. 

Both ( )E  and ( )E  grow monotonically. The energy resolution is determined by , which for 

the degenerated problem is h . For typical photoexcited systems, we may expect vibrational 

energy excess of about 2 to 4 eV. These values are much bigger than the vibrational frequency 

(0.14 eV in our example). Thus, we can compute the temperature by numerical differentiation of 

the entropy (Eq. (2)), using either ( )E  to get ( )n

BT  or ( )E to get ( )n

GT . 

The diverse temperature models are illustrated in the bottom panel of Figure 1. The 

difference between the temperatures computed with the Boltzmann and Gibbs volume 

formulations is striking. Although they are similar at low energies, Boltzmann temperature grows 

much faster, and the difference between the two formulations at 4 eV amounts to about 1400 K. 

This divergence between Boltzmann and Gibbs volume temperatures is caused by the small size 

of our model, N = 6, corresponding to a four-atoms molecule. The difference reduces quickly for 

bigger systems. For a molecule with 15 atoms (N = 39), the temperature difference at 4 eV is only 

15 K. Indeed, in the thermodynamic limit ( )N → , Boltzmann and Gibbs volume temperatures 

tend to the same values,17 as we can see comparing Eqs. (18) and (22).  

We also can see in Figure 1-bottom that the extended-to-continuous approximations 
( )e

BT  

and 
( )e

GT  using the gamma function are spot-on. Stirling’s approximation in 
( )s

BT  and 
( )s

GT   slightly 

degrades the result, but its main problem is at the very low energies near the zero-point level. As 

long we are not dealing with this region, we may favor Stirling’s approximation given the algebraic 

simplicity of 
( )s

BT  and 
( )s

GT .  

In the Boltzmann formulation, it is usual to assume that 2N , yielding 
( )l

BT  in Eq. (18). 

Although this approximation is fully justified for large systems, it has a major conceptual 

implication: it shifts the system from a Boltzmann to a Gibbs volume description, as made evident 

by Eqs. (18) and (22), where we can see that 
( ) ( )l s

B GT T= . 
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Figure 1. ( )E ( )ETop: Number of states  and the integrated density of states  as a 

function of energy E for a system composed of N = 6 degenerated quantum harmonic oscillators 

1015 =of frequency cm-1. Bottom: Temperature for the same degenerated system computed with 

different models.  

Several authors,23, 30, 31 starting from the Boltzmann formulation, already apply the large N 

approximation at the level of the number of microstates, Eq. (13). Because this approximation 

reduces Eq. (13) to Eq. (19), they inadvertently work in the Gibbs volume formulation.  
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2.5. The temperature of an isolated molecule 

2.5.1. Defining the average frequency 

My hypothesis to compute the temperature of an isolated molecule is that there is an 

average frequency   for the N-degenerated problem that is a good approximation for the isolated 

molecule, composed of N different frequencies. I tested two possibilities for the equivalent 

degenerated model (EDM),   given as the arithmetic mean  

 
21

,ZP
A k

k

E
v

N N
 = =   (24) 

and the harmonic mean 

 

1

1 1
.H

k kN




−

 
=  
 
   (25) 

The rationale for adopting A  is the direct analogy to the solution of the degenerated 

problem. Note, for instance, that Eq. (22) can be rewritten as 

 
( )

1

2
ln .

s ZP ZP
G

ZP B

E E E
T

E E Nk

−

  +
=    −  

  (26) 

Thus, it is natural to search for an approximated solution of the non-degenerated problem with the 

same functional form. On the other hand, for a given E, there are many more microstates involving 

changes in the number of quanta in the low-frequency than in the high-frequency modes. Thus, it 

may be helpful to weigh the average frequency toward the low-frequency modes. If we take as 

weight the maximum number of quanta we can add to a specific vibrational mode, max /k kn E h=  

corresponding to the microstate ( )max0, , , ,0kn , we get 

 

max

max
,

k k

k
H

k

k

n

n



=



  (27) 

providing a rationale for adopting the harmonic mean of the frequencies. 
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In comparing these two possibilities, we will see in Sections 2.5.2 and 2.5.3 that the 

arithmetic mean does better than the harmonic mean. 

2.5.2. Test case: the temperature of H2O2 

Let us now work out a specific example of a small, isolated molecule, H2O2, for which we 

can count the microstates and compute the temperature numerically. H2O2 has four atoms and N = 

6 vibrational modes with harmonic frequencies 346, 956, 1330, 1469, 3704, and 3709 cm-1 

(computed with the geometry, frequency, noncovalent, extended tight-binding (GFN1-xTB) 

method32). The arithmetic mean frequency is A =  1919 cm-1, and its harmonic mean frequency is 

H =1015 cm-1. Up to 4 eV, it has 169,501 microstates, distributed as a function of E as shown in 

Figure 2-top. The number of states ( )E  is computed with an energy resolution of 1h =  (346 

cm-1).  

The Boltzmann and Gibbs volume temperatures of the isolated H2O2 computed by 

numerical differentiation of the entropy (Eq. (2)) are shown as dots in Figure 2, middle and bottom. 

The approximated results using the arithmetic mean frequency in the 6-degenerated problem are 

shown in the middle and the harmonic mean in the bottom figure. For a vibrational energy excess 

of 3.9 eV, the Boltzmann temperature reaches about 9013 K and the Gibbs volume, 7482 K.  

The growth of the number of states ( )E  with E, although monotonic, shows significant 

fluctuations, especially in the low-energy region. Consequently, the numerically-computed 

Boltzmann temperature (
( )n

BT  in Figure 2) also fluctuates around the 6-degenerated mean value. 

The integrated density of states ( )E washes out most of these fluctuations and yields a much 

smoother Gibbs volume temperature function (
( )n

GT ). 

All approximated results are excellent in the region above 1 eV. The agreement deteriorates 

in the low-energy region near the zero-point energy. The exception is Stirling’s approximation 

with arithmetic mean frequency, which also describes the low energy well. The extended-to-

continuous approximation does not hold the correct behavior at low energies, delivering too high-

temperature predictions. 
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Figure 2. ( )E ( )ETop: Number of states  and the integrated density of states  as a 

function of energy E for H2O2. Middle: Temperature of the isolated H2O2 (dots). The lines are the 

temperatures for the N = 6 equivalent degenerated model (EDM) with the arithmetic mean 

1919 =frequency of H2O2, cm-1. Bottom: Temperature of the isolated H2O2 (dots). The lines are 

1015 =the temperatures for the N = 6 EDM with the harmonic mean frequency of H2O2, cm-1. 
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just a coincidence? To check this point, I have computed the Gibbs volume temperature for 30 

arbitrary systems (10 with N = 6, 10 with N = 7, and 10 with N = 8) with frequencies randomly 
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molecules because N must be 3 6atN − . Nevertheless, they are useful to assess the errors. The 

systems with N = 8 have about 109 microstates up to 4 eV (see Eq. (19)). N = 9, which correspond 

to Nat = 5, is already unaffordable. For each energy value, the relative error 

 

( ) ( ) ( )
( )

/ / /

/

n s

B G B G H A

n

B G

T T
T

T




−
=   (28) 

between the numerical ( )n

BT  and ( )n

GT  temperatures and the temperatures of the equivalent 

degenerated model using Stirling’s approximation was evaluated. These errors are shown in Figure 

3 for temperatures computed with arithmetic mean frequencies.  

  

Figure 3. TRelative error  between the numerical temperature and the Stirling’s 

approximated temperature of the equivalent degenerated model with arithmetic mean frequencies 

computed for 30 random systems with N = 6, 7, and 8. Top: Boltzmann; bottom: Gibbs volume.  

Most of the error is in the low-energy region, and they are independent of the system size. 

The mean relative errors in Table 1 confirm this picture. 
( )s

GT  with arithmetic mean frequency has 

a mean relative error of 3% no matter N. The mean relative error of 
( )s

BT also with arithmetic mean 

frequency is a bit bigger, 8%. The mean relative errors with harmonic means are always larger 

than those with arithmetic mean. They are also dependent on the system size, reducing for bigger 

N. It is not shown in the table, but most of the error when using the harmonic mean frequency is 
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in the low-energy region. Given the better performance of A  over H , only the former will be 

used in the next sections. 

Table 1. Mean relative error T  between numerical and EDM approximated temperatures 

for Gibbs volume (G) and Boltzmann (B) formulations with harmonic (H) and arithmetic (A) mean 

frequencies. 

 N = 6 N = 7 N = 8 

GHT  0.24 0.14 0.16 

GAT  0.03 0.03 0.03 

BHT  0.29 0.16 0.11 

BAT  0.08 0.08 0.08 

3. Discussion 

3.1. Leading terms in the molecular temperature 

The asymptotic expansion of 
( )s

GT  (Eq. (22)) at E →  gives 

 
( )

2 2

3

1
.

12

a

G

B B

E Nh
T O

Nk k E E

  
= − +  

 
  (29) 

The leading term is linear in E and does not depend on the particularities of the molecule, only on 

its size through N. 

In cluster studies, it is common to estimate the microcanonical temperature using the 

phenomenological formula10, 33 

 
2

,
kin

cluster

B

E
T

Nk
   (30) 

where kinE  is the mean kinetic energy of the cluster. For a harmonic system, 2 kinE E=  and, 

therefore, Eq. (30) corresponds to the leading term in the Gibbs volume temperature expansion, 

Eq. (29). 
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The isolated molecule modeled developed here is purely based on a harmonic 

approximation. Belega and co-workers33 showed that anharmonic effects could be included in Eq. 

(30) in by replacing N by an effective Neff factor computed from the reduced averaged kinetic 

energy in each mode.   

If, instead of the Gibbs volume, we start from the Boltzmann temperature ( )s

BT  (Eq. (17)), 

the asymptotic expansion at E →  gives 

 ( )

( )

( ) 2 21
2

2

1 1
.

1 12

a

B

B B

N hE hv
T O

N k k E E

−−  
= − +  

−  
  (31) 

As expected, 
( ) ( )a a

B GT T→  when N → . However, for small systems, the leading term depends 

on the molecular properties through  . Moreover, the ( )1N − term in the denominator causes ( )a

BT  

grows faster than ( )a

GT  with the energy.  

Andersen, Bonderup, and Hansen15 derived the microcanonical temperature of a small 

isolated system starting from the Boltzmann entropy and searching for the average energy of a 

canonical system equilibrated at the microcanonical temperature. Their result for an ensemble of 

N (non-degenerated) quantum harmonic oscillators in the high-temperature limit is 

 
( )

.
1

ABH

B

E
T

N k
=

−
  (32) 

Considering that in this limit E hv , their formula matches the leading order of the 
( )s

BT  

expansion in Eq. (31). 

A common assumption in phenomenological models is that the heat capacity (Eq. (9)) of 

the isolated molecule does not depend on the temperature, so a simple linear relation 0E CT E= +  

holds between energy and temperature.2, 8 According to Eq. (29), such hypothesis is satisfied for a 

molecule with N vibrational degrees if 

 .
2 3 3

ZPENh
E


=   (33) 
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Note that the radiative cooling should bring the molecule to the nonlinear region even if this 

relation is initially satisfied.   

3.2. Experimental comparison between Boltzmann and Gibbs volume 

Currently, there is an ongoing debate on which function is the correct way of computing 

the entropy for an isolated system. While Hilbert, Hänggi, and Dunkel18, 26 claimed that, among 

several entropy models, only Gibbs volume fulfils all three laws of thermodynamics 

simultaneously, Swendsen and Wang19 argued that Gibbs volume fails to satisfy the postulates of 

thermodynamics and make incorrect predictions for systems with nonmonotonic energy densities. 

(See Ref.34 for an account of this debate.) 

Although this discussion goes beyond the scope of this paper, the present results create a 

way for experimentally testing which entropy, Boltzmann or Gibbs volume, delivers the best 

theoretical prediction. We could think of a setup where a small, isolated molecular ion is 

photoexcited in an electrostatic ion trap.4, 6, 35 The laser pulse duration should be such as it allows 

thermal equilibration before radiative decay starts, but without losing too much energy resolution. 

Then, monitoring its radiative cooling would inform on its peak temperature (before any cooling). 

As discussed in Section 2.5.2, for a four-atoms molecule with a few eV of energy excess, the 

difference between Boltzmann and Gibbs volume temperatures should be significant enough to 

cause different color emissions. 

3.3. Temperature of isolated molecules of applied interest 

The temperatures 
( )s

BT  and 
( )s

GT  as a function of the excitation energy ZPE E E = −  are 

shown in Figure 4-top for a few molecules (GFN1-xTB level). They are all systems of 

astrochemical interest. The difference between Boltzmann and Gibbs volume temperatures is 

negligible for any system above 24 vibrational degrees (10 atoms). For isolated C60 at 808 K, Deng 

and Echt36 measured its heat capacity as 12.6  1.4 meV/K. According to Eq. (22), this temperature 

corresponds to E = 14.7 eV, yielding a theoretical estimate of 
( )s

GC =  12.0 meV/K (Eq. (23)), in 
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excellent agreement with the experiment. Note that this result is smaller than the high-energy limit, 

BNk =  15.0 meV/K (N = 174), due to the nonlinear dependence of the temperature on the energy.  

If no chemical process occurs, the hot, isolated molecule is expected to cool down due to 

blackbody radiation.6-8 Since the seminal papers by Sellgren37 and Leger and Puget,12 some 

specific near-infrared (IR) spectral features of interstellar dust have been assigned to polycyclic 

aromatic hydrocarbons (PAHs).38 These earlier works raised the hypothesis that those IR features 

arise from small, 5-10 Å molecules instantaneously heated to about 1000 K by UV radiation. 

Working on observational data, Leger and co-authors11, 12 estimated a color temperature of 600 K, 

corresponding to a peak temperature of 950  150 K. Then, using the Einstein heat capacity model 

and assuming 6-eV photoexcitation, they predicted that the IR features should be due to carbon 

species with about 60 atoms.  

We can revisit this assignment by using the microcanonical temperature derived here. Let 

us assume a peak temperature of T = 950  150 K and that the arithmetic mean frequency is  =  

1100  100 cm-1. Let us also allow a broader variation in the UV excitation, EUV = 5  1 eV. 

Using Eq. (22), the number of atoms is  

 exp 1 2.
3

UV
at

B

E h
N

h k T





  
= − +   

  
  (34) 

Letting all three parameters vary according to a random normal distribution with standard 

deviation given by the error bars, we arrive at Nat = 61  38 for 106 random systems. This mean 

number of atoms agrees with the previous calculations. Nevertheless, as we can see in the density 

plot at the bottom of Figure 4, it also indicates that a large variety of possible molecular systems 

falls within the parameter constraints. The figure also shows a few PAH molecules ranging from 

small to large sizes. Except for naphthalene neutral and cation, they all fall in the high-density 

region, as we would expect from PAH mixtures that should occur in the interstellar media.39, 40 

This analysis considers only molecules returning ground state via radiationless pathways. If they 

fluoresce, the peak temperature after re-equilibration in the ground state should correspond to a 

vibrational excess discounting the energy of the emitted photon. 
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Figure 4. ( )s

GT
( )s

BTTop: Gibbs volume  (solid lines) and Boltzmann  (dashed lines) 

temperatures for a few molecules (arithmetic mean frequency). N is the number of vibrational 

modes. Bottom: Density map of possible molecular systems with temperature 950  150 K, UV 

excitation 5  1 eV, and arithmetic mean frequency 1100  100 cm-1. The density grows from 

yellow to blue. The dots illustrate the absorption peak of a few PAH molecules with excitation 

energies taken from the literature: anthracene,41 naphthalene (neutral and cation), phenanthrene, 

pyrene (neutral and cation),42 coronene, dicoronylene, ovalene,40 and fullerene.43  

4. Conclusions 

This paper explores the microcanonical temperature of an isolated molecule. The molecule 

is treated as an ensemble of quantum harmonic oscillators, and the temperature is derived in the 
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frame of Boltzmann and Gibbs volume entropies. Although the direct solution of the problem 

seems not to be accessible analytically, we discuss how approximations based on an equivalent 

degenerated model using average frequencies can adequately describe the molecular temperature. 

The discussion tracks the effect of several hypotheses and approximations on the results, including 

the entropy functional, the type of average frequency, the extension of discrete into continuous 

variables, the use of Stirling’s approximation, the assumption of a large number of degrees of 

freedom N, and the expansion in the leading orders. Table 2 summarizes the several expressions 

discussed in the text.  

Table 2. Summary of the microcanonical temperatures derived under different 

approximations from Boltzmann and Gibbs volume entropies for a degenerated set of N quantum 

harmonic oscillators with frequency  . For the non-degenerated problem,   is the arithmetic 

mean frequency of the spectrum.  is the digamma function. For an isolated molecule well-

represented by harmonic vibrational modes, ( )s

GT  delivers a good approximation for the 

microcanonical temperature within an error of 3%. 

 Boltzmann Gibbs volume 

Numerical 

counting 
( )

1

n B

B

S
T

E

−
 

=  
 

 ( )
1

n G

G

S
T

E

−
 

=  
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e
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E N E N h
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h h k



 

−

    
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1

1 1
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e
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E N E N h
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 
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    
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Stirling’s 
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approximation  
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1

2
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 
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Asymptotic 

expansion at  

E →  
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capacity 
( )

( )

1
2

1

c

B

B

E hv
T

N k

−
=

−
 ( )c

G

B

E
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The comparison between Boltzmann and Gibbs volume approaches shows that the 

temperatures converge to the same values for large N. The difference is already negligible for a 
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10-atoms molecule. However, for smaller molecules, the difference is significant, and it should be 

possible to probe it experimentally. In particular, we discuss how a common numerical 

approximation corresponds, in fact, to a shift from the Boltzmann into the Gibbs volume 

formulation. 

We also see how the microcanonical temperature relates to previous phenomenological 

approaches. For a large vibrational energy excess, the common assumption of a linear relationship 

between temperature and energy (constant heat capacity) is valid. Nevertheless, dissociative and 

radiative cooling should bring the system to nonlinear regions.  

For practical purposes, for a molecule with more than 10 atoms, I recommend using ( )s

GT  

(the Gibbs volume temperature ( )s

GT with Stirling’s approximation) or equivalently 
( )l

BT  (the 

Boltzmann temperature for large N) and arithmetic mean of frequencies, which should predict 

temperatures within 3% margin of error. For smaller molecules, the temperature can be computed 

with either ( )s

GT  or ( )s

BT . At this point, it is unclear which one delivers the correct answer.   

We should also bear in mind that the microcanonical temperature models discussed here 

are strictly valid for molecules that are not subjected to external fields, populate a single electronic 

state, and whose vibrational modes can be well-represented by a harmonic approximation. There 

are two advantages of working within these boundaries. First, they provide simple analytical 

expressions that allow a straightforward temperature estimation beyond the classical regime. 

Second, they enable the development of a conceptual understanding that is sometimes hidden when 

applying advanced numerical approaches. Nonetheless, the present modeling should be extended 

beyond these approximations in the future. The primary goal should be to tackle anharmonic 

systems to predict the temperature of more general systems, like molecular clusters. 
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