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Abstract

The field of explainable Al applied to molecular property prediction models has often
been reduced to deriving atomic contributions. This has impaired the interpretability
of such models, as chemists rather think in terms of larger, chemically meaningful
structures, which often do not simply reduce to the sum of their atomic constituents.
We develop an explanatory framework yielding both local as well as more complex
structural attributions. We derive such contextual explanations in pixel space, exploiting
the property that a molecule is not merely encoded through a collection of atoms and
bonds, as is the case for string- or graph-based approaches. We provide evidence that
the proposed explanation method satisfies desirable properties, namely sparsity and
invariance with respect to the molecule’s symmetries.

1 Introduction

The rapid development of Deep Learning (DL) models for molecular property prediction [} 2} 3] has
increased the need for equally powerful interpretability methods. These are crucial to gain trust in the
model, understand its limitations, and support the chemist’s knowledge and intuition in the process of
property optimization. An ideal explainable Al (XAI) framework for molecular property prediction would
assign attributions to both individual atoms and larger substructures. Additionally, it would also be able to
provide ideas of modifications that can be made to the structure to overcome a particular issue.

Common modeling strategies involve fully connected networks from pre-computed molecular fingerprints
[4] or latent representations and, when enough training data is available, end-to-end training with graph
convolutional networks (GCNs) [5,16]. Explanations for these types of models can take the form of atomic
attributions (particularly for GCNs [7, 18]]), or feature importance using packages such as SHAP [9]. Many
of our in-house models are built upon the CDDD embedding space [10]], which poses a challenge for
explainability. The CDDD space is the bottleneck layer of a pre-trained autoencoder translating between
different SMILES representations of molecules. One approach to explainability consists of assigning the
attributions to the original SMILES, i.e., tracing back gradients through the pre-trained encoder. However,
the interpretation and visualization of attributions for string characters is challenging [11]]. Additionally,
the validity of the use of gradients for discrete character inputs can also be questioned [[12]].

In this work, we propose a novel XAl approach tailored to networks built upon CDDD descriptors. This
method, which we refer to as contextual explainability, is able to capture both atomic and structural
contributions. We rely on explainability of concepts derived in the context of image analysis [13} 114} 15}
16, [17, [18]] as well as on Img2Mol, a recently published optical molecular recognition model [19]], that is
able to translate images of molecules to their CDDD embeddings. We find that early layers in Img2Mol
capture basic chemical features like atoms and bonds, while deeper layers learn more complex chemical
structures, for instance, rings. By aggregating explanations from all the layers, we show that we can
provide sparse and robust explanations that respect molecular symmetry and show both very localized
highlights for particular atoms and more global importance for entire substructures.
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Figure 1: Summary of the contextual explanation framework for molecular property predictions: (a)
Architecture of the image-based QSAR model; (b) channel layer activations learned by Img2Mol; (c) layer
attributions; (d) contextual explanation obtained by aggregating over the various layer attributions. Green
(pink) overlay indicates positive (negative) contribution towards the prediction.

2 Setup

Our explainability framework relies on the recently proposed Img2Mol model. It consists of a convolutional
neural network whose task is to map molecular graphical depictions to their CDDD embeddings. The
CDDD space C = [—1,1]12 is constructed as the bottleneck layer of a Seq2Seqg-autoencoder network
trained to translate several million chemically-equivalent SMILES representations of molecules and defines
a continuous molecular descriptor, which can be utilized as a powerful input for training downstream tasks.
Figure 1a depicts the structure of the Img2Mol encoder. Img2Mol is trained on over ten million unique
canonical SMILES and establishes the new state-of-the-art performance in reconstruction accuracy. The
training objective consists in minimizing the distance in CDDD space between the Img2Mol embeddings
and the embeddings obtained through the encoder from [[10]. The reconstruction from CDDD to SMILES
to evaluate the model’s performance occurs through the pre-trained decoder from [[10]. For further details
concerning the model architecture, as well as the training procedure and the model performance, we refer
the reader to [19].

We trained a quantitative structure-property relationship (QSAR) model to predict the lipophilicity of small
molecules. The dataset consists of ~63000 molecules with measured values in an in-house logD assay.
Specifically, the downstream model is a multilayer perceptron (MLP) with two hidden layers and has
been trained on the molecules’ CDDD embeddings. The model performance is excellent with a cluster
cross-validation coefficient of determination (R?) score of 0.902. Upon testing on an independent dataset
of 62 molecules, whose endpoints have been reviewed and curated from the Pesticide Properties Database
[20], the final model led to an R? score of 0.914. All the XAI experiments and examples presented in this
work are obtained from this final model, where the CDDD embeddings are generated through the Img2Mol
encoder network. All the used input molecules are obtained from public data.

3 Methods

Our strategy is based on the fact that 1) deep layers in neural networks learn high-level concepts and 2)
for pure convolutional networks, the value of each “superpixel” is determined by its receptive field in
input space [21]. We combine these two properties by tracing back attributions to pixel space through
the Img2Mol encoder instead of the original CDDD encoder. We remark that this is possible since
both encoders map the respective inputs to the CDDD space. Explicitly, let A : C — R be the QSAR
downstream model and Img2Mol : M — C, where M = [0, 255]224*224 i5 the input space consisting of

images of 224 x 224 pixels. We then construct the network & = Img2Mol o A : M Yo, M, L, cLHR
by concatenating the Img2Mol encoder with the logD downstream network described in the previous
section. Here, M,, is the output space of the p" convolutional layer in the network. M, has dimension
kp x ky x Cp, where C, is the number of channels in the p‘h layer, and £, is the size length of the



embedding in terms of superpixels. Thus, our contextual explanations are obtained via the network &
applied to a graphical depiction of the sample molecule.

Figure[Ib shows a few channels activations, further grouped by the corresponding convolutional block.
This example supports our intuition: while filters in early layers reduce to node, angle, and edge detectors,
filters in deeper layers are activated by larger sub-structures in the molecule, e.g., rings and functional
groups. It is then natural to use these layer attributions as a chemically meaningful feature basis for our
explanations. Thus, we compute feature attributions values for each convolutional layer of the network @,
choosing gradients to measure feature importance. Explicitly, for each convolutional layer p we compute
superpixel attributions as

Cyp
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where the sum is over the channel dimension. The above formula formalizes our intuition: for a given
convolutional layer p, each channel output activation v, ., (x) is weighted by its contribution 9(§, ., ©
A)(x)/0vyp,c, (x) to the endpoint prediction. The attribution method (T)) is known as activation x gradient,
which is a natural extension of inputx gradient [[22] to obtain layer-wise attributions. Our implementation
of (1) is based on the captum package [23]. Figure[Tk depicts some layer-wise explanations. We notice
that attributions for early layers, as expected, focus on simple geometric features like atoms and bonds, in
contrast to attributions for deeper layers, where explanations involve entire functional groups.

Finally, as we assume that an exhaustive explanation would involve a combination of both local and
structural features, we propose a simple procedure to extract a single explanation from the layer attribution
maps. Namely, we aggregate the maps (T]) over all the convolutional layers to obtain a unique network-wide
attribution map

a(x) = Z ap(x) . ()

pE{conv.layers}

The above equation determines the weighting of the various local and structural components, as determined
by the relative value of the different layer attributions, resulting in the final contextual attribution map.
Figure [Tl illustrates an example of the result of such an aggregation strategy.

4 Experiments and Properties of Contextual Explanations

In this section, we turn to examine some of the desired properties that our contextual explanations (2)
possess.

Contextual explanations and sparsity. The example in Figure|2j illustrates the defining characteristic
of our approach. The attribution heat map consists of both atomic and structural features. Specifically, the
model assigns positive contributions (green overlay) to the outmost C1 atom and methyl group, while it
assigns negative contributions (pink overlay) to the central N atom and the triazine ring. These assignments
are in alignment with a medicinal chemist’s intuition about logD contributions.

The aggregation procedure (2) has, in addition, a denoising effect. As can be seen in Figure [Id, the
aggregated map is more sparse than the individual layer attribution maps, as it concentrates only on the
most important features contributing to the prediction. Sparsity is a desirable property for an explanation,
as feature cluttering impairs the interpretability of the model.

Invariance with respect to molecule’s symmetries. An important property for interpretability is that
the explanations respect the symmetries of the input molecule. Among the CDDD-based methods, those
based on SMILES will fail to produce invariant explanations, as the SMILES string representations
explicitly break the molecule’s symmetries. In what follows, we provide evidence that our contextual
explanations, instead, tend to be invariant under such symmetries. Explicitly, let 7 be the symmetry group
of a molecule’s graphical depiction, that is, the group of image transformations that leave the chemical
content invariant: given a molecule image x and a transformation T € T, then x’ = T'(x) corresponds to
the same molecule. To quantify the invariance of our contextual explanations with respect to a symmetry
group 7, we define the symmetry score for the transformation 7" € T as

s7(x) = %Iﬁ(T(X)) —T(@x)l, 3)

where @ is obtained from (2)) upon normalization to the range [—1, 1], and the overline denotes the average
in pixel space. The score measures the average absolute difference between two attribution maps, and
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Figure 2: Properties of contextual explainability for molecular property prediction: (a) explanations are
sparse and incorporate both local and structural features; explanations tend to preserve the molecule’s
depiction symmetry under (b) reflections and (c) rotations; (d) explanations are robust with respect to
different pictorial representations. Green (pink) overlay indicates positive (negative) contribution towards
the prediction.

thus provides a quantitative measure of the correlation between two explanations. In performing this
average, we only include normalized attributions @(x) in absolute value above a given threshold (0.05),
to avoid the score to depend on the amount of white space in the picture. The score is normalized such
that it takes value between 0 (which occurs when the transformation commutes with the attribution maps,
aT = Ta) and 1 (which occurs when a7 = —T'a and @ = +1). As a reference, if @ = U(—1, 1), the
uniform distribution in the interval [—1, 1], then E[s7] = 1/2.

We compute the score (3)) for two transformations, namely reflection across the vertical axis T' = T, _,,
and rotation of a 30° angle in the plane of the image 7" = R(30°). For reflections we report a value
of E[st,,.,_.] = 0.135 £ 0.003, computed by averaging scores for 21 images of molecules exhibiting
such symmetry. This value indicates that the symmetry is well captured by our explanations, as can
be seen in Figure 2b. For rotations we instead report an average score over 121 molecule images of
[E[s r(300)] = 0.169 £ 0.004, which again indicates that upon rotations, the attribution maps show a high
consistency. We report in Figure [2b-c some examples of such transformations, the respective explanations
and the associated scores. Such examples provide a visual intuition that for the achieved values of the
score, the symmetries are well-respected by our explanations. We note that these tend to be less sparse
than the original contextual explanations due to the normalization we introduced in (3).

Robustness with respect to the graphical depiction. There are several standards for graphically repre-
senting a molecule structure. We provide evidence that our contextual explanations are robust with respect

to different graphical representations by slightly modifying the score (3). Let G1(m), G2(m) be two dif-
ferent graphical depictions of the same molecule m, then the score s¢(m) = 1[a(G1(m)) — a(Ga(m))|
measures the average absolute difference between two attribution maps obtained from the two different
graphical methods. We computed the score across a set of 121 molecules, and we obtained an average
value of E[sg] = 0.148 4 0.003, which reveals a high level of agreement between explanations obtained
from different graphical representations. Figure 2Jd shows some examples of such pictorial representations

with their respective contextual explanations.

5 Conclusions

This work introduced an approach to explaining molecular property predictions based on molecules’
graphical depictions, which we named contextual explainability. Our method is able to capture both basic
(like atoms and bonds) as well as more complex structures (like rings and chemical groups), yielding
explanations that are more aligned with chemists’ intuition. We provided evidence that our contextual
explanations possess several desirable properties: the attributions tend to be sparse, are robust with respect
to the chosen graphical representation, and respect the symmetry of the input image. It would be interesting
to explore our explanation framework in the context of property optimization: explanations in pixel space
have the advantage that the model can explain a prediction not exclusively in terms of what is present in



the given molecule, but also in terms of what is missing. The explanations could then be employed to
provide suggestions of structure modifications for optimizing the given molecular property.
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