
1

Scaffold Generator - A Java library 1

implementing molecular scaffold 2

functionalities in the Chemistry 3

Development Kit (CDK) 4

 5

Jonas Schaub; Institute for Inorganic and Analytical Chemistry; Friedrich-Schiller University, 6

Lessing Strasse 8, 07743, Jena, Germany; jonas.schaub@uni-jena.de; ORCID: 0000-0003-7

1554-6666 8

 9

Julian Zander; Institute for Bioinformatics and Chemoinformatics, Westphalian University of 10

Applied Sciences, August-Schmidt-Ring 10, 45665, Recklinghausen, Germany; 11

julian.zander@studmail.w-hs.de; ORCID: 0000-0001-8197-076X 12

 13

Achim Zielesny; Institute for Bioinformatics and Chemoinformatics, Westphalian University of 14

Applied Sciences, August-Schmidt-Ring 10, 45665, Recklinghausen, Germany; 15

achim.zielesny@w‑hs.de; ORCID: 0000-0003-0722-4229 16

 17

Christoph Steinbeck*; Institute for Inorganic and Analytical Chemistry; Friedrich-Schiller 18

University, Lessing Strasse 8, 07743, Jena, Germany; christoph.steinbeck@uni-jena.de; 19

ORCID: 0000-0001-6966-0814 20

 21

Corresponding author email: christoph.steinbeck@uni-jena.de 22

mailto:jonas.schaub@uni-jena.de
https://orcid.org/0000-0003-1554-6666
https://orcid.org/0000-0003-1554-6666
mailto:julian.zander@studmail.w-hs.de
https://orcid.org/0000-0001-8197-076X
mailto:achim.zielesny@w-hs.de
https://orcid.org/0000-0003-0722-4229
mailto:christoph.steinbeck@uni-jena.de
https://orcid.org/0000-0001-6966-0814
mailto:christoph.steinbeck@uni-jena.de

2

Abstract 23

The concept of molecular scaffolds as defining core structures of organic molecules is utilised 24

in many areas of chemistry and cheminformatics, e.g. drug design, chemical classification, or 25

the analysis of high-throughput screening data. Here, we present Scaffold Generator, a 26

comprehensive open library for the generation, handling, and display of molecular scaffolds, 27

scaffold trees and networks. The new library is based on the Chemistry Development Kit 28

(CDK) and highly customisable through multiple settings, e.g. five different structural 29

framework definitions are available. For display of scaffold hierarchies, the open GraphStream 30

Java library is utilised. Performance snapshots with natural products (NP) from the COCONUT 31

database and drug molecules from DrugBank are reported. The generation of a scaffold 32

network from more than 450,000 NP can be achieved within a single day. 33

 34

Keywords: cheminformatics, Chemistry Development Kit, CDK, natural products, scaffold, 35

scaffold tree, scaffold network, fragmentation, chemical space, clustering 36

 37

Introduction 38

Scaffold concept and applications 39

Molecular scaffolds, defined as the core structures of molecules, are a concept used in many 40

areas of chemistry. In drug design, the scaffold of a molecule is considered the main structure 41

that determines its shape and places the functional moieties into the right positions to interact 42

with the target. For this reason, developing new drug molecules with different cores but similar 43

biological activities has been termed “scaffold hopping” [1, 2]. Combinatorial chemistry makes 44

use of the concept in designing compound libraries by substituting a set of scaffolds with 45

combinations of different side chains. And structures in chemical patents are often defined 46

3

analogously as Markush structures [3]. The intuitive chemical scaffold concept can also be 47

utilised for classification purposes, especially in natural product (NP) research [4-7]. In 48

cheminformatics, scaffold-based approaches can be applied for the analysis of high-49

throughput screening (HTS) data [6-10], mapping and visualising chemical spaces [5, 11], or 50

even train-test splits of molecular data sets for machine learning projects [12]. 51

Scaffold approaches in cheminformatics 52

The first general definition of a molecular scaffold was the Murcko framework developed by 53

Bemis and Murcko in 1996 [11]. According to this concept, a scaffold consists of all the rings 54

in a molecule and the non-cyclic chains connecting them, called linkers. Excluded from the 55

scaffold are all terminal side chains. The authors used their framework definition to assess the 56

structural diversity of a set of drug molecules. 57

In addition to ignoring all non-cyclic molecules, the Murcko framework has one major 58

drawback: small changes in the ring structure or the addition of a cyclic substituent, e.g. a 59

benzene ring in drug design or a sugar moiety in NP research, can lead to very similar 60

molecules not being grouped together due to non-equivalent scaffolds. Therefore, multiple 61

approaches have been developed for organising molecular scaffolds in a graph-based 62

structure to relate similar scaffolds to each other and to create a systematic scaffold hierarchy 63

[4, 5, 7, 9, 10, 13]. 64

Wilkens et al. in their hierarchical scaffold clustering (HierS) approach [10] use a scaffold 65

definition similar to Murcko frameworks but additionally include all atoms that are directly 66

attached to rings and linkers via multiple bonds. Non-cyclic molecules are taken into 67

consideration as well and are assigned scaffolds based on their multiple bonds. To build a 68

scaffold hierarchy, the original scaffold extracted from each molecule is dissected into its 69

smaller parent scaffolds first. This is done by generating all smaller scaffolds that can result 70

from the stepwise removal of ring systems, i.e. isolated single rings or fused multiple rings that 71

share bonds or atoms, from the original scaffold. After the removal of one ring, linker atoms 72

4

that have become side chains are also removed. The process is finished when only the 73

individual ring systems are left. Via a substructure search, the scaffold hierarchy is constructed 74

in the second step by linking parent and child scaffold if the smaller parent scaffold is a 75

substructure of the bigger child scaffold. In the end, a tree-like hierarchy results with the 76

individual ring systems as roots at the top, and their combinations in more complex scaffolds 77

on the following levels. A scaffold that is not a single ring system has multiple parents in the 78

hierarchy. 79

While HierS overcomes most limitations of the Murcko framework approach and is a good first 80

attempt for scaffold classification, it also has some disadvantages: ring systems are not split 81

into their constituting single rings, which can be especially problematic when studying complex 82

ring systems of NP where the approach may be too coarse-grained. In addition, child scaffolds 83

are linked to multiple parents in the hierarchy, which is a multi-class assignment that is often 84

undesirable for classification tasks. 85

The latter drawback of HierS is addressed in the structural classification of natural products 86

(SCONP) approach by Koch et al. [5] that uses the same structural scaffold definition (apart 87

from again ignoring linear molecules) but differs in its hierarchy construction routine. One 88

major difference is that scaffolds are not dissected here. Only the directly extracted, original 89

scaffolds of the studied molecule set are used to construct their relations in a tree-like fashion. 90

A more complex scaffold is linked to only a single parent scaffold that is selected from all 91

possible parent scaffolds representing substructures of the child following a set of chemical 92

rules. These take characteristics of the parent scaffolds into account like hetero atom count, 93

size, and frequency in the studied dataset. This last aspect makes the approach dataset-94

dependent, which can lead to problems in classification tasks. 95

A combination of scaffold dissection and single-parent assignments through chemical 96

prioritisation rules is the scaffold tree approach by Schuffenhauer et al. [7]. As a first step, 97

scaffolds are extracted from the given molecules according to the Murcko framework definition 98

but additionally including all atoms connected via a double-bond to ring or linker atoms in the 99

scaffolds. These elements are included as well to preserve correct hybridisation and structural 100

5

alignment of the scaffold atoms. Via an iterative removal of rings, smaller parent scaffolds are 101

created from the original child scaffolds. Ring perception for the removal is based on a smallest 102

set of smallest rings (SSSR) approach. This way, ring systems sharing atoms or bonds 103

between multiple rings are not considered as one entity but dissected into their constituting 104

rings as well. One important aspect about the scaffold tree approach is the application of 13 105

chemical prioritisation rules at every ring removal step. Following these rules, only one 106

terminal ring is specifically selected for removal and only one possible parent scaffold created 107

at every scaffold dissection step. The term “terminal” indicates that the removal does not result 108

in a disconnected scaffold structure. The specific prioritisation rules take only molecular 109

characteristics of the rings, like size, heteroatom count, and aromaticity, into account and aim 110

at removing the less characteristic, peripheral rings first to extract the characteristic, central 111

parent scaffold. The scaffold dissection process continues until only one ring remains. When 112

studying a collection of molecules, their original scaffolds and sets of created parent scaffolds 113

are arranged in a hierarchy tree, the scaffold tree. Single-ring scaffolds form the roots and 114

more complex scaffolds are placed at the higher levels. Due to the linear scaffold dissection 115

process using the prioritisation rules, every child scaffold in the hierarchy is exclusively 116

assigned to only one parent scaffold. Therefore, the scaffold tree represents a hierarchical, 117

deterministic, and unique classification of chemical scaffolds. Unlike SCONP, it is dataset-118

independent because it does not consider the frequency of a scaffold in the studied collection. 119

In conclusion, the scaffold tree is a useful tool for scaffold-based classification and 120

visualisation of large compound sets and can be successfully employed to identify active 121

scaffolds in HTS data and promising candidates for drug development [6-8, 14-16]. 122

By definition of prioritisation rules, Schuffenhauer et al. intended to create a chemically intuitive 123

classification system which opposes a classification focussing on pharmacophoric elements 124

[7]. Also, its capability to identify biologically active substructural motives is limited because its 125

exploration of possible parent scaffolds is limited due to the prioritisation rules. For this reason, 126

Varin et al. introduced the concept of scaffold networks [9], where scaffolds are extracted and 127

dissected analogously but without the application of prioritisation rules. In this way, every 128

6

possible parent scaffold is generated for a given original scaffold and the resulting hierarchy, 129

the scaffold network, contains multi-parent relationships between its nodes. Varin et al. 130

generated considerably more active scaffolds in primary screening data using scaffold 131

networks compared to the scaffold tree approach. The reason for this is the exhaustive 132

enumeration of parent scaffolds which leads to the scaffold network containing significantly 133

more scaffolds than a scaffold tree. Additionally, a scaffold is not linked to all parent scaffolds 134

that are substructures of it in the scaffold tree, only to the one determined as its characteristic 135

core. As a consequence, this scaffold may be regarded to be less active. 136

The scaffold network approach explores the scaffold space more exhaustively and supports 137

the identification of areas that a specific compound set does not cover. In addition, more virtual 138

scaffolds can be identified, i.e. scaffolds that are only generated as a result of scaffold 139

dissection and do not appear directly as original scaffolds in the given molecular structures. 140

When studying a compound set linked to bioactivity data, these structures are usually of high 141

interest when appearing frequently in active molecules [15, 16]. 142

On the other hand, scaffold networks can become large and complex with a comparably small 143

number of molecules, which makes it difficult to visualise them. When linked to bioactivity data, 144

Varin et al. suggest to only include islands of relevant, active scaffolds in the display. 145

As a conclusion, scaffold trees are generally more suitable for a complete visualisation and 146

overview of the defining motives and structural classes in a limited compound set. Whereas 147

scaffold networks can be seen as more helpful for analysing compound sets linked with 148

bioactivity data to reasonably limit the display and identify active substructural motives [9]. 149

An even more extensive scaffold approach was published recently by Manelfi et al., named 150

“Molecular Anatomy” [17]. While the aforementioned approaches mostly rely on one single 151

scaffold definition, respectively, nine different scaffold types of different abstraction levels were 152

introduced here. All of them can be dissected analogously and linked in a network 153

representation. This way, common substructure patterns can be identified on a higher 154

abstraction level than with scaffold networks and more relevant similar compounds 155

7

determined. This may be helpful for analysing HTS data or preparing structure activity 156

relationship (SAR) studies of scaffolds and their side chains. 157

Open implementations 158

Most of the original software tools implementing the scaffold-based approaches described in 159

the previous section have not been published openly (Murcko frameworks, SCONP, scaffold 160

tree) or are not findable anymore (HierS). As a result, a number of open re-implementations 161

and more advanced, versatile software for scaffold analyses has been developed and 162

published [14, 15, 18-23]. 163

The first open software application that implemented a scaffold tree was Scaffold Hunter [14, 164

15, 18]. Starting as a tool mainly for generating and visualising scaffold trees, it has evolved 165

into a multi-functional cheminformatics platform for visual data analysis. By default, the 166

prioritisation rules are applied as published by Schuffenhauer et al. [7], but they can be 167

customised by the user or even turned off completely. Varin et al. used the latter option to 168

generate their scaffold networks using Scaffold Hunter [9]. The rich-client application is 169

implemented in Java and employs the Chemistry Development Kit (CDK) [24-26] for 170

cheminformatics tasks. 171

The open command-line tool Scaffold Network Generator [20] was designed to generate both, 172

scaffold trees and scaffold networks. It lacks the extensive visualisation functionality of 173

Scaffold Hunter but can therefore be integrated into automated analysis workflows that do not 174

require human interaction. Scaffold Network Generator was implemented in Java as well and 175

employs the CDK and Open Babel [27] cheminformatics toolkits. Unfortunately, it cannot be 176

found at the internet address given in the original publication anymore. 177

The cheminformatics toolkit RDKit [28] recently integrated an extensive scaffold network 178

functionality into its range of capabilities [19]. The module named “rdScaffoldNetwork” 179

primarily offers the generation of scaffold networks based on a HierS-like scaffold dissection 180

(no splitting of fused rings). Custom fragmentation rules can be added in the form of reaction 181

8

SMARTS [29]. In addition, more abstract atom- and bond-generic scaffold representations can 182

be generated. The new functionality has been employed in a study evaluating different 183

approaches to automate chemical series classifications in medicinal chemistry [30]. 184

These three open software tools for scaffold-based analyses are only a limited number of 185

examples for many more such tools developed in the past years [21-23]. 186

Motivation 187

Structural scaffold analyses are relevant in diverse areas of cheminformatics, e.g. clustering, 188

visualisation of chemical spaces and SAR analyses [4-10, 16, 17]. Hence, numerous open 189

software tools for such purposes have been developed [14, 15, 18-23]. The popular 190

cheminformatics toolkit RDKit even integrated scaffold functionalities into its core modules. 191

For the Chemistry Development Kit, only the generation of Murcko frameworks is currently 192

available [31]. Outside core CDK, there is no open scaffold software library exclusively based 193

on CDK to use in workflows and software based on the toolkit. Scaffold Hunter implemented 194

its scaffold functionalities as part of a software application, and they cannot be easily extracted 195

from it. Scaffold Network Generator is based on CDK but on Open Babel as well and not 196

findable anymore. 197

Here, we present Scaffold Generator, an open, stand-alone Java library for scaffold 198

functionalities based on CDK, to fill this void. It offers the generation of scaffold trees and 199

scaffold networks with comprehensive additional scaffold-related functionalities. An integration 200

into the main CDK modules is intended. 201

Implementation 202

The Scaffold Generator library was implemented in Java version 11 and is based on the 203

Chemistry Development Kit (CDK) version 2.7.1. The openly available source code can be 204

found on GitHub: https://github.com/Julian-Z98/ScaffoldGenerator. With Scaffold Generator, 205

https://github.com/Julian-Z98/ScaffoldGenerator

9

different scaffold representations can be extracted from given molecules, dissected into parent 206

scaffolds in multiple ways, and organised in scaffold trees and networks. These can be 207

visualised using the GraphStream library version 2.0 [32, 33]. 208

Available Functionalities 209

Scaffold types 210

Molecules are passed to Scaffold Generator as instances implementing the central CDK 211

molecular structure representation, the IAtomContainer interface [34]. From these, molecular 212

scaffolds can be extracted according to different scaffold definitions available. These include 213

the well-established Murcko framework and the Schuffenhauer scaffold definition. The latter 214

is based on Murcko frameworks but additionally includes all atoms connected to ring or linker 215

atoms via double-bonds [7]. In Scaffold Generator, this has been extended to all atoms 216

connected via non-single bonds to cyclic or linker atoms. Higher bond orders than 2 are 217

considered rare in such configurations but they influence the hybridisation and structural 218

configuration of the scaffold as strongly as exocyclic or exolinker double-bonds. Additionally, 219

two more abstract scaffold representations taken from Molecular Anatomy are available in 220

Scaffold Generator: basic framework and basic wireframe [17]. A fifth scaffold type was 221

conceptualised for Scaffold Generator and analogously termed elemental wireframe. Here, all 222

bonds are abstracted to single bonds, but heteroatoms are preserved (Figure 1). For the 223

creation of scaffolds of all types, the CDK MurckoFragmenter class [31] is used internally and 224

the extracted Murcko framework is post-processed according to the chosen scaffold type if 225

necessary. If a given molecular structure has no rings, no scaffold can be extracted and an 226

empty IAtomContainer instance is returned. 227

 228

10

 229

Figure 1: Different scaffold types available in Scaffold Generator. a) Unaltered structure 230

of the antibiotic agent flucloxacillin (PubChem CID 21319). b) Murcko framework of 231

flucloxacillin. c) Schuffenhauer scaffold of flucloxacillin. d) Elemental wireframe of 232

flucloxacillin. e) Basic framework of flucloxacillin. f) Basic wireframe of flucloxacillin. 233

 234

Another functionality of Scaffold Generator is to return the building blocks of scaffolds, i.e. 235

rings and linkers, separately. The terminal side chains excluded from the scaffold structure 236

can also be extracted (Figure 2). 237

 238

11

 239

Figure 2: Dissection of scaffolds into building blocks. a) Flucloxacillin with its Murcko 240

framework marked in blue. b) Rings of flucloxacillin marked in blue. It is important to note that 241

the fused ring system on the right would be split into its two constituting rings in the structure 242

set returned by the described routine of Scaffold Generator. c) Linkers of flucloxacillin marked 243

in blue. d) Terminal side chains of flucloxacillin marked in blue. 244

 245

Ring detection 246

Scaffold Generator dissects fused ring systems, i.e. rings that share bonds or atoms, into their 247

constituting separate rings. This is the case not only when returning scaffold building blocks 248

but also for the generation of parent scaffolds (see below). Internally, the CDK Cycles.relevant 249

cycle finder algorithm is employed for ring detection. This algorithm detects the logical union 250

of all smallest sets of smallest rings (SSSR, also minimum cycle basis, MCB) in the given 251

molecule [35, 36]. This way, fused ring systems are not detected as one entity, but their 252

constituting cycles are detected separately. The Cycles.relevant cycle finder was chosen for 253

Scaffold Generator to be in accordance with the original scaffold tree implementation [7]. But 254

12

in rare cases, this cycle detection algorithm identifies too many rings in a given molecule, 255

defined as more rings than there are atoms in the structure. One example is the natural product 256

(NP) CNP0103752, taken from the COCONUT [37] database (Figure 3). Since the overarching 257

ring connecting all 11 glycosidic rings in the structure can be detected on many different paths, 258

Cycles.relevant detects 2059 rings here. In cases like this, Scaffold Generator uses the 259

algorithm Cycles.mcb instead, which identifies one single set of SSSR/MCB instead of the 260

logical union of all possible ones [35, 36]. In CNP0103752, it detects a more useful number 261

for this application of 12 cycles. 262

 263

 264

Figure 3: Rings of CNP0103752 taken from COCONUT. The CDK Cycles.relevant algorithm 265

identifies 2059 rings here while Cycles.mcb detects 12. 266

13

 267

Ring removal 268

In the parent scaffold generation routines (see below), only rings adhering to a set of criteria 269

are considered for removal at the individual dissection steps. The first requirement is that a 270

ring needs to be terminal, i.e. its removal must not result in a disconnected scaffold structure. 271

This is checked internally by removing all atoms and bonds constituting the respective ring 272

from the scaffold, discarding potential side chains that were connected to it, e.g. when the 273

Schuffenhauer scaffold is used, and assessing whether the structure does not consist of 274

multiple disconnected parts afterwards. If it does, the ring in question is not deemed terminal 275

and hence not removable. This routine of checking for terminal rings has two major 276

consequences: Internal rings that could be removed without resulting in a disconnected 277

structure by turning some of their atoms and bonds into linker structures are still not considered 278

terminal (Figure 4a). Secondly, the removal of rings from a scaffold cannot result in an 279

artificially created spiro-ring system in Scaffold Generator (Figure 4b). Such cases are 280

described in the original scaffold tree publication [7] and the fifth prioritisation rule there is 281

intended to prevent them if other rings can be removed first. But they are possible in general 282

and would appear in a set of all possible parent scaffolds. Because the conversion of ring 283

atoms to linker atoms and the artificial creation of spiro-ring systems are chemically non-284

intuitive when generating parent scaffolds, these possibilities have been excluded in Scaffold 285

Generator. 286

 287

14

 288

Figure 4: Impossible parent scaffolds in Scaffold Generator. a) Dodecahydro-s-indacene 289

(PubChem CID 13214318) representing an example scaffold cannot be dissected in a way 290

that turns former ring atoms into linker atoms in the created parent scaffold. b) 291

Tricyclo[7.2.1.01,6]dodecane (PubChem CID 12758808) representing an example scaffold 292

cannot be dissected in a way that creates a parent scaffold with a spiro-ring system which was 293

not there in the molecule before. 294

 295

Another requirement to consider a ring for removal is that it must contain at least one atom 296

that is not part of another ring as well. This criterion is adopted from the original scaffold tree 297

publication [7]. Here, the authors explain it with the example of adamantane. Using a ring 298

detection algorithm that identifies the logical union of all SSSR in a structure, four rings are 299

identified here and no atom is part of only one of them (compare Schuffenhauer et al. [7] 300

Scheme 2). Hence, the removal of one ring is not possible because its atoms and bonds that 301

are part of other rings as well are generally preserved in the Scaffold Generator ring removal 302

routines. Structures like adamantane are therefore not dissected at all. 303

A similar case of structures that cannot be dissected are specific fused aromatic systems, i.e. 304

aromatic rings that share the same atom with at least two other rings. When removing an 305

aromatic ring sharing a bond with another ring, Scaffold Generator turns the shared bond into 306

a double-bond to preserve the correct hybridisation of the formerly shared atoms in the 307

remaining ring. In arrangements where the aromatic ring to remove shares an atom with at 308

15

least two other rings, this double-bond insertion is not possible without violating valence rules. 309

Such structures are not dissected as a consequence. This behaviour follows the ring removal 310

algorithm described in the original scaffold tree publication (compare Schuffenhauer et al. [7] 311

Scheme 3). But Scaffold Generator makes one addition here: In the original scaffold tree, this 312

double-bond insertion is only done if an aromatic ring is fused to a non-aromatic ring and the 313

aromatic ring is removed. In Scaffold Generator, it is also done if the remaining ring is aromatic 314

as well. This addition has been made to preserve hybridisations and aromaticity in the 315

remaining ring and to ensure that aromatic ring systems, if they can be dissected, are 316

decomposed into parent scaffolds that can always be represented as valid contributing 317

structures (as opposed to resonance hybrids). As a consequence, Scaffold Generator does 318

not dissect most fused aromatic ring systems, e.g. pyrene. In these systems, most rings 319

cannot be removed without altering hybridisations and bond orders in the remaining ones. And 320

since a partial dissection does not appear reasonable because it would not produce 321

meaningful parent scaffolds, these structures are not dissected at all. A possible future 322

extension to Scaffold Generator could be a routine that extracts meaningful parent scaffolds 323

from fused aromatic systems, e.g. a benzene ring as root scaffold from pyrene and similar 324

structures. 325

Another specially treated system are rings of size three containing one hetero-atom that share 326

the bond opposite to the hetero-atom with another ring (Figure 5). When rings like this are 327

removed, the shared bond is turned into a double bond to produce the precursor structure the 328

heteroatom was most likely added to. This special case is described in the first ring removal 329

prioritisation rule by Schuffenhauer et al. [7] but is part of the general ring removal routine of 330

Scaffold Generator. This deviation from the original implementation does not influence the 331

parent scaffold generation according to the scaffold tree prioritisation rules but is important to 332

note for the enumerative generation of all possible parent scaffolds (see below). 333

 334

16

 335

Figure 5: Removal of 3-membered heterocycles. If the oxirane ring marked in blue is 336

removed from himeyoshin (COCONUT CNP0151718) during parent scaffold generation, the 337

bond shared with the cyclohexanone ring is turned into a double bond. 338

 339

Scaffold trees and networks 340

Using Scaffold Generator, extracted molecular scaffolds can be dissected in different ways. 341

The first one, as described above, is to decompose it into the constituting building blocks, i.e. 342

rings and linkers. Another option is the enumerative removal that generates all possible parent 343

scaffolds. At every iteration step, each ring adhering to the criteria listed above is removed 344

separately to produce the resulting parent scaffold. This is repeated until only single-ring 345

scaffolds remain, or no ring is removable anymore. These final scaffolds are called the root 346

scaffolds. All generated parent scaffolds are substructures of the original scaffold. An example 347

for the enumerative removal is shown in Figure 6. This routine can be applied to a given 348

molecule and it returns a list with all possible parent scaffolds plus the original scaffold of the 349

molecule. Parent scaffolds generated multiple times in the enumerative removal are returned 350

only once. This scaffold dissection routine is the basis for generating scaffold networks. The 351

dissection result of a single molecule can already be represented as a scaffold network by 352

returning it as the corresponding data structure instead of a list. 353

 354

17

 355

Figure 6: Enumerative parent scaffold generation of flucloxacillin. Conceptual depiction 356

of the enumerative parent scaffold generation routine applied to the scaffold of flucloxacillin 357

(on the left). All possible parent scaffolds that can be created through the removal of a terminal 358

ring are created. Marked in blue are all structures that are returned by the routine, indicating 359

that structures occurring multiple times are still returned only once. 360

 361

Scaffold Generator implements the 13 chemical prioritisation rules that are applied in the 362

original scaffold tree publication to specifically select only one parent scaffold at every scaffold 363

dissection step [7]. In principle, these rules are applied to select only one ring removal path 364

from all possible ones that are pursued in the enumerative removal (compare Figure 6). Only 365

a few minor changes have been done to the original rules and underlying routines as reported 366

above. Additionally, the final tie-breaking rule has been adapted to use unique SMILES 367

representations [38, 39] as produced by the CDK, instead of canonical ones. From a given 368

molecular structure, Scaffold Generator can generate a list of all parent scaffolds resulting 369

from the Schuffenhauer dissection routine, plus the original scaffold (Figure 7). It produces the 370

18

structures that can be used to build a scaffold tree in the second step. As with scaffold 371

networks, a scaffold tree can already be constructed from a single molecule as well. 372

 373

 374

Figure 7: Schuffenhauer parent scaffold generation of flucloxacillin. Conceptual 375

depiction of the parent scaffold generation routine employing the Schuffenhauer prioritisation 376

rules applied to the scaffold of flucloxacillin (on the left). The rules are used to select only one 377

parent scaffold out of all possible ones at every dissection step. 378

 379

The main functionality of Scaffold Generator is the construction of scaffold trees and networks 380

from given molecule collections (Figure 8). In the first step, the first molecule in the given 381

collection is dissected into its parent scaffolds and the result is used to build the starting point 382

of the desired structure. One by one, the remaining molecules are decomposed as well and 383

their original scaffolds and parent scaffolds added to the tree or network if they are not already 384

part of it. Scaffold Generator implements data structures that manage the graph nodes 385

representing scaffolds and their parent-child-connections as edges in scaffold trees and 386

networks. Both graphs are subdivided into levels with the root scaffolds on level 0 and their 387

child scaffolds on the consecutive levels. The leaves are formed by original scaffolds of the 388

given molecules. But it is important to note that lower levels down to the roots can contain 389

original scaffolds as well, e.g. when single-ring molecules are part of the given molecular set. 390

The merging routines that are employed in the construction of a tree or network to add more 391

scaffolds to it are also accessible after the final structures have been returned. 392

 393

19

 394

Figure 8: Scaffold network and tree depicted with the Scaffold Generator GraphStream 395

visualisation. The scaffold network (a) and scaffold tree (b) of diazepam (PubChem CID 396

3016), bromazepam (PubChem CID 2441), and zolazepam (PubChem CID 35775) are 397

20

displayed side-by-side for direct comparison (original scaffolds marked in blue). All three 398

compounds are diazepinenones, a class of anxiolytics. The scaffold tree correctly identifies 399

the diazepinenone ring as root scaffold of all three structures. But the scaffold network 400

additionally reveals that diazepam shares two-ring parent scaffolds with both the other 401

structures, respectively. It also shows that the benzene ring is shared by all three compounds 402

as well. 403

 404

The scaffold tree and network structures differ in some aspects: In scaffold trees, each node 405

has only one parent node. This results from the Schuffenhauer scaffold dissection where a 406

scaffold produces only one parent scaffold in each step. In scaffold networks, on the other 407

hand, a node can have multiple parents since a scaffold usually produces multiple parent 408

scaffolds in each step during the enumerative removal. 409

Another distinct aspect of scaffold trees is that only those molecules with their original 410

scaffolds and parent scaffolds can be combined in one tree that share the same root scaffold. 411

This is the scaffold (usually a single-ring scaffold) which results as parent scaffold in the final 412

step of the Schuffenhauer dissection. It is unambiguously determined by the prioritisation 413

rules. Scaffold Generator compiles the generated scaffolds of multiple molecules in one 414

scaffold tree instance if they have the same root scaffold. If molecules with different root 415

scaffolds are given in the molecule set, multiple scaffold tree instances will be created and 416

returned in a list, termed scaffold forest in the nomenclature of Scaffold Generator. In the 417

construction of scaffold networks, only one parent scaffold, i.e. at least one ring, needs to be 418

shared between two molecules to be able to combine them in one network. But the scaffold 419

network data structure of Scaffold Generator is also able to handle multiple disconnected 420

graphs of scaffolds in one instance, unlike the scaffold tree structure. 421

The tree and network data structures can generate an adjacency matrix representation of 422

themselves that can be used for export or visualisation. Scaffold Generator offers an initial 423

visualisation functionality for scaffold trees and networks based on the GraphStream library. 424

The two structures can be visualised as graphs in a Java Swing application window. A layout 425

21

algorithm attempts to place the nodes and edges as readable as possible but modifications to 426

the layout can be done by dragging nodes. The display can also be zoomed and moved using 427

key commands. Some figures in this publication have been created using the Scaffold 428

Generator GraphStream display (Figures 8 and 9). While this visualisation was helpful during 429

the development process for visual inspection and debugging, it is not considered powerful 430

enough for real-world use cases and will most likely not be part of a CDK integration of Scaffold 431

Generator. A scaffold hierarchy visualisation tool that might sprout from Scaffold Generator as 432

a separate project would have to be very interactive, i.e. zoomable, draggable, and 433

collapsable. Especially scaffold networks tend to grow very fast with the number of included 434

molecules. Therefore, their display needs to be limited in a comprehensive way, e.g. by only 435

visualising islands of active scaffolds as proposed by Varin et al. [9]. Scaffold trees can 436

become big as well, but they have the advantage that one can look at only one tree out of the 437

forest at a time since they are disconnected. 438

When a tree or network is constructed, a crucial step is querying whether a scaffold is already 439

part of it. This matching is done using SMILES representations of the scaffolds. The default 440

setting is to use unique SMILES with aromaticity encoding but without stereochemical 441

information. This can be adjusted, e.g. to include stereochemistry. Scaffold Generator 442

generally retains given stereochemical information during scaffold creation and dissection by 443

transferring the CDK IStereoElement [40] objects to the newly created structures. But this only 444

works if all defining elements of a stereo group, i.e. atoms and/or bonds, are still present in 445

the generated substructures. Since in the majority of cases side chains define stereochemistry 446

and stereochemical information is often not given or incomplete in molecular data sets, the 447

consideration of given stereochemical information in tree or network construction is turned off 448

per default as stated above. But it can be enabled for use cases where it is relevant (Figure 449

9). 450

 451

22

 452

Figure 9: Scaffold tree with activated stereochemistry consideration. The Scaffold tree 453

of (+)-thalidomide (PubChem CID 75792, on the left) and (-)-thalidomide (PubChem CID 454

92142, on the right) with activated stereochemistry consideration is shown in the Scaffold 455

Generator GraphStream display. If the consideration of stereochemistry in tree building was 456

turned off, both compounds would be sharing the same two-ring scaffold as well. 457

 458

The instances representing scaffold nodes in the trees and networks contain structural 459

information about their scaffold and have references to their parents in the hierarchies. 460

Additionally, they preserve SMILES codes of their origin molecules, i.e. structures from the 461

data set that possess the respective scaffold. These origins are subdivided into virtual and 462

non-virtual ones. Non-virtual origin molecules are those that have the node scaffold as their 463

original scaffold, e.g. their Schuffenhauer scaffold or Murcko framework. Virtual origins on the 464

other hand are molecules that generate the respective scaffold only through enumerative or 465

Schuffenhauer dissection, i.e. it is one of their parent scaffolds. This concept has been 466

introduced in Scaffold Generator based on the definition of virtual scaffolds described in the 467

literature [15, 16]. This term denotes scaffolds that are not directly in the data set but only 468

identified when parent scaffolds are generated. If a scaffold node has only virtual origins, it is 469

a virtual scaffold in Scaffold Generator. When analysing the results of a high-throughput 470

screening (HTS) campaign, virtual scaffolds can be of particular interest if many of their child 471

scaffolds exhibit bioactivity. A promising next step can be a second screening with a smaller 472

library based on this scaffold because the first screen might have failed to include the true 473

active scaffold structure. 474

23

An annotation of scaffold nodes in trees or networks with e.g. bioactivity data can be achieved 475

via the stored origin molecules as well. One way to do this is to deposit the (unique) SMILES 476

representation of the molecules in the studied data set linked to the respective annotation in 477

a map structure. After the hierarchy is generated, its nodes can be annotated through 478

comparing the origin molecule SMILES codes with the previously compiled annotation map. 479

This way, e.g. scaffold nodes could be coloured according to bioactivity [7] or the hierarchy 480

display limited to active scaffolds [9] in a more advanced visualisation tool as proposed above. 481

During the development of Scaffold Generator, it was decided against keeping the original 482

IAtomContainer instances with their structures and properties as origin references in favour of 483

only their SMILES representations to reduce random-access memory (RAM) consumption. 484

 485

Aromaticity handling 486

Aromaticity information and detection is relevant in multiple Scaffold Generator functionalities. 487

As stated above, when an aromatic ring is removed, bonds it shares with other rings are turned 488

into double bonds in some cases to preserve hybridisations and aromaticity. Since this is not 489

possible in all configurations, aromaticity information is also relevant in the determination of 490

possibly removable rings (see above). And many fused aromatic ring systems, e.g. pyrene, 491

are not dissected by Scaffold Generator as a result. 492

Aromaticity information is also significant in two of the 13 scaffold tree prioritisation rules for 493

parent scaffold determination, namely rule 7 ("A Fully Aromatic Ring System Must Not Be 494

Dissected in a Way That the Resulting System Is Not Aromatic Any More.") and rule 11 ("For 495

Mixed Aromatic/Nonaromatic Ring Systems, Retain Nonaromatic Rings with Priority.") [7]. The 496

seventh rule makes it necessary to generate all possible parent scaffolds producible by the 497

removal of one ring at the given dissection step and apply aromaticity determination to each 498

of them to assess whether aromaticity was lost in the remaining ring(s). Because this 499

consumes a lot of computation time and aromaticity should be conserved in most cases 500

24

through the double-bond insertion, the application of the seventh prioritisation rule can be 501

turned off individually in Scaffold Generator. 502

Aromaticity determination in CDK and hence in Scaffold Generator is carried out by 503

Aromaticity instances [41] constructed from the combination of an ElectronDonation model 504

[42] and a CycleFinder algorithm [35]. The first defines which atom types can contribute how 505

many electrons to the aromatic system and the second determines the cycles that can form 506

them. All aromaticity models loosely follow the Hückel rule heuristic [41]. The specific 507

Aromaticity instance used in Scaffold Generator can be configured because different models 508

are suited for different applications. 509

Since multiple intermediate steps in scaffold dissection rely on aromaticity information of 510

specific substructures, an initial aromaticity detection is applied at the primary scaffold 511

generation. And again at the end of a scaffold dissection process, a final aromaticity detection 512

is applied to all generated parent scaffolds to make sure that the aromaticity information stored 513

on the scaffold objects is in agreement with the returned structures. This last step might lead 514

to cases where the same ring is not detected as aromatic in a smaller parent scaffold but in 515

the bigger child scaffold in which it is a substructure. This is due to the cycle finder algorithms 516

usually employed for aromaticity detection that are not SSSR/MCB-based but also take cycles 517

into account that span multiple rings of the molecule. It should be interpreted in the way that 518

the ring in the parent scaffold gained aromaticity in the child scaffold through combination with 519

other rings. 520

An additional option is to turn off aromaticity detection completely in all Scaffold Generator 521

routines. This was implemented because this process takes a lot of time and makes the results 522

of scaffold dissection routines dependent on mostly toolkit-specific and heuristic aromaticity 523

models. If it is disabled, initially defined aromaticity information in the input structures is 524

preserved. 525

 526

25

Settings and options 527

Table 1: Settings and options of Scaffold Generator. The settings listed in this table 528

together with their options and default values are available in Scaffold Generator to adjust its 529

result to specific use cases. 530

Setting name Options Default

Scaffold mode - Schuffenhauer scaffold

- Murcko framework

- Basic wireframe

- Basic framework

- Elemental wireframe

Schuffenhauer scaffold

Determine aromaticity true/false true

Aromaticity model All combinations of

CycleFinder and

ElectronDonation instances

available in CDK

ElectronDonation.cdk and

Cycles.cdkAromaticSet

Retain only

hybridisations at

aromatic bonds

true/false false

Rule seven applied true/false true

SMILES generator All SmilesGenerator

configurations available in

CDK

SmiFlavor.Unique and

SmiFlavor.UseAromaticSymbols

 531

The functionalities and routines of Scaffold Generator can be adopted for various applications 532

by a variety of settings available (Table 1). Five different structural scaffold definitions can be 533

chosen for initial scaffold extraction and scaffold dissection (Figure 1). The default setting of 534

the scaffold mode setting is to use the Schuffenhauer scaffold. 535

Multiple steps in scaffold dissection and the construction of Scaffold trees and networks 536

require the testing for equivalence of molecular structures. These include the enumerative 537

26

generation of all possible parent scaffolds to avoid duplicates and the identification of 538

equivalent scaffolds when merging trees or networks. In Scaffold Generator, this is done using 539

CDK unique SMILES codes. To allow the user the definition of structural features taken into 540

account at these steps, e.g. stereochemistry, isotopes, or aromaticity, the CDK 541

SmilesGenerator [43] instance employed can be set externally. By default, stereochemistry 542

and atomic masses are not encoded but aromaticity is. The set SmilesGenerator instance is 543

also used to create SMILES codes for origin molecules of a respective scaffold stored on 544

nodes of scaffold trees and networks. 545

Another option is to exclude or include the Schuffenhauer prioritisation rule 7. This rule makes 546

it necessary to apply aromaticity detection to different parent scaffolds created for testing 547

purposes. This procedure is time-consuming and might not lead to a definite decision in favour 548

of one specific parent scaffold in most cases. But by default, it is activated to be in accordance 549

with the originally published scaffold tree implementation [7]. 550

The aromaticity detection done in multiple steps of scaffold dissection (see above) can be 551

configured by choosing which CDK aromaticity model is to be employed for this purpose. By 552

default, aromaticity is determined using the ElectronDonation.cdk model and the 553

Cycles.cdkAromaticSet cycle finder algorithm. 554

Additionally, aromaticity detection can be turned off completely in all routines to preserve initial 555

aromaticity information of the input structures and make the results less dependent on specific 556

aromaticity models. If this is the case, rule 7 is automatically excluded from the Schuffenhauer 557

prioritisation rules as well. 558

The fifth option of Scaffold Generator concerns post-processing after ring removal: As 559

explained above, a double bond is inserted in some cases when an aromatic ring is removed 560

to preserve hybridisation and aromaticity in the remaining ring(s) if possible. As an option, this 561

insertion of double bonds can also be applied to non-aromatic systems wherever there are 562

two sp2 hybridised atoms adjacent to a single bond that was previously shared between two 563

rings. The bond is turned into a double bond if the two adjacent atoms would lose their sp2 564

27

hybridisation because of the ring removal and if it is possible without violating valence rules 565

(Figure 10). 566

 567

 568

Figure 10: Parent scaffold of 1,2,3,4,6,7-hexahydroisoquinoline depending on the set 569

value of the retain only hybridisations at aromatic bonds setting. When the 570

cyclohexadiene ring is removed from 1,2,3,4,6,7-hexahydroisoquinoline (PubChem CID 571

89002720) in parent scaffold generation, the formerly shared bond with the piperidine ring is 572

turned into a double bond if the retain only hybridisations at aromatic bonds setting is set to 573

false. In this case, double bonds are always inserted if possible to preserve atom 574

hybridisations in the remaining ring. If the setting is set to true, this is only done when an 575

aromatic ring is removed. In this case, no double bond is inserted in the remaining piperidine 576

ring. 577

 578

Software architecture 579

The central class of the Scaffold Generator library is ScaffoldGenerator. When instantiated, 580

all available settings are set to their default values (Table 1) and can be adjusted using 581

methods of the class. All main functionalities of Scaffold Generator described above can be 582

28

accessed through an instance of the ScaffoldGenerator class, i.e. generation of scaffolds, their 583

decomposition into building blocks, parent scaffold generation through enumerative or 584

Schuffenhauer dissection, and the generation of scaffolds trees and networks. The two 585

scaffold hierarchy structures are represented by a class of their own: ScaffoldTree and 586

ScaffoldNetwork. Both extend the same base class, ScaffoldNodeCollectionBase, for basic 587

functionalities and manage scaffold nodes as TreeNode or NetworkNode instances that both 588

stem from the abstract base class ScaffoldNodeBase. These six classes manage scaffold 589

structures, parent-child relationships of scaffold nodes, and origin molecule references. Trees 590

and networks can be traversed and merged with instances of the same class, respectively. 591

Scaffold trees can additionally be checked for validity, i.e. whether all nodes have parents, 592

except the root node, and there is only one root node. Scaffold tree and network instances 593

can also be exported as adjacency matrices along with scaffold structures for each 594

represented node. This is utilised by the class GraphStreamUtility to display scaffold trees and 595

networks in an interactive Java Swing application window with the GraphStream library. 596

The JUnit [44] test class ScaffoldGeneratorTest implements automatic tests for the basic 597

Scaffold Generator routines, tests employing the GraphStream visualisation of scaffold trees 598

and networks for visual inspection, and code examples for the application of Scaffold 599

Generator. Another important set of test routines checks whether the Schuffenhauer 600

prioritisation rules as implemented in Scaffold Generator are in accordance with the original 601

implementation, based on the examples given in the scaffold tree publication [7]. Furthermore, 602

the COCONUT database is used to test the basic routines on a large set of natural product 603

(NP) structures. 604

The class PerformanceTest represents a command-line application based on Scaffold 605

Generator that can be used to assess its computational speed on a given structure data file 606

(SDF). The results on COCONUT and DrugBank [45, 46] are presented in the “Results and 607

discussion” section. 608

 609

29

Results and discussion 610

A programming library for molecular scaffold functionalities named Scaffold Generator was 611

implemented based on the Chemistry Development Kit (CDK). The openly available source 612

code of Scaffold Generator can be found on GitHub: https://github.com/Julian-613

Z98/ScaffoldGenerator. It can be utilised to extract different types of scaffolds from input 614

molecules and dissect them further into parent scaffolds using an enumerative generation of 615

all possible ones or a dissection according to the scaffold tree prioritisation rules. Additionally, 616

the scaffolds and parent scaffolds can be arranged in scaffold trees and networks with these 617

hierarchies being visualised. 618

 619

Performance 620

Scaffold Generator can be packaged in a Java ARchive (JAR) file and used as a command-621

line application. It requires an SD file as input parameter and creates a performance snapshot 622

of the main functionalities of Scaffold Generator with the given data set. First, all molecules 623

are imported and stored in memory. From these, all structures having more than ten rings are 624

discarded. This is done because they occur rather rarely but would influence the overall 625

processing time disproportionally. No further filtering or preprocessing, e.g. removal of 626

counter-ions or elimination of duplicates, is done because the two data sets used in this study 627

are already highly curated. For an initial performance snapshot, all remaining molecules are 628

processed according to the enumerative generation of parent scaffolds and the parent scaffold 629

generation according to the scaffold tree prioritisation rules. Afterwards, the dataset is 630

subdivided into equally large portions. The total number of fractions has to be specified in the 631

second command-line parameter. In each following step, a growing number of created 632

molecule subsets is combined and all included structures used to build a scaffold network and 633

a scaffold forest, i.e. a set of scaffold trees. The number of molecules and the needed 634

https://github.com/Julian-Z98/ScaffoldGenerator
https://github.com/Julian-Z98/ScaffoldGenerator

30

processing time is logged in every step. In the final step, all scaffolds in the network and the 635

trees, respectively, and their frequencies determined based on their numbers of origin 636

molecules are exported to an output file. The scaffold structures are exported as SMILES 637

strings. 638

For this study, two performance snapshots were conducted. The first one was done on the 639

DrugBank database containing drug molecules (DrugBank “all structures” downloaded on 8th 640

November 2021). For comparison, the COCONUT NP database (downloaded on 1st 641

December 2021) was analysed as well. Additionally, for some analyses, a subset of 642

COCONUT containing 40,000 structures was compiled from the complete collection using the 643

RDKit MaxMin algorithm implementation [28, 47]. All analyses were conducted on a 644

workstation computer with an Intel Xeon Gold 6254 (18 cores, 3.10 GHz) CPU and 512 GB 645

RAM on a single core only (no multi-core parallelization). All Scaffold Generator settings were 646

set to their default values. 647

 648

31

Table 2: Performance snapshot of the mere parent scaffold generation routines applied 649

to COCONUT and DrugBank. 650

 COCONUT DrugBank

Initial number of molecules 406,747 11,172

Number of molecules after filtering

(< 11 rings)

395,450 11,127

Schuffenhauer dissection total 1,211,063 ms

(20 min)

27,656 ms

(0.46 min)

Schuffenhauer dissection average per

molecule

3 ms 2.5 ms

Enumerative dissection total 2,037,357 ms

(34 min)

33,938 ms

(0.57 min)

Enumerative dissection average per

molecule

5 ms 3 ms

 651

The complete COCONUT database contained 406,747 NP structures (Table 2). 11,297 of 652

these possessed 11 or more rings and were filtered. The remaining 395,450 NP were 653

subjected to the parent scaffold generation according to the Schuffenhauer rules, which took 654

1,211,063 ms (20 min). On average, the dissection of one COCONUT NP into its scaffold and 655

parent scaffolds according to the Schuffenhauer prioritisation rules took 3 ms. Generating all 656

possible parent scaffolds with the enumerative routine took 2,037,357 ms (34 min) for the 657

same molecule set. This is 5 ms per molecule on average. 658

The DrugBank data set of 11,172 molecules contained 45 structures with more than 10 rings 659

that needed to be filtered. The Schuffenhauer dissection of all structures took 27,656 ms 660

(0.46 min, 2.5 ms per molecule on average) and the enumerative parent scaffold generation 661

took 33,938 ms (0.57 min, 3 ms per molecule on average). 662

32

It is interesting to note that the enumeration of all possible parent scaffolds at every step 663

required more computation time than the application of up to 13 prioritisation rules at every 664

step. This was the case for NP as well as drug molecules which have less rings in general. 665

The latter characteristic of drug molecules as opposed to NP is also considered the reason for 666

the lower time it took on average to dissect the DrugBank structures. It must also be noted 667

that these processes, the pure dissection of each molecule, scale linearly with the number of 668

molecules and can be parallelised in multiple threads for further speed up. 669

 670

 671

Figure 11: Performance snapshot of scaffold forest and scaffold network construction 672

in DrugBank range of molecule number. The graph visualises the processing time it took 673

to construct a scaffold forest or scaffold network depending on the number of input molecules 674

taken from COCONUT or DrugBank. Exponential approximations have been applied to assess 675

the scaling behaviour of the processes. The given range of the number of molecules is 676

adjusted to the size of DrugBank (11,127 molecules). 677

 678

33

 679

Figure 12: Performance snapshot of scaffold forest and scaffold network construction 680

in COCONUT subset range of molecule number. The graph visualises the processing time 681

it took to construct a scaffold forest or scaffold network depending on the number of input 682

molecules taken from COCONUT or DrugBank. Exponential approximations have been 683

applied to assess the scaling behaviour of the processes. The given range of the number of 684

molecules is adjusted to the size of the curated COCONUT subset (39,324 molecules). 685

 686

In a second step, it was measured how much time it took to construct scaffold forests and 687

networks from an increasing number of molecules taken from the COCONUT subset and 688

DrugBank, respectively. Figure 11 shows the results for the area of molecule number of 689

DrugBank (0 - 11,127 molecules) and Figure 12 for the area of the COCONUT subset (0 - 690

39,324 molecules). Exponential approximations show that the individual processes scaled 691

between O(N1.2) and O(N1.6). This comparatively good scaling below a quadratic behaviour is 692

most likely due to the stepwise construction of the scaffold hierarchies that repeats the two 693

steps of scaffold dissection and integration for each molecule instead of generating all 694

scaffolds first and constructing the hierarchy later using substructure searches to establish 695

parent-child scaffold relationships. 696

34

Both, the generation of scaffold networks and trees from NP, scaled with higher exponents 697

than the analogous processes for drug molecules, which can again be explained by the 698

generally higher number of rings in the former class of compounds. 699

The generation of scaffold networks from NP structures scaled with the highest exponent. 700

Since the number of scaffolds in a network grows faster than in a forest because more parent 701

scaffolds are constructed for each molecule, it takes more time in network construction to 702

integrate new molecules, i.e. their scaffolds. This traversal of the scaffold forest or network for 703

the integration of new scaffolds is considered to be the algorithm step that dictates the scaling 704

behaviour. In addition, this step would be more challenging to parallelise and speed up through 705

multithreading because the same data structure would be accessed by all threads. The 706

scaffold tree and network representations in Scaffold Generator are currently not implemented 707

to be thread-safe, i.e. safe to use for concurrent modification. 708

According to the exponential approximation for the COCONUT subset of 40,000 NP 709

structures, a scaffold network of up to 456,000 NP molecules could still be constructed in a 710

single day using Scaffold Generator. The measured runtime for the complete COCONUT 711

database of 395,450 compounds with less than 11 rings was 16.5 h (5 h for the construction 712

of a scaffold forest). This is below the runtime of 19.2 h expected for this data set size 713

according to the exponential function approximating the scaling behaviour of the COCONUT 714

subset network generation. The underlying effect can be that with growing size of the network, 715

less new scaffolds need to be integrated per newly added molecule. Here, one also has to 716

take into account that the subset used for the performance and scaling snapshot was compiled 717

using a diversity-preserving method [47]. This may have increased the effect even further. 718

The memory consumption of the scaffold tree and scaffold network constructed from the 719

complete COCONUT database was below the 512 GB RAM available at all times but similar 720

experiments on a machine with 256 GB failed. 721

 722

35

Most frequent scaffolds in COCONUT and DrugBank 723

Table 3: Numbers of resulting scaffolds in scaffold network and scaffold forest 724

constructed from COCONUT and DrugBank. 725

 COCONUT DrugBank

Number of molecules after filtering

(< 11 rings)

395,450 11,127

Number of scaffold network scaffolds 392,888 23,765

Number of scaffold trees 6,200 766

Number of scaffold tree scaffolds 173,526 10,716

 726

The Scaffold Generator command-line application logs the numbers of different scaffolds in 727

network and forest built from the given data set and exports the scaffolds as SMILES 728

representations with their frequencies as a final step. These scaffold numbers for COCONUT 729

and DrugBank can be found in Table 3. The COCONUT scaffold network contained 392,888 730

different (parent) scaffolds, while the DrugBank network contained 23,765. The COCONUT 731

scaffold forest consisted of only 173,526 scaffolds distributed among 6,200 individual scaffold 732

trees. For DrugBank, it was 10,716 scaffolds in 766 trees. According to these numbers, the 733

enumerative parent scaffold generation produced more than twice as many scaffolds as the 734

Schuffenhauer dissection. Using a classification by root scaffolds, the two data sets could be 735

classified into a number of different classes according to the number of resulting scaffold trees. 736

The 20 most frequent scaffolds in the COCONUT scaffold network and scaffold forest, 737

respectively, are displayed in Figures 13 and 14. The frequencies are given as numbers of 738

origin molecules that produced the respective scaffold in parent scaffold generation or had it 739

as an original scaffold. The frequencies for the network scaffolds correspond precisely to the 740

number of molecules that possess the respective scaffold as a substructure, whereas the 741

frequencies for the forest scaffolds correspond to the number of molecules that possess the 742

36

scaffold as their most characteristic or central parent scaffold in one step of the Schuffenhauer 743

dissection according to the prioritisation rules. Hence, 225,272 COCONUT molecules contain 744

a benzene ring (Figure 13) but only in 29,258 molecules, it is the characteristic or central 745

parent scaffold (Figure 14). Still, it is striking that the benzene ring is the most frequent root 746

scaffold in the forest because some Schuffenhauer prioritisation rules explicitly assign a low 747

relevance to it and favour its removal over that of other rings. 748

As could be expected, the first ranks in both charts are dominated by single-ring scaffolds, 749

since they represent the final stage of scaffold dissection and have the most origin molecules 750

therefore. The first ranks are also dominated by 6-membered rings and parent scaffolds that 751

are most likely resulting from the dissection of polyketides. The frequency of oxygen-752

containing scaffolds is higher than that of nitrogen, as can be expected for NP. The empty 753

cells in both charts represent empty scaffolds, i.e. scaffolds of molecules that have no rings. 754

Hence, 21,882 molecules in COCONUT do not possess any circular structures. Of 406,747, 755

the share of linear molecules is low (5 %), but one should keep in mind that these structures 756

are usually completely neglected in ring-based analyses like scaffold methods. 757

 758

37

 759

38

Figure 13: 20 most frequent scaffold network scaffolds of COCONUT with their numbers 760

of origin molecules. 761

 762

39

 763

40

Figure 14: 20 most frequent scaffold forest scaffolds of COCONUT with their numbers 764

of origin molecules. 765

 766

Figures 15 and 16 analogously display the most frequent scaffolds of the created DrugBank 767

scaffold network and scaffold forest. The first observation here is that the share of nitrogen 768

heterocycles is higher in these drug molecules than in NP structures. This has been reported 769

before [48]. Also, the share of linear molecules (1,467 of 11,172, 13 %) is much higher than 770

in NP. Benzene is again the most frequent scaffold in both analyses. But while it is by far the 771

most frequent scaffold in the DrugBank network (6,578 origin molecules compared to 972 for 772

the second most frequent scaffold, pyridine), its prominence is way lower in the forest (1,819 773

origin molecules compared to 611 for pyrimidine in second place). 774

 775

41

 776

42

Figure 15: 20 most frequent scaffold network scaffolds of DrugBank with their numbers 777

of origin molecules. 778

 779

43

 780

44

Figure 16: 20 most frequent scaffold forest scaffolds of DrugBank with their numbers 781

of origin molecules. 782

 783

This analysis of the most frequent scaffolds in COCONUT and DrugBank is only supposed to 784

serve as a basic example for what kind of studies Scaffold Generator may be used. These 785

results may also have been achieved through the mere dissection of scaffolds into parent 786

scaffolds and a subsequent matching and counting of the resulting structures. With its ability 787

to generate and represent scaffold networks and forests, Scaffold Generator may be applied 788

to a wider variety of analyses like hierarchical classification and clustering, chemical space 789

mapping, or HTS data interpretation. But for these, a more powerful visualisation than the 790

existing GraphStream-based one would be very helpful. 791

 792

Future Work 793

Scaffold Generator meets the need for an open, versatile, CDK-based library for scaffold 794

functionalities that can be employed in software and workflows built upon this cheminformatics 795

toolkit. To make it more accessible to potential users, an integration into the CDK core modules 796

would be desirable since the toolkit would benefit from having more scaffold functionalities 797

available. 798

Another aspect that would make Scaffold Generator more applicable is a more powerful 799

visualisation functionality than the currently available one based on the GraphStream library. 800

It should display the hierarchies in suitable layouts, i.e. a tree layout for scaffold trees and a 801

similar layout for scaffold networks that arranges the network in its defined levels. The display 802

should be draggable, zoomable, and collapsable. The latter aspect is especially important for 803

scaffold networks that tend to grow very fast with the number of included molecules. For 804

example, all scaffolds below a chosen node should be easily collapsable or only active islands 805

of scaffolds should be displayed when bioactivity data is linked to the given molecules [9]. 806

45

Especially the analysis of HTS data or the derivation of SAR insights would benefit from a 807

versatile scaffold hierarchy visualisation. 808

Scaffold Generator can serve as core for a variety of scaffold-based functionalities. 809

Classification, clustering, and scaffold-based fingerprints are possible applications that can be 810

used in a second step for picking diverse training and test sets for machine learning models 811

for example [12]. The concept of scaffolds and parent scaffolds as characteristic molecular 812

fragments of molecules can help in the development of QSAR/QSPR models or computer-813

assisted structure elucidation (CASE). Applied to NP, scaffolds can serve as starting points 814

for the creation of pseudo-NP that are regarded as promising candidates for new drug 815

molecules [49, 50]. 816

 817

Conclusion 818

An open, CDK-based, stand-alone Java library named Scaffold Generator has been 819

developed to meet the need for scaffold functionalities in CDK-based workflows and software. 820

It offers the extraction of different scaffolds, the dissection of scaffolds into building blocks, 821

and the generation of parent scaffolds in two different ways. An enumerative parent scaffold 822

generation routine produces all parent scaffolds that can be created through the removal of 823

terminal rings and forms the basis for scaffold networks. Alternatively, only characteristic or 824

central parent scaffolds can be extracted according to the Schuffenhauer prioritisation rules 825

that are used to build scaffold trees. Scaffold trees and networks can be internally represented 826

as data structures and visualised in a basic display based on the GraphStream library. The 827

generation of a scaffold network from more than 450,000 natural product structures can be 828

achieved in a single day. A request for the integration of Scaffold Generator into the CDK core 829

modules will be made. It may serve as a starting point for diverse scaffold-based software 830

tools, e.g. for clustering or fingerprint functionalities. 831

 832

46

List of abbreviations 833

CASE: Computer-Assisted Structure Elucidation 834

CDK: Chemistry Development Kit 835

CID: Compound IDentifier 836

CNP: COCONUT Natural Product 837

COCONUT: COlleCtion of Open Natural prodUcTs 838

CPU: Central Processing Unit 839

HTS: High-Throughput Screening 840

MCB: Minimum Cycle Basis 841

NP: Natural Product(s) 842

QSAR/QSPR: Quantitative Structure Activity/Property Relationship 843

RAM: Random-Access Memory 844

SAR: Structure Activity Relationship 845

SD(F): Structure Data (File) 846

SMARTS: SMILES Arbitrary Target Specification 847

SMILES: Simplified Molecular Line Entry System 848

SSSR: Smallest Set of Smallest Rings 849

 850

Availability and requirements 851

● Project name: Scaffold Generator 852

● Project home page: https://github.com/Julian-Z98/ScaffoldGenerator 853

● Operating system(s): Platform independent 854

● Programming language: Java 855

● Other requirements: Java v11 or higher, Maven v4 or higher, CDK v2.7.1 (fetched by 856

Maven), GraphStream v2.0 (fetched by Maven), JUnit v4.13.2 (fetched by Maven) 857

https://github.com/Julian-Z98/ScaffoldGenerator

47

● Licence: GNU Lesser General Public Licence (LGPL) v2.1 858

● Any restrictions to use by non-academics: None 859

 860

Declarations 861

Availability of data and materials 862

Data and software are freely available under the LGPL v2.1 licence. The source code of 863

Scaffold Generator is available on GitHub at https://github.com/Julian-Z98/ScaffoldGenerator. 864

 865

Competing interests 866

AZ is co-founder of GNWI - Gesellschaft für naturwissenschaftliche Informatik mbH, 867

Dortmund, Germany. 868

Funding 869

This work was supported by the Carl-Zeiss-Foundation. 870

 871

Authors' contributions 872

JS designed and supervised the study. JS and JZ designed, tested, applied, and validated the 873

features of Scaffold Generator and wrote the paper. JZ developed the Java code. CS and AZ 874

conceived the study and acquired the funding. All authors read and approved the final 875

manuscript. 876

https://github.com/Julian-Z98/ScaffoldGenerator

48

Acknowledgements 877

The authors would like to thank the communities that created the open software libraries 878

utilised in the development of Scaffold Generator, especially the CDK community for support 879

during this process. Further thanks go to the authors of the scaffold tree publication, 880

Schuffenhauer et al., for describing their prioritisation rules in a detailed way that allowed 881

straightforward reimplementation. 882

 883

References 884

[1] G. Schneider, W. Neidhart, T. Giller, and G. Schmid, ‘“Scaffold-Hopping” by Topological 885

Pharmacophore Search: A Contribution to Virtual Screening’, Angew. Chem. Int. Ed., vol. 886

38, no. 19, pp. 2894–2896, Oct. 1999, doi: 10.1002/(SICI)1521-887

3773(19991004)38:19<2894::AID-ANIE2894>3.0.CO;2-F. [cito:citesAsAuthority] 888

[2] H.-J. Böhm, A. Flohr, and M. Stahl, ‘Scaffold hopping’, Drug Discov. Today Technol., vol. 889

1, no. 3, pp. 217–224, Dec. 2004, doi: 10.1016/j.ddtec.2004.10.009. 890

[cito:citesAsAuthority] 891

[3] E. A. Markush, ‘Pyrazolone dye and process of making the same’, USA101506316, Aug. 892

26, 1924 Accessed: Jan. 07, 2022. [Online]. Available: 893

https://pdfpiw.uspto.gov/.piw?PageNum=USA101506316&docid=01506316&IDKey=83894

E682D73B35&HomeUrl=http%3A%2F%2Fpatft.uspto.gov%2Fnetacgi%2Fnph-895

Parser%3FSect1%3DPTO1%2526Sect2%3DHITOFF%2526p%3D1%2526u%3D%2Fn896

etahtml%2FPTO%2Fsrchnum.html%2526r%3D1%2526f%3DG%2526l%3D50%2526d897

%3DPALL%2526s1%3D1506316.PN.%2526OS%3D%2526RS%3D 898

[cito:citesAsAuthority] 899

[4] A. Schuffenhauer and T. Varin, ‘Rule-Based Classification of Chemical Structures by 900

Scaffold’, Mol. Inform., vol. 30, no. 8, pp. 646–664, Aug. 2011, doi: 901

49

10.1002/minf.201100078. [cito:citesAsAuthority] 902

[5] M. A. Koch et al., ‘Charting biologically relevant chemical space: A structural 903

classification of natural products (SCONP)’, Proc. Natl. Acad. Sci., vol. 102, no. 48, pp. 904

17272–17277, Nov. 2005, doi: 10.1073/pnas.0503647102. [cito:citesAsAuthority] 905

[cito:discusses] 906

[6] A. Schuffenhauer, N. Brown, P. Ertl, J. L. Jenkins, P. Selzer, and J. Hamon, ‘Clustering 907

and Rule-Based Classifications of Chemical Structures Evaluated in the Biological 908

Activity Space’, J. Chem. Inf. Model., vol. 47, no. 2, pp. 325–336, Mar. 2007, doi: 909

10.1021/ci6004004. [cito:citesAsAuthority] 910

[7] A. Schuffenhauer, P. Ertl, S. Roggo, S. Wetzel, M. A. Koch, and H. Waldmann, ‘The 911

Scaffold Tree − Visualization of the Scaffold Universe by Hierarchical Scaffold 912

Classification’, J. Chem. Inf. Model., vol. 47, no. 1, pp. 47–58, Jan. 2007, doi: 913

10.1021/ci600338x. [cito:citesAsAuthority] [cito:usesMethodIn] [cito:discusses] 914

[8] T. Varin et al., ‘Compound Set Enrichment: A Novel Approach to Analysis of Primary 915

HTS Data’, J. Chem. Inf. Model., vol. 50, no. 12, pp. 2067–2078, Dec. 2010, doi: 916

10.1021/ci100203e. [cito:citesAsAuthority] 917

[9] T. Varin, A. Schuffenhauer, P. Ertl, and S. Renner, ‘Mining for Bioactive Scaffolds with 918

Scaffold Networks: Improved Compound Set Enrichment from Primary Screening Data’, 919

J. Chem. Inf. Model., vol. 51, no. 7, pp. 1528–1538, Jul. 2011, doi: 10.1021/ci2000924. 920

[cito:citesAsAuthority] [cito:usesMethodIn] [cito:discusses] 921

[10] S. J. Wilkens, J. Janes, and A. I. Su, ‘HierS: Hierarchical Scaffold Clustering Using 922

Topological Chemical Graphs’, J. Med. Chem., vol. 48, no. 9, pp. 3182–3193, May 2005, 923

doi: 10.1021/jm049032d. [cito:citesAsAuthority] [cito:discusses] 924

[11] G. W. Bemis and M. A. Murcko, ‘The Properties of Known Drugs. 1. Molecular 925

Frameworks’, J. Med. Chem., vol. 39, no. 15, pp. 2887–2893, Jan. 1996, doi: 926

10.1021/jm9602928. [cito:citesAsAuthority] [cito:usesMethodIn] [cito:discusses] 927

[12] J. Simm et al., ‘Splitting chemical structure data sets for federated privacy-preserving 928

machine learning’, J. Cheminformatics, vol. 13, no. 1, p. 96, Dec. 2021, doi: 929

50

10.1186/s13321-021-00576-2. [cito:citesAsAuthority] 930

[13] Y. Hu and J. Bajorath, ‘Combining Horizontal and Vertical Substructure Relationships in 931

Scaffold Hierarchies for Activity Prediction’, J. Chem. Inf. Model., vol. 51, no. 2, pp. 248–932

257, Feb. 2011, doi: 10.1021/ci100448a. [cito:citesAsAuthority] 933

[14] K. Klein, O. Koch, N. Kriege, P. Mutzel, and T. Schäfer, ‘Visual Analysis of Biological 934

Activity Data with Scaffold Hunter’, Mol. Inform., vol. 32, no. 11–12, pp. 964–975, Dec. 935

2013, doi: 10.1002/minf.201300087. [cito:citesAsAuthority] 936

[15] S. Wetzel et al., ‘Interactive exploration of chemical space with Scaffold Hunter’, Nat. 937

Chem. Biol., vol. 5, no. 8, pp. 581–583, Aug. 2009, doi: 10.1038/nchembio.187. 938

[cito:citesAsAuthority] 939

[16] P. Ertl, A. Schuffenhauer, and S. Renner, ‘The Scaffold Tree: An Efficient Navigation in 940

the Scaffold Universe’, in Chemoinformatics and Computational Chemical Biology, vol. 941

672, J. Bajorath, Ed. Totowa, NJ: Humana Press, 2010, pp. 245–260. doi: 10.1007/978-942

1-60761-839-3_10. [cito:citesAsAuthority] 943

[17] C. Manelfi et al., ‘“Molecular Anatomy”: a new multi-dimensional hierarchical scaffold 944

analysis tool’, J. Cheminformatics, vol. 13, no. 1, p. 54, Dec. 2021, doi: 10.1186/s13321-945

021-00526-y. [cito:citesAsAuthority] [cito:usesMethodIn] 946

[18] T. Schäfer, N. Kriege, L. Humbeck, K. Klein, O. Koch, and P. Mutzel, ‘Scaffold Hunter: a 947

comprehensive visual analytics framework for drug discovery’, J. Cheminformatics, vol. 948

9, no. 1, p. 28, Dec. 2017, doi: 10.1186/s13321-017-0213-3. [cito:citesAsAuthority] 949

[19] F. Kruger, N. Stiefl, and G. A. Landrum, ‘rdScaffoldNetwork: The Scaffold Network 950

Implementation in RDKit’, J. Chem. Inf. Model., vol. 60, no. 7, pp. 3331–3335, Jul. 2020, 951

doi: 10.1021/acs.jcim.0c00296. [cito:citesAsAuthority] 952

[20] M. K. Matlock, J. M. Zaretzki, and S. J. Swamidass, ‘Scaffold network generator: a tool 953

for mining molecular structures’, Bioinformatics, vol. 29, no. 20, pp. 2655–2656, Oct. 954

2013, doi: 10.1093/bioinformatics/btt448. [cito:citesAsAuthority] 955

[21] Jianxing and EX2L, Scaffold Network Generator. Peking University HSC. Accessed: Jan. 956

12, 2022. [Online]. Available: 957

51

https://github.com/huluxiaohuowa/scaffold_network_generator [cito:citesAsAuthority] 958

[22] O. B. Scott and A. W. Edith Chan, ‘ScaffoldGraph: an open-source library for the 959

generation and analysis of molecular scaffold networks and scaffold trees’, 960

Bioinformatics, vol. 36, no. 12, pp. 3930–3931, Jun. 2020, doi: 961

10.1093/bioinformatics/btaa219. [cito:citesAsAuthority] 962

[23] D. K. Agrafiotis and J. J. M. Wiener, ‘Scaffold Explorer: An Interactive Tool for Organizing 963

and Mining Structure−Activity Data Spanning Multiple Chemotypes’, J. Med. Chem., vol. 964

53, no. 13, pp. 5002–5011, Jul. 2010, doi: 10.1021/jm1004495. [cito:citesAsAuthority] 965

[24] C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, and E. Willighagen, ‘The 966

Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo- and 967

Bioinformatics’, J. Chem. Inf. Comput. Sci., vol. 43, no. 2, pp. 493–500, Mar. 2003, doi: 968

10.1021/ci025584y. [cito:citesAsAuthority] [cito:usesMethodIn] 969

[25] C. Steinbeck, C. Hoppe, S. Kuhn, M. Floris, R. Guha, and E. Willighagen, ‘Recent 970

Developments of the Chemistry Development Kit (CDK) - An Open-Source Java Library 971

for Chemo- and Bioinformatics’, Curr. Pharm. Des., vol. 12, no. 17, pp. 2111–2120, Jun. 972

2006, doi: 10.2174/138161206777585274. [cito:citesAsAuthority] 973

[cito:usesMethodIn] 974

[26] E. L. Willighagen et al., ‘The Chemistry Development Kit (CDK) v2.0: atom typing, 975

depiction, molecular formulas, and substructure searching’, J. Cheminformatics, vol. 9, 976

no. 1, p. 33, Dec. 2017, doi: 10.1186/s13321-017-0220-4. [cito:citesAsAuthority] 977

[cito:usesMethodIn] 978

[27] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. 979

Hutchison, ‘Open Babel: An open chemical toolbox’, J. Cheminformatics, vol. 3, no. 1, p. 980

33, Dec. 2011, doi: 10.1186/1758-2946-3-33. [cito:citesAsAuthority] 981

[28] ‘RDKit: Open-Source Cheminformatics Software’. http://www.rdkit.org (accessed Jan. 982

14, 2022). [cito:citesAsAuthority] 983

[29] ‘Daylight Theory: SMARTS - A Language for Describing Molecular Patterns’. 984

https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html (accessed Feb. 21, 985

52

2022). [cito:citesAsAuthority] 986

[30] F. Kruger, N. Fechner, and N. Stiefl, ‘Automated Identification of Chemical Series: 987

Classifying like a Medicinal Chemist’, J. Chem. Inf. Model., vol. 60, no. 6, pp. 2888–2902, 988

Jun. 2020, doi: 10.1021/acs.jcim.0c00204. [cito:citesAsAuthority] 989

[31] R. Guha, MurckoFragmenter. Accessed: Jan. 14, 2022. [Chemistry Development Kit 990

(CDK)]. Available: 991

https://github.com/cdk/cdk/blob/master/tool/fragment/src/main/java/org/openscience/cd992

k/fragment/MurckoFragmenter.java [cito:citesAsAuthority] [cito:usesMethodIn] 993

[32] A. Dutot, F. Guinand, D. Olivier, and Y. Pigné, ‘GraphStream: A Tool for bridging the gap 994

between Complex Systems and Dynamic Graphs’, Dresden, Germany, Oct. 2007. 995

[Online]. Available: https://hal.archives-ouvertes.fr/hal-00264043 (accessed Feb. 21, 996

2022). [cito:citesAsAuthority] [cito:usesMethodIn] 997

[33] ‘GraphStream - A Dynamic Graph Library’, GraphStream - A Dynamic Graph Library. 998

http://graphstream-project.org/ (accessed Jan. 24, 2022). [cito:citesAsAuthority] 999

[cito:usesMethodIn] 1000

[34] C. Steinbeck, IAtomContainer Interface. Accessed: Jan. 24, 2022. [Chemistry 1001

Development Kit (CDK)]. Available: 1002

https://github.com/cdk/cdk/blob/master/base/interfaces/src/main/java/org/openscience/c1003

dk/interfaces/IAtomContainer.java [cito:citesAsAuthority] [cito:usesMethodIn] 1004

[35] J. May, Cycles. Accessed: Jan. 24, 2022. [Chemistry Development Kit (CDK)]. Available: 1005

https://github.com/cdk/cdk/blob/master/base/core/src/main/java/org/openscience/cdk/gr1006

aph/Cycles.java [cito:citesAsAuthority] [cito:usesMethodIn] 1007

[36] J. W. May and C. Steinbeck, ‘Efficient ring perception for the Chemistry Development 1008

Kit’, J. Cheminformatics, vol. 6, no. 1, p. 3, Dec. 2014, doi: 10.1186/1758-2946-6-3. 1009

[cito:citesAsAuthority] [cito:usesMethodIn] 1010

[37] M. Sorokina, P. Merseburger, K. Rajan, M. A. Yirik, and C. Steinbeck, ‘COCONUT online: 1011

Collection of Open Natural Products database’, J. Cheminformatics, vol. 13, no. 1, p. 2, 1012

Dec. 2021, doi: 10.1186/s13321-020-00478-9. [cito:citesAsAuthority] 1013

53

[cito:usesDataFrom] 1014

[38] D. Weininger, ‘SMILES, a chemical language and information system. 1. Introduction to 1015

methodology and encoding rules’, J. Chem. Inf. Model., vol. 28, no. 1, pp. 31–36, Feb. 1016

1988, doi: 10.1021/ci00057a005. [cito:citesAsAuthority] [cito:usesMethodIn] 1017

[39] D. Weininger, A. Weininger, and J. L. Weininger, ‘SMILES. 2. Algorithm for generation of 1018

unique SMILES notation’, J. Chem. Inf. Comput. Sci., vol. 29, no. 2, pp. 97–101, May 1019

1989, doi: 10.1021/ci00062a008. [cito:citesAsAuthority] [cito:usesMethodIn] 1020

[40] E. Willighagen and J. W. Mayfield, IStereoElement. Accessed: Jan. 24, 2022. [Chemistry 1021

Development Kit (CDK)]. Available: 1022

https://github.com/cdk/cdk/blob/master/base/interfaces/src/main/java/org/openscience/c1023

dk/interfaces/IStereoElement.java [cito:citesAsAuthority] [cito:usesMethodIn] 1024

[41] J. May, Aromaticity. Accessed: Jan. 24, 2022. [Chemistry Development Kit (CDK)]. 1025

Available: 1026

https://github.com/cdk/cdk/blob/master/base/standard/src/main/java/org/openscience/c1027

dk/aromaticity/Aromaticity.java [cito:citesAsAuthority] [cito:usesMethodIn] 1028

[42] J. May, ElectronDonation. Accessed: Jan. 24, 2022. [Chemistry Development Kit (CDK)]. 1029

Available: 1030

https://github.com/cdk/cdk/blob/master/base/standard/src/main/java/org/openscience/c1031

dk/aromaticity/ElectronDonation.java [cito:citesAsAuthority] [cito:usesMethodIn] 1032

[43] O. Horlacher, S. Kuhn, and J. May, SmilesGenerator. Accessed: Jan. 24, 2022. 1033

[Chemistry Development Kit (CDK)]. Available: 1034

https://github.com/cdk/cdk/blob/master/storage/smiles/src/main/java/org/openscience/c1035

dk/smiles/SmilesGenerator.java [cito:citesAsAuthority] [cito:usesMethodIn] 1036

[44] JUnit. Accessed: Jan. 25, 2022. [Online]. Available: https://junit.org/junit4/ 1037

[cito:usesMethodIn] 1038

[45] D. S. Wishart, ‘DrugBank: a comprehensive resource for in silico drug discovery and 1039

exploration’, Nucleic Acids Res., vol. 34, no. 90001, pp. D668–D672, Jan. 2006, doi: 1040

10.1093/nar/gkj067. [cito:citesAsAuthority] [cito: usesDataFrom] 1041

54

[46] D. S. Wishart et al., ‘DrugBank 5.0: a major update to the DrugBank database for 2018’, 1042

Nucleic Acids Res., vol. 46, no. D1, pp. D1074–D1082, Jan. 2018, doi: 1043

10.1093/nar/gkx1037. [cito:citesAsAuthority] [cito: usesDataFrom] 1044

[47] M. Ashton et al., ‘Identification of Diverse Database Subsets using Property-Based and 1045

Fragment-Based Molecular Descriptions’, Quant. Struct.-Act. Relatsh., vol. 21, no. 6, pp. 1046

598–604, Dec. 2002, doi: 10.1002/qsar.200290002. [cito:citesAsAuthority] 1047

[48] P. Ertl and T. Schuhmann, ‘A Systematic Cheminformatics Analysis of Functional Groups 1048

Occurring in Natural Products’, J. Nat. Prod., vol. 82, no. 5, pp. 1258–1263, May 2019, 1049

doi: 10.1021/acs.jnatprod.8b01022. [cito:citesAsAuthority] [cito:agreesWith] 1050

[49] M. Grigalunas et al., ‘Natural product fragment combination to performance-diverse 1051

pseudo-natural products’, Nat. Commun., vol. 12, no. 1, p. 1883, Dec. 2021, doi: 1052

10.1038/s41467-021-22174-4. [cito:citesAsAuthority] 1053

[50] M. Grigalunas, A. Burhop, A. Christoforow, and H. Waldmann, ‘Pseudo-natural products 1054

and natural product-inspired methods in chemical biology and drug discovery’, Curr. 1055

Opin. Chem. Biol., vol. 56, pp. 111–118, Jun. 2020, doi: 10.1016/j.cbpa.2019.10.005. 1056

[cito:citesAsAuthority] 1057

