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Abstract

The accurate and reliable prediction of protein-ligand binding affinities can play a

central role in the drug discovery process as well as in personalised medicine. Of con-

siderable importance during lead optimisation are the alchemical free energy methods

that furnish estimation of relative binding free energies (RBFE) of similar molecules.

Recent advances in these methods have increased their speed, accuracy and preci-

sion. This is evident from the increasing number of retrospective as well as prospective

studies employing them. However, such methods still have limited applicability in real-

world scenarios due to a number of important yet unresolved issues. Here, we report

the findings from a large dataset comprising over 500 ligand transformations spanning
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over 300 ligands binding to a diverse set of 14 different protein targets which furnish

statistically robust results on the accuracy, precision and reproducibility of RBFE cal-

culations. We use ensemble-based methods which are the only way to provide reliable

uncertainty quantification given that the underlying molecular dynamics is chaotic.

These are implemented using TIES (Thermodynamic Integration with Enhanced Sam-

pling). Results achieve chemical accuracy in all cases. Ensemble simulations also fur-

nish information on the statistical distributions of the free energy calculations which

exhibit non-normal behaviour. We find that the “enhanced sampling” method known

as replica exchange with solute tempering degrades RBFE predictions. We also report

definitively on numerous associated alchemical factors including the choice of ligand

charge method, flexibility in ligand structure and the size of the alchemical region in-

cluding the number of atoms involved in transforming one ligand into another. Our

findings provide a key set of recommendations that should be adopted for the reliable

application of RBFE methods.

1 Introduction

With the increasing power of supercomputers, the use of computational methods in the field

of drug discovery has risen rapidly. In silico methods can support the identification of po-

tential therapeutics by accelerating the process of screening vast real or virtual libraries of

chemical compounds and/or de novo structures based on their binding strength to a given

target protein.1 The binding affinity, also known as the binding free energy, is a quantitative

measure of the strength of ligand-protein binding. Thus, computational methods for pre-

dicting binding free energies of ligand-protein complexes can play an important role in drug

discovery. The average cost and time required to develop one drug stand at over $2 billion

and 10 years respectively.2,3 Improving the reliability of such methods should substantially

reduce the time and cost associated with bringing novel drugs to market. The urgent need

to dramatically accelerate the process of drug discovery has been made manifest during the
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COVID-19 pandemic.

Relative binding free energy (RBFE) methods based on classical molecular dynamics,

that enable accurate prediction of protein-ligand binding affinities, offer an attractive route

to optimise ligand-protein interactions on the drug discovery pathway.4 They can also be

useful in personalised medicine.5 However, historical challenges such as high computational

costs and consequent lack of sufficient sampling to obtain statistically robust results, force

field accuracy and time to solution as well as technical challenges in setting up and performing

such calculations, have limited the successful application of RBFE methods.6 Several recent

advances in software as well as hardware along with methodological improvements have pro-

vided a boost to these methods in terms of their applicability, especially in drug discovery.7

Improvements in force field and ligand parameters, growing efficiency of high performance

computing resources, the advent of GPU accelerators and codes compatible with them have

all made valuable contributions. Automation tools are also now available for quick and easy

setup of RBFE calculations.8–12 For instance, the FEP+ package8 introduced a few years

ago shrink-wraps the entire process of RBFE setup, providing an impressive user-friendly

interface for such calculations. Its expense and proprietary nature have restricted access to

large pharmaceutical companies as well as its scientific evaluation.

Our group has publicly released the TIES toolkit13 to automate the process of setting up,

running and analysing RBFE calculations using the ensemble simulation-based alchemical

approach named Thermodynamic Integration with Enhanced Sampling (TIES).14 It consists

of two components, TIES20 and TIES-MD. The former can be used to prepare TIES input by

automatically identifying appropriate ligand mapping and building hybrid ligand molecules

based on the TIES approach. The latter can be used to perform calculations and analyse

results. The TIES toolkit thus provides a direct route for anyone interested to quickly setup

and execute RBFE calculations free of charge.

Another major issue is the lack of reproducibility and control of uncertainty in such

methods due to the extreme sensitivity of classical molecular dynamics (MD) simulations
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to the initial conditions given their chaotic nature.15 This is manifested in the fact that

two independent MD trajectories diverge exponentially with time and explore very different

microstates. It is this behaviour that confers the “mixing” ergodic property on MD sim-

ulation, a property stronger than ergodicity which is required to guarantee that the state

of thermodynamic equilibrium may be reached.15 While one-off simulations, no matter how

close their initial conditions in phase space, produce different results each time they are run,

ensembles of such simulations produce a distribution of results whose properties (typically

moments of the distribution including mean, variance and so on) are statistically robust.

Remarkably, the far reaching impact of chaos in MD has not been widely recognised. The

book by Leimkuhler and Matthews16 is notable because it does pay attention to chaotic

behaviour, although it does not address the impact of dynamical chaos on uncertainty quan-

tification. The only way to deal with this feature is to use ensemble based approaches which

ensure the statistical reproducibility of results.14,15,17–24 Although when we first advocated

these methods we encountered resistance, it is noticeable that many practitioners now ac-

knowledge that results based on one-off simulations may be grossly unreliable∗ and it is

becoming more common to read of authors performing several “repeats” of calculations in

order to estimate the uncertainty in their results (often without recognizing our previous

work in this context).6,26–30 For instance, Groot et al. perform 3 repeats in their recent free

energy estimation studies.26–28,30 On the other hand, the same authors (the set of people

common in all these studies) advocate 20 repeats when studying the effect of box sizes on

thermodynamic properties31 which betrays a lack of consistency and systematic approach in

addressing uncertainty estimation.

Indeed, for not unrelated reasons we are still not at a stage where RBFE methods can

be routinely applied with confidence in the pharmaceutical industry let alone by clinicians

to predict drug resistance in personalised medicine.5 There are many associated factors that

∗In a private communication following the publication of Wan et al.,22 Schrödinger LLP agreed on the
need for ensembles to produce statistically reliable results. More recently, they have acknowledged the need
to properly handle uncertainties in their published article.25
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need to be addressed in order to ensure that these methods can be employed in a routine

fashion by end-users. Quality of force field and ligand parameters, choice of alchemical

region and the topology scheme (single, dual or mixed), handling of charge-changing trans-

formations, protein starting structure, ligand pose placement, tautomerisation and ionisation

states are all issues that affect the quality of results.

There are a few recent publications that describe “best practices” for alchemical free

energy methods and discuss some of the issues mentioned above.6,7 However, the major

shortcoming of such articles is that their proposed guidelines are not based on statistically

robust analysis of free energy predictions. For our part, we are interested in rendering such

simulations actionable; this requires predictions to be accompanied with full uncertainty

quantification.

However, there are three published works (including a very recent one) that include a few

hundred ligand transformations studied using alchemical relative free energy methods. The

purpose of these papers is to demonstrate the applicability of their RBFE methods.8,26,30

Neither the aforementioned best practice articles nor these large scale studies furnish a

systematic analysis of the way in which the factors mentioned affect RBFE predictions.

Here, we address these lacunae by performing a statistically robust analysis of RBFE

predictions for a large dataset comprising 503 ligand transformations spanning 305 ligands

and 14 target proteins covering a broad range of molecules and targets relevant for medicinal

chemists and provide definitive recommendations concerning the protocols to use that can

deliver actionable predictions.

We should emphasise here that the use of TIES does not restrict the validity of our

findings. They are true for any RBFE method including, in particular, the so-called free

energy perturbation (FEP) approach. Indeed, we have conducted a number of studies which

confirm the general power of the approach and agreement with other methods within an

ensemble based approach.17,22 Moreover, in a recent study we show that ensemble based

FEP and TIES can be performed concurrently at little extra cost and their results will be
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statistically identical.32

The same general behaviour is also exhibited by non-equilibrium MD methods. Indeed,

this was reported by Potterton et al.33 where it was found that an ensemble size of 10 was

necessary to reliably predict relative residence times for ligands. This is equally applicable

to other non-equilibrium methods including free energy methods such as those based on

Jarzynski’s inequality.26,34,35

Similarly, machine learning (ML) techniques are increasingly being employed in the field

of free energy predictions.36 Of particular interest are studies combining ML and physics-

based methods to accelerate free energy predictions for the selection of potential therapeu-

tics.37–40 Such approaches have considerable potential and may be applicable to binding free

energy predictions too, but they have many of their own limitations that need to be over-

come. One major limitation is that ML methods are heavily data dependent and hence,

unless the data distributions of experimental data are understood and accounted for, such

methods produce over confident predictions.41–43 These methods are beyond the scope of the

present paper and will not be discussed further here.

2 Scope of the Study

In this section, we briefly describe the various aspects of alchemical free energy methods that

we have focussed on in the present study. We summarise the prevailing view captured by

best practice articles and comment on the open issues in this domain.

2.1 Ensembles and Distributions

It is an implicit assumption in almost all papers other than our own that the distribution of

RBFEs obtained from different replicas in an ensemble is Gaussian. It is why, even if just

2 or 3 replica simulations are performed, those are deemed sufficient. Paliwal et al. claimed

that hydration free energy distributions are Gaussian and deviate from this behaviour at the
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95% confidence level only when the ensemble sizes are increased above 110.44 However, in

addition to the fact that their study is based on toy models with simple interactions, the

dependence of normality on the ensemble size that they report raises questions as to the

reliability of their interpretation of the general nature of free energy distributions. We have

repeatedly shown that such distributions deviate from normality for complex protein-ligand

systems.19,23,45,46 Moreover, this is not just confined to ligand-protein interactions but valid

for many non-linear systems with long-range interactions.46,47 Furthermore, a recent paper of

ours demonstrates that the influence of the random number seed used in each MD simulation

completely dominates the uncertainty accruing from the uncertainty in the parameters used

to perform such simulations.23 The nature of free energy distributions associated with MD

simulations and their important consequences are simply not touched upon by any of the

publications discussed in the Introduction.

In the present study, we build upon our previous work on uncertainty quantification

in free energy methods using ensembles to ensure robustness and reproducibility of RBFE

predictions14,17–19,22,23,32,45,46 and apply our methods to fully quantify the nature of free

energy distributions. We again report the occurrence of non-normal distributions of free

energies obtained using large ensembles. We also discuss some important consequences of

this observation.

2.2 “Enhanced Sampling” Degrades Performance

Replica exchange with solute tempering (REST2)48,49 is an enhanced sampling method that

involves “heating” a highly localised part of the solute and exchanging information across

concurrent simulations being performed at different intermediate points along the alchemical

path and which have different “effective temperatures”. It has been claimed that REST2

accelerates local sampling around the alchemical region and should either improve the results

or leave them unchanged.8 However, we have previously reported that the blind application

of this method can degrade the quality of free energy predictions.18,22 In the present study,
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we report a systematic and statistically robust assessment of REST2 that establishes beyond

doubt the general validity of our findings.

2.3 Electrostatic Charge Methods for Ligands

AMBER force fields50 embrace two popular methods for deriving partial electrostatic charges

for ligands, namely RESP51 and AM1-BCC.52 The former involves a restrained fit to an

electrostatic potential calculated with quantum mechanical (QM) methods, while the latter

is a cheaper method based on semiempirical calculations and bond charge corrections. AM1-

BCC charges are generally expected to provide values closely mimicking the RESP charges

calculated at the Hartree-Fock/6-31G* level of theory but can be obtained much faster.

However, differences have been reported between results emanating from the two charge

systems albeit using only a small dataset with no clear conclusion as to which should be

preferred.53 Here, we perform a comparison on a statistically significant dataset and report

robust and conclusive findings.

2.4 Modified Dual-Topology Scheme

The majority of implementations of the alchemical free energy methods rely on either a

single- or a dual-topology scheme for performing the alchemical transmutations. The strict

dual topology scheme requires duplication of the system with atoms corresponding to the

two end-states present at all stages, albeit not interacting with each other. This makes it

difficult to obtain converged results and requires the application of spatial restraints. On the

other hand, the single topology implementation requires introducing “dummy” atoms and

becomes trickier as the two molecules become increasingly chemically dissimilar.54 Specially

noteworthy are cases which involve changing the sizes of rings.55 To overcome these issues,

a hybrid single-dual-topology approach has been introduced.56 However, it has a compli-

cated implementation (currently only available with NAMD) and remains to be tested and

validated using a large dataset. The modified dual topology scheme employed in our TIES
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protocol14,19 overcomes the above issues in both the single and the dual topology schemes.

It has been widely validated in our previous work and we demonstrate its success in the

present study too.

2.5 Size of Alchemical Region

When employing topology schemes such as the hybrid single-dual introduced by Jiang et

al. or our TIES modified dual topology scheme, there is an additional variable involved:

the number of atoms in the alchemical region. Hereafter, we will refer to it as the size of

the alchemical region. We have shown previously that the precision of our TIES results

is inversely proportional to this quantity due to slow convergence.14,19 In addition, if the

alchemical region so defined includes charged groups, then the error bars become even larger.

In the present work, we provide further related observations and demonstrate successful ways

to deal with such situations.

3 Theory

Thermodynamic Integration (TI) is a common alchemical method used for calculating free

energies.57,58 It uses a control variable λ to define interactions between the two end states

such that its lower and upper limits, 0 and 1, correspond to the initial and final states of

the alchemical transformation studied. The free energy change corresponding to the said

transformation is calculated using the following equation:

∆Galch =

1∫
0

∂G(λ)

∂λ
dλ (1)

9



It can be shown that

∂G(λ)

∂λ
=

〈
∂U(λ)

∂λ

〉
λ

,

whence ∆Galch =

1∫
0

〈
∂U(λ)

∂λ

〉
λ

dλ

(2)

where U is the potential energy of the system. It is worth mentioning that the above equation

is only strictly valid in the thermodynamic limit, when both left and right sides of the equa-

tion are unique numbers. However, for finite systems with limited sampling of phase space,

these quantities are stochastic variables with associated probability distributions.14,23,45 This

is due to the extreme sensitivity of MD simulations to their initial conditions,15 which leads

to differences in the configurations sampled for each repeat simulation and cause fluctua-

tions in free energies obtained using equation 2.14,17,18 Therefore, when performing a single

MD simulation at each intermediate λ state, every repeat calculation will yield a different

result, which makes it unreliable. Thus, an ensemble simulation is necessary to bring such

stochastic uncertainties under control. In this study, we employ an ensemble-simulation

based method called “Thermodynamic Integration with Enhanced Sampling (TIES)” that

involves performing an ensemble of MD simulations at each λ state and integrating the en-

semble averaged energy derivative in equation 2 using stochastic calculus. The resultant

free energies are reported along with proper estimates of associated aleatoric uncertainties.

More details on TIES are available from prior publications.14 In a recent article, we show

that, when employing ensemble simulations, the free energy predictions from TIES and FEP

produce the same results within statistical error.32 Thus, ensemble simulations ensure repro-

ducibility across free energy methods and extend the validity of our findings to other RBFE

methods such as FEP, FEP+ and we expect the non-equilibrium TI approach.

The relative binding affinities for ligand-protein complexes can be calculated using a
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thermodynamic cycle with the following equations:

∆∆G = ∆GL2 −∆GL1 = ∆Gbound
alch −∆Gaq

alch (3)

where ∆GL2(1) is the binding affinity for ligand L2(1), ∆Gbound
alch and ∆Gaq

alch are free energy

differences for alchemically transforming ligand L1 into L2 in protein and aqueous environ-

ment, respectively.

4 Methods

In this section, we describe the protein-ligand systems studied and provide details on the

implementation of the various steps involved in the TIES protocol for calculation of free

energies.

4.1 Dataset Studied

The ligand-protein systems used in this study are comprised of some selected benchmark

sets that have already been studied with FEP+.8,53,55,59–62 This dataset covers a wide range

of ligands and target classes (305 ligands and 14 protein targets). We studied 503 ligand

perturbations that include a wide range of chemical modifications typically seen in medicinal

chemistry efforts. Out of the 14 protein systems studied here, 8 were part of the previous

FEP+ study by Wang et al.:8 BACE, MCL1, TYK2, Thrombin, CDK2, P38, PTP1B and

JNK1. The remaining 6 have appeared in subsequent FEP+ studies: PDE2,59 cMET,60

Galectin53 and three additional BACE datasets.55,61,62 In addition, all of these systems except

BACE (scaffold) were also studied using a non-equilibrium alchemical approach referred to

as “PMX” hereafter in this article.26
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4.2 TIES Approach

All free energy calculations in this study have been performed using the TIES protocol that

has been described in detail in our prior publications.14,19 Briefly, it involves performing an

ensemble simulation at each intermediate alchemical state followed by ensemble averaging of

the bootstrapped potential energy derivatives so obtained. Such averaged energy derivatives

are then integrated using the principles of stochastic calculus to get the final free energy

difference along with associated uncertainties using equation 2. The standard protocol is

to perform an ensemble of 5 MD simulations at each λ window of length 4 ns and uses 13

λ-windows as follows: 0, 0.05, 0.1,....0.9, 0.95, 1. It should be noted that these standard

settings for the TIES protocol were derived through a systematic study of the dependence

of accuracy and precision of the TIES predictions on all these parameters.14 However, it

should be noted that these standard values may need to be adjusted in some cases to control

errors/uncertainties.

Our approach uses a modified dual topology scheme.14,19 This scheme involves selecting

the maximal common substructure (MCS) for a given ligand pair which is structurally and

chemically identical between the two ligands within the thresholds defined. The standard

thresholds used are a 0.1e difference between the two ligands for atomic charges of individual

atoms in MCS as well as their sums. First of all, a structurally identical MCS is identified.

Thereafter, its chemical identicality is ensured by iteratively removing atoms from it until the

charge tolerance criteria are met. The simplest approach to do so is to remove the atom with

the highest charge difference in each iteration. Alternative approaches are to prioritise the

removal of terminal atoms or atoms bordering the alchemical region or both. Our automated

TIES topology builder tries all these approaches separately and chooses the one yielding the

largest MCS while achieving the charge tolerance criteria.13

MCS is represented with a unique set of atoms in the simulation-ready system, whereas

the remainder of the ligand constitutes the alchemical region. The alchemical regions for

ligands corresponding to λ = 0 and 1 states are named “disappearing” and “appearing”
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regions respectively. In the simulation-ready model, both disappearing and appearing regions

are connected to the unique MCS through single bonds. Thus, there is no need to use any

position restraints in our simulations unlike the case with the standard dual topology scheme

where the entire ligand is coupled/decoupled with the environment. Nor does it require

introducing any dummy atoms (that is atoms introduced to account for the imbalance in

the number of atoms between the two ligands and which remain fully non-interacting with

their neighbouring atoms when the smaller of the two ligands is fully coupled with the

environment) unlike their occurrence within the single topology scheme. The modified dual

topology scheme used in TIES thus overcomes the drawbacks of both single and dual topology

schemes.

Initial structures for the 14 proteins were taken from downloaded PDB datasets and

aligned to those from previous FEP+ studies. For ligands, they were derived from the

supplementary data provided with prior studies. All crystal water molecules within 5 Å of

the protein were included. Protonation states and tautomeric forms for histidine residues

were kept consistent with previous FEP+ studies. GAFF (v2)63 parameters were used to

prepare ligand molecules with charges calculated using AM1-BCC model.52 The AMBER

ff14SBonlysc50 forcefield was used to parameterise proteins. Our systems were solvated in

an orthorhombic TIP3P64 water box with at least 14 Å solvent in all directions. Sodium and

chloride ions were used to neutralise the system electrostatically employing Joung-Cheatham

ion parameters.65 AmberTools2066 was used to perform parameterisations and prepare all

models.

For all transformations, the hybrid ligand in protein environment (referred to as “com-

plex”) was first energy minimised, followed by a 20 ps NVT equilibration and 2 ns NPT

equilibration. Pressure and temperature were maintained at 1 atm and 300 K using a

Berendsen barostat (compressibility of 4.57× 10−5 bar−1 and relaxation time of 100 fs) and

a Langevin thermostat (damping coefficient of 5 ps−1), respectively. The production run

time was 4 ns. A time step of 2 fs was used. When a hybrid ligand in water environment
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(referred to as “ligand”) was simulated, the entire protocol remained the same except that

the NPT equilibration step was only 1 ns long. During both minimisation and equilibra-

tion steps, protein backbone atoms were initially constrained to their initial positions and

were slowly allowed to relax. Periodic boundary conditions were employed with long-range

electrostatics handled by the Particle Mesh Ewald (PME) method.67,68 A non-bonded cutoff

of 12 Å was used. The van der Waals interactions were smoothly switched off between 10

Å and 12 Å, being linearly decoupled/coupled between λ value 0 and 1 for disappearing

and appearing atoms respectively. The standard NAMD soft-core potential69,70 was used

for the van der Waals terms with the radius-shifiting coefficient of 5 to avoid singularities.

Electrostatic interactions of the disappearing atoms were linearly decoupled from the simu-

lations between λ values of 0 and 0.55 and completely turned off beyond that, while those

of the appearing atoms were linearly coupled to the simulations from λ value 0.45 to 1 and

completely extinguished otherwise. While the coordinates were recorded every 10 ps, energy

derivatives with respect to λ were recorded every 2 ps. When the enhanced sampling REST2

protocol48,49 was employed, all alchemical atoms constituted the “hot” region in the ligand

simulations, whereas all alchemical atoms along with all protein residues falling within 3

Å of the alchemical atoms constituted the “hot” region in ligand-protein simulations. The

maximum “effective” temperature used was 600 K.

All simulations were performed with NAMD 2.1471 using up to 96 CPUs per MD simu-

lation on SuperMUC-NG72 and up to 128 CPUs on ARCHER273 as well as Theta.74 Some

simulations were also performed on Summit using RADICAL CyberTools,75 such that CPUs

were occupied for TIES simulations concurrently with GPUs being utilised for other calcu-

lations. A typical TIES calculation (5 MD simulations each at all 13 λ states) for complex

and ligand systems required around 50k and 5k core-hours on SuperMUC-NG respectively.

The wall clock time required to produce a ∆∆G value for one transformation involving

proteins of typical size (250-350 residues) is about 6-8 hours using CPUs and < 2 hours

using a single GPU. We note that ensemble based workflows allow scale out on emerging
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exascale architectures so as to perform hundreds of ∆∆G calculations within the same wall

clock time as required for a single calculation. We have been able to exploit the entirety of

SuperMUC-NG (ca 310k cores) for such purposes several times in the past under so-called

“block operations”.76

All hybrid ligands were built automatically using TIES20.19,77 The TIES toolkit has

already been released for open use and can be accessed at https://www.ties-service.org.

5 Results and Discussion

As noted previously, we have performed TIES calculations to estimate ∆∆G values for 503

ligand pairs spanning 305 ligands bound to 14 different target proteins. The performance of

systematic and extensive analysis using such a large dataset makes our study unprecedented.

A concise summary of the results obtained for the entire dataset as well as for each protein

system individually is shown in Table 1 and Figure 1. The mean unsigned error (MUE) and

Pearson’s correlation coefficient (rp) for all 503 predictions when compared with correspond-

ing experimental values are 1.04±0.04 kcal/mol and 0.58±0.03, respectively. For individual

protein systems, these values vary from 0.58 ± 0.18 kcal/mol to 1.41 ± 0.13 kcal/mol and

from 0.24 ± 0.23 to 0.88 ± 0.04 for MUE and rp, respectively. Around 32%, 59%, 77% and

87% of our predictions differ from the corresponding experimental ∆∆Gs by less than 0.5

kcal/mol, 1 kcal/mol, 1.5 kcal/mol and 2 kcal/mol, respectively. On the other hand, only 19

(∼4%) have experimental values differing by more than 3 kcal/mol, that is which fall outside

the shaded regions in Figure 1. It is worth mentioning here that all these results have been

obtained by a simple application of the standard TIES protocol. As we have mentioned, the

TIES protocol is flexible, and hence the accuracy and/or precision of results can be improved

by adjusting it in specific cases.14 We will show in the following sections that, on adapting

the standard TIES protocol in various ways for different systems, one may further improve

the reliability of the results yielding more robust ∆∆G predictions.
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Table 1: Summary of TIES results: The number of alchemical transformations studied and
corresponding values of several statistical parameters - root mean squared error (RMSE)
and mean unsigned error (MUE) for all TIES predictions as well as Pearson’s r (rp) between
∆∆GTIES and experimental results - are reported. Standard errors are included in paren-
theses. Exp. range denotes the range of experimental ∆∆Gs. Unit is kcal/mol.

System Ligand pairs Exp. range RMSE MUE rp

BACE 58 -1.79 to 1.88 1.17(0.12) 0.91(0.10) 0.49(0.09)
BACE (Hunt) 60 -3.82 to 3.70 1.33(0.10) 1.10(0.10) 0.68(0.06)
BACE (P2) 26 -0.90 to 0.70 1.09(0.11) 0.92(0.11) 0.51(0.18)

BACE (scaffold) 21 -4.20 to 2.60 1.05(0.13) 0.87(0.13) 0.88(0.04)
CDK2 25 -2.07 to 2.81 1.15(0.13) 0.96(0.13) 0.43(0.15)
CMET 25 -4.94 to 2.35 1.80(0.30) 1.38(0.23) 0.84(0.04)

Galectine-3 7 -2.68 to 0.96 0.75(0.23) 0.58(0.18) 0.76(0.31)
JNK1 31 -1.27 to 0.92 1.23(0.17) 0.98(0.13) 0.45(0.17)
MCL1 71 -2.84 to 1.94 1.80(0.18) 1.41(0.13) 0.40(0.11)
P38 56 -2.86 to 2.18 1.26(0.12) 0.98(0.11) 0.59(0.08)

PDE2 34 -2.06 to 2.31 1.43(0.25) 0.95(0.18) 0.54(0.17)
PTP1B 49 -4.72 to 3.67 1.35(0.17) 0.99(0.13) 0.56(0.14)

Thrombin 16 -0.66 to 0.98 1.07(0.15) 0.88(0.15) 0.24(0.23)
TYK2 24 -2.36 to 2.49 1.08(0.16) 0.88(0.13) 0.60(0.13)

All 503 -4.94 to 3.70 1.36(0.05) 1.04(0.04) 0.58(0.03)

We compared RBFEs from FEP and TIES obtained using three different MD engines

and found that our results were in agreement only when using ensemble simulations. This

is not the case for results based on one-off simulations.32 Therefore, we expect to get the

same results from ensemble based FEP for this dataset. Gapsys et al.26 recently reported

the performance of a couple of other alchemical free energy methods (the non-equilibrium

PMX and the proprietary shrink-wrapped FEP+) using most of this dataset. A meaningful

comparison of results from different methods and/or forcefields is only possible when un-

certainties associated with such calculations are under control.32,45 Gapsys et al. performed

only 3 repeat calculations as opposed to using an ensemble approach while FEP+ manifests

errors arising inter alia from the REST2 protocol (see section 5.6 and Wan et al.22)
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Figure 1: Correlation between experimental and calculated ∆∆G values for all systems
studied. The textbox includes statistical measures of agreement - mean unsigned error
(MUE), root mean squared error (RMSE) and pearson correlation coefficient (corr) for the
entire dataset along with their standard errors in parentheses. Red line denotes the perfect
correlation line (y = x) and the ±1, ±2 and ±3 regions have been shaded with different
colours. All values are in kcal/mol. Error bars are not available for experimental data.

5.1 Statistical Metrics

Utilising the wealth of our large dataset, we would like to emphasise an important point

here which is often ignored in the literature. First of all, the range of ∆∆Gexp values

affects the prediction accuracy. The Pearson’s correlation coefficient is bound to be low

for ligand pairs with experimental relative free energy differences less than 1 kcal/mol as

evident from the data in Table 2 for both the entire dataset as well as the subset with

|∆∆GTIES −∆∆Gexp| < 1 kcal/mol. It can be clearly seen that rp for the subset of ligand
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pairs with experimental relative free energy differences below 1 kcal/mol is always lower than

the corresponding full dataset as well as subsets with experimental values falling between

1-2 kcal/mol, 2-3 kcal/mol and over 3 kcal/mol. This is true irrespective of the trend of their

corresponding MUEs. This means that, for a narrow range of ∆∆G values, smaller MUEs

do not always translate into higher correlation and vice versa. From Table 1, we can see that

thrombin, BACE (P2) and JNK1 have a narrow range of experimental ∆∆Gs, and all of

them have low rp values despite relatively small MUEs. Gapsys et al.26 also pointed out such

inconsistencies between MUE and rp for the thrombin dataset using PMX and FEP+. Such

trends in rp make it a less reliable tool for quantifying results for a dataset which comprises

close to 60% of ligand pairs with experimental |∆∆G| values below 1 kcal/mol, such as the

one used in this study and as is the case in the majority of studies. Furthermore, it should

be noted that MUE values are bound to have associated statistical uncertainty of similar

magnitude as those associated with individual ∆∆G values (∼ 0.5 kcal/mol). This means

that, for ligand pairs with |∆∆G| < 1 kcal/mol, the percentage fluctuation in MUE values

will be large, rendering them a less robust metric. In other words, since ∆∆G predictions

have associated uncertainties, MUEs will inevitably fluctuate by a similar amount as the

predictions themselves. The key point is that performing one-off simulations or too few

replicas is not robust, since there is always a substantial probability of making unreliable

predictions.

Table 2: Number of pairs of transformations, MUE and rp for TIES predictions with ligands
pairs categorised based on the range of experimental ∆∆G values. |∆∆∆G| denotes the
absolute difference between experimental and calculated ∆∆G values. Standard errors are
included in parentheses. All values in kcal/mol.

|∆∆Gexp|
All |∆∆∆G| < 1

# of pairs MUE rp # of pairs MUE rp
< 1 300 0.92(0.04) 0.35(0.05) 195 0.49(0.02) 0.64(0.04)

≥ 1 and < 2 145 1.13(0.08) 0.65(0.04) 80 0.51(0.03) 0.92(0.01)
≥ 2 and < 3 38 1.48(0.20) 0.64(0.11) 16 0.41(0.06) 0.98(0.01)
≥ 3 20 1.47(0.22) 0.85(0.08) 5 0.22(0.11) 0.99(0.01)

Total 503 1.04(0.04) 0.58(0.03) 296 0.48(0.02) 0.89(0.01)
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5.2 Uncertainties in Experimental Data

An important issue that is rarely taken into consideration is the uncertainty associated

with experimental ∆∆G predictions and its consequences. The experimental predictions

of relative free energy differences have statistical uncertainties that often go unreported

as is the case here and the vast majority of such publications.25 A direct consequence of

this is a phenomenon called regression dilution that is well known in statistics.78 It means

that uncertainty in the known variable (∆∆Gexp in this case) causes biasing of the linear

regression slope towards zero. This phenomenon has been reported in more detail in a

recent publication where different statistical methods are used to demonstrate the biased

least square regression slope and the extent of underestimation in predicted values has been

quantified.25 It is possible to correct for such deviations when both the known and unknown

variables are normally distributed. But in the case of free energy predictions (whether

calculated or experimental), the distributions are not guaranteed to be normal (see section

5.3). This in turn means that linear regression models (rp) are not the best metric for

quantifying the accuracy of free energy predictions, especially when the experimental results

have large variances.25 Moreover, uncertainties in experimental predictions also undermine

the reliability of MUEs when these values are small in magnitude (less than 1 kcal/mol).

5.3 Free Energy Distributions

It has been reported in numerous published studies14,15,17–19,23,32,45,46,79 that MD based free

energies are sensitive to their initial conditions. Thus, we get a distribution of free energies on

performing ensembles of MD simulations with identical input except their starting velocities

due to the aleatoric uncertainty in MD. We have shown that aleatoric uncertainty dominates

all other forms of uncertainty, and that ensemble simulations are essential.23 Parametric

uncertainty is dampened between input and output, further exacerbating the role of chaos.23

An additional source of systematic error for chaotic systems originates from the use of floating

point numbers.80 This is true irrespective of the free energy method used including the
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Figure 2: (a) Distributions of potential energy derivatives and their corresponding means
of bootstrapped resamples for two MCL1 ligand pairs using 40 replicas per λ window; the
energy derivatives distributions (shown in blue and red as bar and solid line plots) exhibit
non-normality, whereas the distributions of means of resamples of size 5 obtained using
bootstrapping (shown in black as solid line plots) are normal owing to the central limit
theorem; (b) Distributions of ∆∆G values for the same two ligand pairs (shown in blue and
red as solid line plots with underlying area shaded).

alchemical ones. Figure 2 displays the distributions of both potential energy derivatives at

an arbitrary λ window as well as ∆∆G values for a couple of ligand pairs bound to MCL1

using 40 replicas per λ window. It can be seen that 〈∂U
∂λ
〉 varies by up to 20 kcal/mol and

∆∆G values by up to 10 kcal/mol across replicas for the chosen cases. Given the wide

spread of these distributions, it is essential to perform ensemble simulations (often > 5

replicas) in order to control the aleatoric uncertainty associated with the ∆∆G estimations

making the results reproducible. This can be demonstrated more clearly with the data in

Table 3 where results using a single replica have been compared with those using ensemble

simulations for the entire dataset as well as various subsets of it. The accuracy of ensemble

simulations is substantially better than any single replica, irrespective of the dataset taken.

For instance, the MUE for the entire dataset using a single replica ranges from 1.19 ± 0.05

to 1.24 ± 0.05 kcal/mol, whereas it is 1.04 ± 0.04 kcal/mol for TIES. The corresponding

numbers for the subset |∆∆Gexp| < 1 kcal/mol are 1.00±0.05 to 1.06±0.05 kcal/mol versus

0.92 ± 0.04 kcal/mol. Similar trends are observed for rp values. It is worth highlighting
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that the number of ligand pairs with |∆∆∆G| < 1 kcal/mol (that is, an absolute difference

between experimental and predicted relative free energies of less than 1 kcal/mol) using

ensemble simulations is higher than those using a single replica (296 versus 262-276). Thus,

ensemble simulations yield binding free energy predictions for 20 to 34 more ligands with

accuracy better than the 1 kcal/mol mark compared to one-off simulations.

Table 3: Replicawise variation in results. Replica X denotes results obtained by taking values
corresponding the replica X of each λ window for all ligand pairs, whereas TIES means using
the data from all 5 replicas to obtain ∆∆G. “All” corresponds to the entire dataset. Two
subsets have also been included - one with experimental ∆∆Gs less than 1 kcal/mol and the
other with the difference between predicted and experimental values less than 1 kcal/mol.
MUE is the mean unsigned error and rp is the Pearson’s correlation coefficient. Standard
errors are included in parentheses. All values in kcal/mol.

Replica
All |∆∆Gexp| < 1 |∆∆∆G| < 1

MUE rp MUE rp # MUE rp

1 1.24(0.05) 0.48(0.04) 1.06(0.05) 0.29(0.06) 262 0.50(0.02) 0.88(0.01)
2 1.21(0.05) 0.47(0.04) 1.04(0.05) 0.29(0.06) 272 0.47(0.02) 0.89(0.01)
3 1.20(0.05) 0.50(0.04) 1.00(0.05) 0.34(0.06) 272 0.48(0.02) 0.88(0.01)
4 1.20(0.05) 0.53(0.04) 1.01(0.05) 0.32(0.05) 269 0.47(0.02) 0.89(0.01)
5 1.19(0.05) 0.52(0.04) 1.01(0.05) 0.29(0.05) 276 0.47(0.02) 0.89(0.01)

TIES 1.04(0.04) 0.58(0.03) 0.92(0.04) 0.35(0.05) 296 0.48(0.02) 0.89(0.01)

Another important observation from Figure 2 is the non-normality of the distributions

of energy derivatives as well as the relative free energy differences. To further substantiate

this point, we chose 51 different ligand pairs and performed ensemble simulations comprising

20 to 40 replicas at each λ window and obtained ∆∆G distributions like the ones shown in

the right panel of Figure 2. Skewness and excess kurtosis coefficients for each of these 51

∆∆G distributions were calculated. Figure 3 displays distributions of the skewness/excess

kurtosis coefficients so obtained. Non-zero skewness coefficients indicate asymmetry that

favours higher frequency measurements away from the mean. On the other hand, many

of the ligand pairs have positive excess kurtosis indicating the abundance of outliers. We

obtain non-normal distributions of predicted binding affinities similar to those displayed in

Figures 2 and 3 even on extending the ensemble size up to 135 replicas for a few of these 51

ligand pairs (data yet to be published). It is evident that one could never understand the
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behaviour of these ensembles by only running 1-3 replicas. We found that the distribution

of experimental binding free energies obtained from a limited number of selected ligands

which have been subjected to many repeated measurements over a lengthy period are also

non-Gaussian.81 The underlying implication of non-normal statistics is that more frequent

occurrence of outliers mean larger error bars and that graphs comparing predicted and

experimental predictions will deviate from ideal linear plots with all points lying close to a

straight line with slope 1. This needs to be borne in mind when interpreting the resultant

correlation plots. Statistical tools like bootstrapping and linear regression should still, in

principle, be applicable. However, their quantitative reliability for non-normal distributions

is questionable for small sample size as the law of large numbers is not then applicable.

It should also be noted that for a Gaussian distribution, more points should not change

the expectation value and the variance would reduce with the inverse square root of the

number of points included. On the other hand, for an asymmetric distribution the more

points one includes the more reliable are both the mean and the variance. The variance for

non-normal distributions usually converges far more slowly, so the fluctuations persist for

much longer.43 This further supports the importance of performing ensemble simulations for

MD-based methods and highlights that a small number of repeats is not sufficient.43

5.4 Precision and Accuracy are Related

A unique feature of the ensemble methodology is that it requires adapting the ensemble

size to improve the precision of results, which in turn leads to better accuracy in several

cases. To further clarify this point, we picked out the worst performing MCL1 system from

our dataset. This protein system has something unique about it that makes it the worst

performing not only with TIES but also with PMX while being second worst with FEP+.8,26

This behaviour is likely to be related to the flexible structure of a generic MCL1 ligand with

its two ends (one hydrophobic, the other charged) connected with a 4-membered linker such

that the hydrophobic end is buried deep into the lower pocket while the charged end interacts
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Figure 3: Distributions of skewness and excess kurtosis for ∆∆G distributions of 51 different
ligand pairs. Data for some ligand pairs have been taken from Bieniek et al.19

with the positively charged arginine residue (R263). The phenomenon has been described

in more detail in the supporting information of the study by Bhati et al.14 The intrinsic

flexibility of this ligand leads to larger uncertainties in the predicted ∆∆G values for many

of the MCL1 ligand pairs.

Figure 4(b) shows the variation of TIES uncertainty with the ensemble size increased to

40 replicas for 10 MCL1 ligand pairs. It is clear that the uncertainty consistently drops as the

ensemble size is increased for all these cases. A similar behaviour has been reported in several

studies.19,32,45,46 Figure 4(a) exhibits the variation of ∆∆∆G (that is ∆∆GTIES −∆∆Gexp)

for the same set of MCL1 ligand pairs. It is interesting to note that the two cases with the

largest uncertainties (l49-l67 in grey and l44-l23 in orange) also have large ∆∆∆G values.

More interestingly, the accuracy improves for both these cases as we increase the ensemble
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Figure 4: Variation of TIES results with the ensemble size for a selection of MCL1 ligand
pairs. In (a) ∆∆∆G refers to the difference between the predicted and experimental relative
binding affinities while in (b) σ denotes the standard error of a TIES prediction.

size. This suggests that better precision may lead to better accuracy in systems such as

MCL1 that have flexible structures. To further investigate this, we selected all MCL1 ligand

pairs with uncertainties ≥ 0.7 kcal/mol using the standard TIES protocol (ensemble size 5).

There were 14 such ligand pairs for which we increased the ensemble size to 10. Figure 5

compares the results from ensemble sizes 5 and 10 for all these cases. We observe a substantial

improvement in the overall accuracy for this set of 14 ligand pairs simply on increasing the

ensemble size to 10 which can be attributed solely to better precision. MUE improves from

2.07± 0.41 kcal/mol to 1.65± 0.42 kcal/mol and rp increases from 0.28± 0.34 to 0.33± 0.35.

There is a clear outlier whose accuracy is unchanged even on increasing the ensemble size.

On ignoring this outlier, the MUE reduces from 1.76±0.32 kcal/mol to 1.30±0.29 kcal/mol

and rp increases from 0.57±0.26 to 0.69±0.20 when the ensemble size is increased from 5 to

10. This is an excellent example of how improved precision can be lead to better accuracy

for flexible systems.
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Figure 5: Effect of increasing the ensemble size on the accuracy of predictions for flexible
ligand structures. We display a comparison between results using ensemble sizes of 5 and
10 for 14 MCL1 ligands pairs with the largest uncertainties. Statistical metrics along with
associated standard errors are reported in text boxes in the bottom right corner.

5.5 Choice of the Alchemical Region

The electrostatic interactions of atoms in the alchemical region are scaled such that in the

intermediate λ windows they are very weak. This makes any charged group in the alchemical

region very flexible, thus prone to high uncertainty and hence lower accuracy. PTP1B is an

interesting case in point with all ligands containing two carboxylate groups in the active site.

Moreover, one of them is attached to a thiophene ring through three rotatable bonds and the

binding pocket has enough empty space for it to freely move around. It has been discussed in

more detail in the supporting information of our previous article.14 This provides a charged

flexible group in PTP1B ligands which displays a predisposition for large fluctuations if

included in the alchemical region. This is exactly what we find for 7 ligand pairs bound
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to PTP1B, where both these carboxylate groups constitute a part of the alchemical region

chosen for our modified dual topology protocol using the standard charge tolerance criteria

of 0.1e for both individual atoms as well as the entire common region. The standard error

σTIES for these transformations varies between 1.4-2.3 kcal/mol with our standard protocol

of 5 replicas per λ window.

There are two routes to deal with this issue. First, one can increase the ensemble size in

order to better control uncertainty and, second, one may relax the standard charge tolerance

of 0.1e to reduce the size of the alchemical region so as to exclude the two carboxylate

groups. Our results from both these approaches, compared with the standard one, are shown

in Figure 6. As expected, the error bars for both are smaller than those for the standard

protocol. σTIES falls in the range of 0.7-1.7 kcal/mol for ensemble size 20 using the same

alchemical region, compared with 0.2-0.8 kcal/mol for the smaller alchemical region. Thus,

TIES predictions using a smaller alchemical region (keeping ensemble size as 5) are more

precise than those using ensemble size 20 (but the original alchemical region). However,

relaxing the charge tolerance criteria (up to 0.14e for both individual atomic charges as well

as overall MCS in this case) compromises the accuracy of the predictions. RMSE increases

from 1.91± 0.45 kcal/mol to 2.29± 0.59 kcal/mol when using the smaller alchemical region.

There are 2 clear outliers falling outside the ±2 kcal/mol range in Figure 6. This is despite

the much higher precision of results with this approach. Therefore, this approach needs to

be used cautiously.

On the other hand, increasing the ensemble size to 20 reduces RMSE to 1.73 ± 0.36

kcal/mol despite higher uncertainities on its predictions as compared to the alternative ap-

proach. Larger ensemble size improves accuracy for 6 out of 7 ligand pairs under consider-

ation here. The only exception is the one where the standard protocol predicts ∆∆G very

close to the corresponding experimental value of -4.72 kcal/mol, whereas the large ensemble

prediction falls outside the ±2 kcal/mol region. On ignoring this exceptional case, RMSEs

for ensemble sizes 5 and 20 are 2.06± 0.46 kcal/mol and 1.56± 0.42 kcal/mol, respectively.
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Figure 6: Comparison of results for 7 PTP1B ligand transformations that include two charged
carboxylate groups in the TIES alchemical region. Results with ensemble size 20 using
the original alchemical region and ensemble size 5 using a smaller alchemical region (both
carboxylates excluded) are compared with those from standard TIES. Shaded regions denote
±1 and ±2 kcal/mol ranges. Standard errors are included for all RMSE values. All values
are in kcal/mol.

5.6 “Enhanced Sampling” Degrades Predictions

Replica exchange with solute tempering (REST2) is an enhanced sampling method that

involves heating only a small region of the solute.48 Coordinates are exchanged periodically

between replicas so as to allow easier crossing of energy barriers. It has been claimed that

REST2 either improves free energy estimates or leaves them unchanged as compared to

those obtained without REST2 (using normal MD simulations).8 Indeed, REST2 is supposed

to allow sampling of less accessible states. However, as we have pointed out in previous

studies, REST2 may lead to degradation in the accuracy of ∆∆G predictions and hence its

uncritical use could be misleading.18,22 In this study, we have obtained consistent results
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with a statistically robust dataset of 60 randomly selected ligand pairs from our full dataset.

We pulled out two mutually exclusive subsets of 30 randomly selected ligand pairs (denoted

as ‘rand1’ and ‘rand2’) and repeated TIES calculations with sampling “enhanced” using

the REST2 protocol. The results are compared with those obtained using the standard

TIES protocol (normal MD, that is, without REST2) in Figure 7(a). It is evident that

REST2 degrades the accuracy of results for both rand1 and rand2, separately as well as for

the combined dataset of 60 ligand pairs. For rand1/rand2, RMSE increases from 1.17 ±

0.13/1.18 ± 0.16 kcal/mol to 1.64 ± 0.29/1.40 ± 0.25 kcal/mol, whereas rp decreases from

0.73 ± 0.09/0.66 ± 0.14 to 0.48 ± 0.12/0.47 ± 0.17. For the combined dataset of 60 ligand

pairs, MUE and RMSE increase by 0.12 kcal/mol and 0.34 kcal/mol, respectively, whereas

rp decreases from 0.69± 0.07 to 0.48± 0.10. Thus, it can be concluded that blindly applying

REST2 assuming that it will always have a positive impact and at worst none on the ∆∆G

predictions is wrong. Consequently, in drug discovery applications, one may risk excluding

many potentially useful leads by simply applying REST2. Note that it is an inbuilt feature

of the proprietary FEP+ package; an earlier study of ours comparing FEP+’s performance

to TIES showed that the former generates worse results and degrades those further for longer

simulation times.22 It should also be noted here that Khalak et al. reported degradation in

accuracy of the predicted free energies using the PMX method on extending their simulations

up to 1 µs.27

This apparently anomalous effect of REST2 may be explained by considering the fact

that it involves biasing the potential so as to improve the sampling of otherwise less accessible

states. However, this means that the weights of different accessed states of the ensemble are

also biased. Ensemble averaging properties using such biased weights leads to inaccuracies

in results. To further substantiate this argument, we have plotted the absolute differences

between ∆∆G predictions obtained with and without REST2 applied against the corre-

sponding statistical uncertainties in standard TIES predictions without REST2 sampling, as

shown in Figure 7(b). These two quantities are moderately correlated with rp of 0.65± 0.13.
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Figure 7: Degradation of results on employing the enhanced sampling method, REST2,
when compared with normal MD simulations. (a) displays a comparison of ∆∆Gs obtained
from both types of sampling for two mutually exclusive subsets of 30 randomly selected
ligand pairs. The legend contains RMSEs followed by rp values in brackets for each subset,
whereas text boxes in the top left corner contain MUE, RMSE and rp values for the combined
dataset of 60 ligand pairs. (b) shows the variation of |∆∆GREST2 − ∆∆Gnormal| with the
corresponding uncertainties in ∆∆G obtained without REST2 for all 60 ligand pairs. The
vertical and horizontal lines correspond to σ = 0.5 kcal/mol and |∆∆∆G| = 1 kcal/mol,
respectively. Standard errors are included for all reported values.

9 out of the 60 ligand pairs have uncertainties ≥ 0.5 kcal/mol. The MUE, RMSE and rp

values for this subset with and without REST2 applied are 1.88± 0.55 kcal/mol, 2.49± 0.58

kcal/mol, 0.47±0.21 and 1.12±0.31 kcal/mol, 1.46±0.37 kcal/mol, 0.75±0.17, respectively.

Thus, the average deviation from normal MD results as well as the extent of corresponding

degradation in accuracy are larger for this subset than those for the entire set of 60 ligand

pairs (over six-fold increase in MUE; 0.76 kcal/mol versus 0.12 kcal/mol). This implies that,

as the number of accessible states/minima (separated by relatively small energy barriers)

for a system increases, the deviation of REST2 results from those obtained without it also

increases, and so does the inaccuracy in results. It may be attributed to the higher bias

introduced in weights due to the higher number of states accessible.

Another interesting observation is related to the precision of REST2 predictions as com-

pared to those of normal MD predictions. It should be noted that REST2 predictions are
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more precise than normal MD predictions in general with lower σTIES for 53 out of the 60

ligand pairs studied. However, higher precision does not lead to better accuracy as we have

discussed a number of times.18,22 This is also true when the precision improves substantially.

For instance, there are 3 ligand pairs for which σTIES reduces by more than 0.5 kcal/mol on

applying REST2. However, 2 of them have higher unsigned errors for REST2 predictions

than those for normal MD based predictions. This suggests that replica simulations have

closer distributions of conformations due to mixing of states caused by exchange of confor-

mations in REST2. However, the biased weights are equally present in all replicas and hence

lower the accuracy.

When focussing on the 7 ligand pairs with σTIES larger for REST2 predictions, another

interesting trend is observed. 3 of the 7 have σTIES increased by ≤ 0.01 kcal/mol which is

insignificant and may be ignored. The remaining 4 belong to the BACE (scaffold) system

which has all positively charged alchemical regions. As discussed earlier, charged groups in

the alchemical region lead to large uncertainities and less accurate results with the stan-

dard TIES protocol due to attenuation of the electrostatic interactions possibly leading to

more frequent sampling of higher energy conformations. This phenomenon is enhanced with

REST2 due to further weakening of electrostatic interactions in the intermediate λ states.

Thus, charged alchemical regions can be expected to have larger uncertainties when em-

ploying the REST2 protocol. In our dataset of 60 ligand pairs, 5 have charged alchemical

regions (all binding to BACE (scaffold) system with a charge of +1). Four of them have

larger uncertainties when using REST2 than without it. MUEs for these 5 BACE (scaffold)

ligand pairs with and without REST2 are 2.74 ± 0.78 kcal/mol and 0.82 ± 0.21 kcal/mol

respectively, manifesting the degradation in accuracy on applying REST2 to this system. It

should be noted here that all these 5 ligand pairs have uncertainties ranging between 0.75

kcal/mol and 1.3 kcal/mol, and hence form a subset of the 9 ligand pairs with σTIES > 0.5

kcal/mol as discussed earlier.

Thus, we recommend that the REST2 enhanced sampling method not be blindly applied.
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It is evident that the algorithm is not doing what its creators intended.

5.7 Effect of Transformation Size

In a previous study using the PDE2 system, the ligands were classified as small or large based

on the size of substituents attached to the scaffold.59 Ligands with hydrogen or methoxy

group as substituents were called ‘small’ and those with larger substituents were considered

‘large’. It was shown that FEP+ predicted ∆∆G values for transformations from small-to-

small (s2s) ligands and large-to-large (l2l) ligands were relatively more accurate (MUEs less

than 1 kcal/mol) compared to those from small-to-large (s2l) ligands (MUE over 2 kcal/mol).

We were able to reproduce this behaviour in the present study with small MUEs for s2s and

l2l transformations (< 1 kcal/mol), whereas large MUE for s2l transformations (2.79± 0.57

kcal/mol) as shown in Figure 8(a).

To further investigate this issue, we pulled out some large transformations from our

dataset to see if the same behaviour persists. To do so, we selected all transformations with

the absolute difference between the number of disappearing and appearing atoms greater

than 10, which amounts to 43 ligand pairs including 1 from the PDE2 set. We ignored the

only transformation from the PDE2 dataset and the MUE for the remainder is 1.07 ± 0.14

kcal/mol. The MUE for the full dataset (503 ligand pairs) is 1.04±0.04 kcal/mol. Thus, the

accuracy for ‘large’ transformations is almost the same as that for the full dataset. Figure

8(b) displays the variation of unsigned errors for these 42 transformations with the size of

transformation (defined as the absolute difference between the number of disappearing and

appearing atoms). There is no correlation between the two quantities which implies that the

observed errors are independent of the size of the transformation. This indicates that the

issue of less accurate predictions for large transformations is specific to the PDE2 system

and is not a general one for alchemical methods.

Another interesting observation is the effect of the size of the alchemical region (defined as

the number of atoms in the alchemical region) on the accuracy and precision of the predicted
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Figure 8: (a) Comparison of TIES results for PDE2 ligand transformations categorising
them into small to small (s2s; 6 transformations), large to large (l2l; 23 transformations)
and small to large (s2l; 5 transformations). Corresponding MUEs along with associated
standard errors are included in parentheses within the legend. All values are in kcal/mol.
(b) Variation of unsigned errors with the size of transformation defined as the absolute
difference between the number of disappearing and appearing atoms.

∆∆G values. As shown in a previous TIES study, the precision of predicted free energies

decreases as the size of the alchemical region increases.19 On the other hand, the accuracy

of such predictions remains relatively unaffected by this quantity.19 In the present study, we

obtain consistent results. We pulled out all transformations with the sum of the appearing

and disappearing atoms greater than 40 from the full dataset (a total of 40 transformations

with the sum ranging from 41 to 68) and compared their |∆∆∆G| as well as σTIES with the

sum. The corresponding Pearson’s ρ for these quantities are 0.18 ± 0.15 and 0.45 ± 0.18,

respectively, further confirming the previous findings.

5.8 Flexibility in Ensemble Size

Within the TIES protocol, we recommend flexibility in the ensemble size to be used de-

pending on the level of precision desired and the system being investigated. Precision of

results increases with ensemble size. However, the exact trend is system-specific, and so is

the magnitude of uncertainty associated with the predicted ∆∆G values. Therefore, a fixed
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ensemble size yields different error bars for different systems. This is evident in our current

dataset where 69 ligand pairs have uncertainties greater than 0.5 kcal/mol using ensemble

size 5 while 81 are below 0.1 kcal/mol using the same ensemble size. We have already seen

in the previous sections that increasing the ensemble size reduces uncertainty in predictions.

This is why our protocol leaves the ensemble size parameter adjustable. However, this does

not mean that the ensemble size can be arbitrarily small as that affects the accuracy of

results. For instance, there are 70 ligand pairs in the current dataset where σTIES is larger

for ensemble size 5 compared to ensemble size 3. Similarly, on closely observing Figure 4(b),

we can see prominent kinks for a few ligand pairs for ensemble sizes below 5. These ob-

servations indicate that, for a substantial number of systems, an additional replica beyond

the second or third replica may represent a slightly different region of the phase space, and

hence increase associated uncertainty. Thus, using an ensemble size of only 2 or 3 does not

capture the full picture, leading to over-confident predictions. In addition, as we have seen,

the distribution of free energies deviates from Gaussian behaviour; 2 or 3 replicas are simply

insufficient to encompass contributions from heavy tails. One is unlikely to get the correct

expectation value either, which is the quantity that determines accuracy.

The ensemble size, that is the number of replicas to be performed at each λ point,

is the choice that needs further discussion as each added replica comes with additional

computational cost (albeit no additional wall clock time is required on a supercomputer). So,

one needs to find a trade-off between the computational cost and the level of precision (and

consequently accuracy) desired, especially when the number of ligand pairs are large. For

large-scale free energy calculations, a suggested way to employ TIES (or any other free energy

method of choice) could be to decide a desired level of precision in terms of a threshold value

of statistical uncertainty (σ). Thereafter, one can start with a ‘floor value’ of ensemble size

and perform calculations for all ligand pairs, followed by a stepwise increase in the ensemble

size only for those ligands for which the resultant uncertainties are above the threshold σ.

The larger ensemble size should only be required for a few systems where the ligands have
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flexible structure or charged groups in the alchemical regions (such as MCL1 and PTP1B

cases discussed in sections 5.4 and 5.5). For instance, in our dataset of 503 ligand pairs,

over 86% achieved a precision of ≤ 0.5 kcal/mol using ensemble size 5. Such a progressive

increase in ensemble size would ensure an optimal use of computational resources alongside

achieving the desired level of precision for most calculations and resulting improvement in

accuracy of results. One may choose the threshold σ to be 0.5 kcal/mol and the floor value

of ensemble size to be 5.

5.9 Ligand Charge Methods

In this study, we have compared ∆∆G values obtained using RESP charges for ligands with

those using AM1-BCC charges. For this, we use the same two mutually exclusive subsets of

30 randomly selected ligand pairs that have been used to study the effect of REST2. Figure

9 displays the results obtained using both these charge models. Overall, the performance is

almost the same with MUEs and RMSEs differing only by 0.01 kcal/mol and 0.07 kcal/mol,

respectively, and rp differing by 0.01 for the combined set of 60 ligand pairs. When the two

subsets are assessed separately, the performances are comparable for the ‘rand2’ subset with

RMSE and rp slightly different for the two charge models. For the ‘rand1’ subset, AM1-BCC

charges perform slightly better in terms of RMSE and rp than RESP. However, we cannot

simply conclude that AM1-BCC charges are better than RESP charges based on this.

Another interesting fact is that RESP charges are more sensitive to chemical changes

in ligand structures as compared to AM1-BCC charges. This is evident from the fact that,

using the same charge tolerance criteria of 0.1e (difference between atomic charges on in-

dividual MCS atoms as well as the overall charge of MCS for the two ligands), the size of

the alchemical region is larger for the RESP case as compared to AM1-BCC. The average

number of disappearing atoms increases from 10.42 to 15.25 on using RESP charges for the

60 ligand pairs studied here. Similarly, the average number of appearing atoms also increases

from 11.02 to 15.85 for all 60 ligand pairs. This trend is also visible for both subsets of 30 lig-
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Figure 9: Comparison of results using AM1-BCC and RESP charge models for ligands.
∆∆Gs obtained using both charge methods for two mutually exclusive subsets of 30 randomly
selected ligand pairs are shown. The legend at lower right contains RMSEs followed by rp
values in brackets for each subset, whereas those in the top left corner contain MUE, RMSE
and rp values for the combined dataset of 60 ligand pairs along with corresponding standard
errors.

and pairs each separately. This need for fewer atoms in alchemical regions using AM1-BCC

charges indicate that the effect of a given chemical change in a ligand is more localised with

this charge model. On the other hand, the magnitude of change in RESP charges is more

prominent for distant atoms. Although this higher sensitivity of RESP charges to chemical

modifications in ligand molecules does not seem to affect the accuracy of results, it is bound

to have an impact on their precision. Out of 60, 14 ligand pairs have σTIES ≥ 0.5 kcal/mol

using RESP charges against only 9 using AM1-BCC charges. Similarly, the mean of σTIES

for all 60 ligand pairs increases from 0.30 kcal/mol for AM1-BCC charges to 0.38 kcal/mol

for RESP charges. Given that AM1-BCC based models yield more precise results for a fixed
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amount of computation without compromising with their accuracy compared to RESP based

models and that it is much faster to compute charges using the AM1-BCC model, it should

be preferred for free energy calculations.

6 Conclusion

This study presents ∆∆G predictions using an open-source ensemble-simulation based al-

chemical free energy method for a large dataset of 503 diverse ligand pairs bound to 14

different targets covering a broad range of protein classes and 305 different ligands. Such

a detailed and systematic analysis of the various factors affecting RBFE predictions en-

ables us to make definitive recommendations for the implementation of relative free energy

calculations.

On comparing with the available experimental data, we achieve good agreement. How-

ever, we provide statistically reliable evidence for why standard metrics such as closeness

to the experimental values and comparison with them using linear regression may not be

reliable, particularly when the results are based on one-off or a few simulations. Such issues

are alleviated by performing ensemble simulations in order to bring the substantial aleatoric

uncertainty under control. Moreover, we have pointed out that the experimental predictions

of free energies also have uncertainties associated with them and the nature of their distri-

butions is generally non-normal, making a comparison of the calculated values with them

unreliable.

We have confirmed that the distribution of free energies obtained from independent

replica simulations cover a wide range of values and exhibit deviation from the Gaussian

behaviour usually assumed. This means that performing ensemble simulations is essential

for such calculations. Another important consequence of the non-normal nature of such

distributions is that the ensemble size cannot be arbitrarily small; and we recommend a

minimum should comprise 5 replicas consistent with all our previous publications.14,32

36



We exploited the richness of our dataset to perform systematic analyses on various im-

portant factors that affect the accuracy and/or precision of alchemical calculations. Flexible

ligand structures and charged groups in the alchemical region lead to large fluctuations in

the predicted free energies. The error bars in such cases can be controlled by increasing the

ensemble size appropriately which also translates into improved accuracy of results. Such

features substantially improve the predictive power of RBFE methods which is essential if

they are to be actionable.

Using a statistically significant subset of the full dataset studied, we compared the ∆∆G

predictions obtained with and without REST2, the enhanced sampling method, employed.

We conclude that the REST2 protocol degrades the accuracy of results and hence its routine

application is not recommended. This might seem counter-intuitive to those practitioners

who assume that the worst REST2 could do is not affect the accuracy of results, but our

findings raise serious concerns about the general validity of the REST2 protocol. Similarly,

we found that the lightweight AM1-BCC charge model is able to achieve more precise results

compared to the RESP charge model without compromising their accuracy and is thus

preferable.

We have shown that the size of transformation does not affect the accuracy of results

in general. We have used transformations with the absolute difference between the number

of disappearing and appearing atoms up to 21 and found that the results are almost as

accurate as those for the entire dataset. Thus, the standard protocol of using 13 λ windows

is sufficient for such large transformations. In addition, we have employed our modified dual

topology scheme14,19 in this study as it overcomes the issues associated with both single as

well as dual topology schemes and combines the pros of them both. It has been successfully

employed on a large dataset in this study further confirming its general applicability. An

online tool to automatically build models with this topology scheme for TIES calculations

is freely available for anyone to use.77

Non-equilibrium methods based on MD are also known to exhibit dominant aleatoric
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uncertainties in the same way as equilibrium methods discussed in this study.33–35 Although

non-equilibrium free energy methods such as PMX26,30 have not been investigated within

this paper, our findings and previous studies indicate that it is necessary to perform similar

systematic analyses for these methods too. By the same token, machine learning methods

are strongly data-driven and hence the underlying distributions of data must be accounted

for in such methods to properly control the accuracy and/or precision of their predictions.

These issues remain open for future research.
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