Enantioselective Synthesis of Versatile Stereogenic-at-P(V) Building Blocks via Hydrogen-Bond-Donor Catalysis

Katherine C. Forbes and Eric N. Jacobsen*

Department of Chemistry and Chemical Biology, Harvard University
Cambridge, MA 02138, USA.

*Corresponding author. Email: jacobsen@chemistry.harvard.edu

Abstract
The stereoselective synthesis of molecules bearing stereogenic phosphorus(V) centers represents an enduring challenge in organic chemistry. While stereospecific nucleophilic substitution at P(V) provides a general strategy for elaborating optically active P(V) compounds, existing methods for accessing the requisite chiral building blocks rely almost entirely on diastereocontrol using chiral auxiliaries. Catalytic, enantioselective methods for the synthesis of synthetically versatile stereogenic P(V) building blocks offer an alternative approach to stereogenic-at-P(V) targets without requiring stoichiometric quantities of chiral controlling elements. Herein, we report an enantioselective hydrogen-bond-donor-catalyzed synthesis of chlorophosphonamidates, and the development of these products as versatile chiral P(V) building blocks. We demonstrate that chlorophosphonamidates possess two leaving groups that can be displaced sequentially and stereospecifically to access a wide variety of stereogenic-at-P(V) compounds featuring diverse substitution patterns.

Introduction
Phosphorus(V) stereocenters are present in a wide assortment of important synthetic materials, including several recently developed pharmaceuticals (Figure 1A). The absolute stereochemistry at phosphorus is often directly associated with the biological activity of those molecules (1–7). Stereogenic-at-phosphorus compounds also serve as broadly useful ligands and catalysts in asymmetric organic synthesis (8, 9). While a variety of natural products bearing P-stereogenic centers have been identified (10), these molecules are not practical synthetic building blocks due to their sparsity. Thus, while the synthesis of compounds bearing C-stereogenic centers has historically drawn heavily on nature’s chiral pool (11), access to P-stereogenic molecules relies entirely on de novo synthesis. Nucleophilic substitution at stereogenic P(V) centers can occur stereospecifically, thereby providing a powerful strategy for the synthesis of complex, optically active compounds from simple P(V) building blocks bearing one or more leaving groups attached to phosphorus (9, 11–13).

Effective methods for accessing stereogenic-at-phosphorus targets have relied primarily on the use of covalently attached chiral auxiliaries to achieve diastereocontrol, and a variety of chelating auxiliaries have been developed successfully for this purpose (Fig. 1B) (14–22). Their applicability depends on the ability to achieve stereospecific displacement of the auxiliary to forge P(V) stereocenters with absolute stereocontrol. Among noteworthy recent advances using the chiral auxiliary approach, Baran and co-workers reported the development of highly reactive oxathiaphospholane-sulfide building blocks (21, 22). The propensity of the P–S bonds in these building blocks to undergo substitution by both alcohols and organometallic reagents was
A. Examples of phosphonamidates, phosphonates, and phosphinates bearing P-stereogenic centers

Matrix Metalloprotease Inhibitors
Antitumor activity

Tenofovir alafenamide
HIV and hepatitis B treatment

Carbonic Anhydrase Inhibitor
Potential neuropathic pain treatment

Phocon antiprollifte activte

Utrophin modulator
Potential treatment for Duchenne muscular Dystrophy

B. Nucleophilic substitution methods for constructing stereogenic-at-P(V) targets

Chiral Auxiliary-Based Strategies

Jugel
X = O, BH3

Kozumi

Senanayake

Corey

Baran

Muralo: X = S
Ferling: X = lone pair

Catalytic Strategies

Merck (2017); Dynamic kinetic resolution of chlorophosphorimidates

Miller (2021); Dynamic kinetic resolution of phosphoramides

C. This work: catalytic synthesis of chiral P(V) building blocks via hydrogen-bond donor catalysis

R1R2Cl

commercially available starting material

commercially available catalyst

R1R2

displaced under basic conditions

displaced under acidic conditions

targets of interest

R = OR, SR, NR2, alkyl, aryl

Fig. 1. Methods for accessing stereogenic P(V) targets. (A) Representative bioactive compounds bearing P-stereogenic centers. (B) Synthetic approaches. (C) A general approach to chiral P(V) building blocks via enantioselective catalysis/stereospecific substitution.

demonstrated and enables the synthesis of a variety of stereogenic-at-P(V) compounds, ranging from oligonucleotides to chiral phosphine oxides.

Despite the significant advances in the stereoselective synthesis of chiral P(V) compounds by the chiral auxiliary approach, there is both practical and fundamental motivation for developing asymmetric catalytic strategies toward these targets. In that vein, there have been important recent breakthroughs (Fig. 1B). Merck developed a chiral bisimidazole catalyzed synthesis of phosphoramidate prodrugs through the diastereoselective addition of nucleosides to chlorophosphoramidates, proceeding via a cooperative mechanism of covalent activation of P(V) and general-base activation of the alcohol nucleophile (23). An alternative approach was demonstrated by Miller and co-workers in the catalytic, stereodivergent synthesis of P-stereogenic oligonucleotides from phosphoramidites via chiral phosphoric acid catalysis (24). Finally, in work that appeared as this study was being completed, Dixon and co-workers reported a catalytic, enantioselective desymmetrization of diaryl phosphonate esters by substitution with ortho-substituted phenols (25). While high levels of stereoselectivity were achieved in these catalytic, nucleophilic substitution reactions, each is limited to a narrow class of nucleophiles that are not
further displaced. We conceived that the catalytic, enantioselective installation of a nucleophile that could further serve as a leaving group for stereospecific substitution at P(V) could provide a generalizable strategy for the synthesis of chiral P(V) targets with the broad synthetic scope of state-of-the-art auxiliary approaches while avoiding the need for the stoichiometric use of chiral control elements.

We selected chlorophosphonamidates as potential targets of an enantioselective catalytic approach (Fig. 1C). The chloride and amino groups on P(V) possess orthogonal reactivity that might permit sequential and stereospecific displacement en route to chiral P(V) targets bearing a broad range of substitution patterns. Given that P–Cl bonds in particular are susceptible to substitution by a wide variety of nucleophiles (26–28), chlorophosphonamidates would be highly versatile precursors to a multitude of P(V) frameworks. We report here the development of an enantioselective method for the synthesis of chlorophosphonamide intermediates using a commercially available hydrogen-bond-donor catalyst, and the application of these P(V) building blocks to the synthesis of P(V) compounds featuring diverse substitution patterns.

We recognized that a most concise enantioselective synthesis of chlorophosphonamidates would be realized via a catalytic desymmetrization reaction of phosphonyl dichlorides with amines. Dual-hydrogen-bond-donor catalysts have been applied broadly and successfully to promote stereoselective nucleophile substitution reactions via chloride-abstraction pathways (29–32), and we hypothesized that this reactivity principle could serve to activate one of the two enantiotopic chlorides of a phosphonyl dichloride electrophile toward displacement by an amine. Phenyl phosphonic dichloride 2a was selected as a model substrate in reactions with various amine nucleophiles and potential chiral catalysts (Fig. 2). For ease of isolation and analysis, the chlorophosphonamidate products 3 were quenched with sodium methoxide at low temperature to produce the corresponding phosphonamidate 4a. After systematic evaluation of a series of chiral dual H-bond-donor catalysts and amine nucleophiles, the sulfonamido urea 1a (33, 34) was found to promote the nucleophilic substitution by diisoamylamine in 95% enantiomeric excess (ee) and quantitative yield (Fig. 2A, see supplementary materials for optimization studies). Multiple equivalents of amine were required to attain full conversion of 2a, as the amine functions both as a nucleophile and as a stoichiometric Brønsted base to trap the HCl byproduct produced in the reaction. Examination of the role of catalyst structure revealed the importance of both the H-bond donor and the sulfonamide group in promoting high enantioselectivity. Whereas sulfonamido urea 1a and its thiourea analog 1b proved similarly effective as catalysts, the sulfonamide 1d lacking the H-bond-donor motif induced little acceleration above the uncatalyzed rate (83% vs. 64% yield after 24 h) and afforded only racemic product. The sulfonamido urea 1c epimeric to 1a also induced severely diminished enantioselectivity. Arylpyrrolidino (thio)ureas such as 1e–g, which have proven useful in a wide range of asymmetric anion-binding pathways (35) but that lack the sulfonamide moiety, were catalytically active but generally poorly effective with respect to enantiocontrol. The enantioselectivity of the substitution was also closely tied to the identity of the amine, with diisoamylamine undergoing reaction with distinctly superior results relative to any of the other nucleophiles examined (Fig. 2B). Beyond a beneficial effect of distal alkyl branching, it is difficult to discern any straightforward correlation between the steric or electronic properties of the amine and enantioselectivity in the substitution reaction. It is likely that the properties of the dialkylammonium chloride byproducts play a critical and complex role in influencing the observed
enantioselectivity, as soluble tetraalkylammonium chloride salts are potent inhibitors of anion-binding H-bond-donor catalysts and were also shown to promote a racemic reaction between 2a and diisoamylamine (Tables S4-S5). Epimerization of chlorophosphonamidate 3 was not observed under the catalytic conditions, even in the presence of added tetrabutylammonium chloride.

High levels of enantioselectivity were achieved in the reaction of a variety of aryl phosphonyl dichlorides with diisoamylamine (Fig 3A). Notably, substrates bearing arenes with either electron-withdrawing or electron-donating substituents underwent substitution with consistently high levels of enantioselectivity (4b–g). However, alkyl phosphonyl dichlorides yielded product with low levels of enantioselectivity under analogous conditions (see supplementary materials for examples).

Figure 2. Optimization studies. Yield values reflect product quantification by 31P NMR relative to an internal standard. (A) Catalyst optimization for enantioselective reaction of diisoamylamine with phenyl phosphonic dichloride. Reactions were carried out on a 0.06 mmol scale. (B) Optimization of amine structure for enantioselective substitution reaction with phenyl phosphonic dichloride. Reactions were carried out on a 0.06 mmol scale. ¶ Reaction performed at –40 °C for 48 h.
Fig. 3. Scope of enantioselective addition of diisoamylamine to aryl phosphonyl dichlorides and stereospecific elaborations. All yield values correspond to chromatographically purified, isolated products. (A) Substrate scope of addition of diisoamylamine to aryl phosphonyl dichlorides catalyzed by 1a. Reactions were carried out on 0.2 mmol scale. The absolute stereochemistry of the products was assigned based on the X-ray crystal structure of 10 and the known optical rotation of 8a (Fig. 4, see supplementary materials). (B) Scope of nucleophiles for enantiospecific substitution with 3. (C) Enantiospecific displacement of the diisoamylamino group with alcohols. See supplementary materials for reaction conditions. (D) Gram-scale synthesis of 5d. Prices from Thermo Fisher Scientific (February, 2022). *Reaction was carried out at –78 °C with 20 mol% catalyst loading. †Reaction was carried out at –40 °C with 4.5 equivalents of diisoamylamine.
The products of the enantioselective reactions feature two chemically distinct leaving groups on phosphorus that could be selectively and stereospecifically displaced to afford access to multiple classes of chiral P(V) compounds. We first explored the scope of nucleophiles capable of enantiospecific displacement of the remaining chloride (Fig. 3B). Reaction of 3 with alkoxides, phenoxides, thiocarbamates, and Grignard reagents afforded the desired products with high levels of enantiospecificity in all cases (5a–h). The substitution reactions could be performed with or without isolation of 3 from the prior enantioselective catalytic step (see supplementary materials for details). Notably, we found that the reactions could be scaled up without loss of enantioselectivity or yield; thus, the synthesis of 5d was performed by the one-pot procedure on 3 mmol scale with 5 mol% catalyst, affording 1.11 grams of product in 95% yield and 92% ee (Fig. 3D).

The products of the chloride-displacement reactions could be further elaborated to afford alkoxy-substituted P(V) compounds via an acid-mediated stereoinvertive displacement of the diisopropylamino group (Fig. 3C). Substitution of 5a–h with methanol yielded a variety of enantioenriched phosphonates, phosphinates, and phosphonamidates (6a–h) with nearly complete enantiospecificity observed in every case. The slightly diminished stereospecificity observed with 5g and 5h is consistent with prior observations (14, 16). Substitution with other primary alcohols proceeded with varied but generally high levels of enantiospecificity (6i–k).

The phosphonate ester and thioester products 6b and 6d possess further readily displaceable substituents that render them as useful synthetic building blocks for further elaboration to chiral P(V) compounds. For example, phosphonate thioester 6d underwent reaction with functionally complex alcohols to furnish the corresponding phosphorylated biomolecules with high levels of stereospecificity (7a–c, Fig. 4A). These substitutions are performed under Bronsted–acid–free conditions using little-or-no excess of the alcohol reagent, highlighting the utility of 6d for the phosphorylation of precious or acid-sensitive alcohols. Phosphonate 6b underwent efficient substitution with Grignard reagents with displacement of the electron-deficient aryloxide to yield highly enantioenriched phosphinate esters, known precursors to chiral phosphine oxides (Fig. 4B) (22). This three-step route to phosphinate esters was applied to the synthesis of (+)-SMT022332, a utrophin modulator developed as a potential treatment for Duchenne Muscular Dystrophy (36–38). An analogue of (+)-SMT022332 was previously accessed in 83% ee and 5% overall yield using a chiral auxiliary-based approach (4). Subjection of phosphoryl dichloride 9 to the optimized conditions for the enantioselective substitution yielded phosphonamidate 10, which was characterized crystallographically (Fig. 4C). Subsequent methanalysis and phenol displacement furnished (+)-SMT022332 (12) in 94% ee and 43% overall yield over 3 steps.
Fig. 4. Application to the synthesis of chiral P(V) targets. All yield values refer to chromatographically purified, isolated products. (A) Stereospecific phosphorylation of precious alcohols with 6d. Reactions were carried out on 0.1 mmol scale. (B) Stereospecific addition of Grignard reagents to 6b for the synthesis of enantioenriched phosphinate esters. Absolute stereochemistry of 8a was determined by comparison of optical rotation to literature value; others assigned by analogy. Reactions run on 0.05–0.1 mmol scale. (C) Application of method to the enantioselective synthesis of (+)-SMT02332. Yield values refer to isolated yields. Absolute stereochemistry of 10 assigned by the depicted X-ray crystal structure, and of 12 by comparison of the optical rotation to the literature value. (D) Orthogonally N-protected chlorophosphonamidate. (E) Formal synthesis of a matrix metalloproteinase inhibitor. TFA = trifluoroacetic acid.
In addition to serving as versatile synthetic building blocks, phosphonamidates are often synthetic targets themselves \((2, 3, 5, 6, 39–43)\), and general access to these compounds by the catalytic procedure would be desirable. However, the structural requirements on the amine for achieving high enantioselectivity in catalytic reaction impose restrictions to the N-substituents that can be introduced directly (Fig. 2B). We therefore sought to identify amine derivatives that participate successfully in the enantioselective reaction while bearing orthogonally cleavable \(N\)-protecting groups that might provide centralized access to a variety of substituted phosphonamidates (Fig. 4D). High enantioselectivity was obtained using \(N\)-allyl benzylamine in the substitution reaction under modified conditions. The benzyl group and the allyl group on the chlorophosphonamidate products can each be cleaved successively, enabling their sequential replacement (see supplementary materials) \((44–48)\). This strategy was exploited in the synthesis of phosphonamidate \(17\), a matrix metalloproteinase (MMP) inhibitor with demonstrated anticancer activity (Fig. 4E) \((2)\). Phosphonic dichloride \(2h\) effectively underwent the catalytic reaction with \(N\)-allylbenzylamine to produce, after quenching with allyl alkoxide, phosphonamidate \(13\) in \(89\%\) ee and \(88\%\) yield. Phosphonamidate \(13\) was elaborated over three steps to afford cyclic phosphonamidate \(16\) in \(90\%\) ee, completing the enantioselective formal synthesis of MMP inhibitor \(17\). We anticipate that \(N\)-allyl benzylamine’s versatility as an “\(-NH_2\)” equivalent may enable access to a wide variety of phosphonamidate targets.

In this study, enantioenriched chlorophosphonamidates are introduced as a new class of chiral P(V) building blocks accessible via asymmetric catalysis from commercially available materials. Using the synthetic strategies outlined herein, these versatile intermediates are expected to enable the facile synthesis of both known and new stereogenic-at-P(V) compounds of interest.

REFERENCES

Acknowledgments
We thank Dr. S.-L. Zheng (Harvard University) for determination of the X-ray crystal structure, and R. Algera, J. Essman, and H. Sharma for helpful discussions. Funding: National Institutes of Health grant GM043214 (ENJ). Crystallographic data for compound 10 is available free of charge from the Cambridge Crystallographic Data Centre under reference CCDC 2155524. All other data are available in the main text or the supplementary materials.

Supplementary Materials
Materials and Methods
Supplementary Text
Figs. S1 and S2
Tables S1 to S7
References (39–56)