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Abstract

Uncovering the secrets of the biological
Faradaic reactions, essential to the understand-
ing of complex metalloenzymes, requires an
information recovery process that is robust,
rapid and replicable. This paper is a descrip-
tion of the workflow that was developed over
the course of inferring chemical reaction param-
eters for a simple protein system, a bacterial
cytochrome domain from Cellvibrio japonicus.
This was a challenging task, as the signal-to-
noise ratio in such protein-film voltammetry
experiments is significantly lowered relative to
the voltammetric data generated by low weight
molecular compounds. These challenges were
overcome by using a multiple-technique ap-
proach, which compensates for the difficulties
inherent to analysis of the individual voltamme-
try experiments. The parameters inferred are
robust across multiple experiments performed
for different preparations of the protein. This is
an important proof-of-concept result for anal-
ysis of more complex metalloenzymes, which
incorporate catalytic processes and multiple
internal electron-transfer sites.

Introduction

Of the myriad chemistries that are required
for the existence of life, some of the most
fundamental such as the splitting of water,
the fixation of nitrogen, and carbon capture
are underpinned by electron-transfer reactions.
Such catalytic redox processes are of signifi-
cant biotechnological interest because they are
achieved at ambient temperatures and pres-
sures using commonly available metals at the
active catalytic sites.1,2 To understand these
processes, protein-film voltammetry can be
used,3,4 where redox active proteins or enzymes
are immobilised on the surface of an electrode
to overcome problems caused by slow rates of
macromolecular diffusion.5 In voltammetry, a
time-varying potential is used to drive electron-
transfer reactions, so that the recorded exper-
imental Faradaic current-time data directly
reports on the reactions that take place.

In voltammetric modelling, the aim is to re-
construct the underpinning reaction process
that generated the experimentally measured
data.6 For protein film voltammetry, the re-
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sulting system of mathematical equations takes
the form of a system of non-linear ordinary
differential equations. Embedded within this
system are the key parameters of interest that
govern the biological redox reaction — that
is, the electron transfer mechanism, reaction
rates, and electrochemical potentials.2,7 If suit-
able values of these parameters are chosen, it
is possible to (typically computationally) solve
the underlying system of equations and obtain
a current-time or current potential trace de-
scribing the modelled behaviour of that system
for that particular set of chosen parameters -
this is known as the forwards problem. Of much
greater interest, is the use of the underpinning
mathematical model to recover estimates of
these key parameters from experimental data -
this is known as the inverse or parameter infer-
ence problem— and involves finding an optimal
set of parameters that minimises a distance (or
”objective”) function between the experimental
and simulated data. The inverse problem can
also be extended using for example, Bayesian
inference techniques as in this work, to obtain
not only point estimates of the key parameters
governing the experimental system, but also to
give some measure of confidence in those esti-
mates.

In protein film voltammetry, the solution of the
inverse problem is made particularly challeng-
ing since the experimentally-measured current-
time or current-potential data result not only
from the Faradaic signal of interest, but also
a typically very large ”background” current
which arises due to charging at the electrode-
solution interface, compounded by the effects
of uncompensated resistance. Much effort has
gone into resolving this difficulty8–10,10–12 —
in the approach presented in this paper, to
fully compensate for these background effects,
terms modelling capacitance and resistance
must be incorporated into the mathematical
model, and the capacitance and resistance pa-
rameters must also be estimated as part of the
inverse/inference process. This typically results
in a very high-dimensional problem (in the rel-
atively simple case considered in this paper the
inference problem is in 14 dimensions) and find-

ing an optimal solution is made very challenging
by the potential presence of multiple local min-
ima of the objective function, and these minima
are often located in disparate parts of the over-
all parameter space. In these circumstances, it
is often particularly helpful, if not essential, to
make use of so-called ”prior” information (typi-
cally from previous experiments or arising from
known physical properties of the experimental
system) to try to narrow down the parameter
search space, typically by placing constraints
(which are as tight as possible) on the param-
eter values. “As tight as possible” relates to
the fact that, in solving the inference problem,
only those parameter ranges which are admissi-
ble after making use of the prior information are
explored. It should be noted that the Bayesian
inference framework used in this paper is ideal
for this problem. A key question is therefore:
how can this “prior” information be obtained?
In this case there are two sources. The first
is any known physical constraints on the pa-
rameter from the experimental literature, or
through theoretical considerations. The second
is to use data arising from multiple different
experimental approaches. The motivation here
is that different experimental techniques are
affected differently by background capacitance
and resistance effects (even if those differences
are sometimes subtle), and these differences
can be used: (i) to devise constraints on par-
ticular parameters to narrow down the search
space and render the inverse parameter infer-
ence problem tractable; and/or (ii) to exclude
whole parameter sets recovered by inference
algorithms that can be shown to corresponding
to a local rather than the global minimum.

In this paper a multi-experiment approach is
presented. To showcase its utility, the exper-
imental system is a simple protein from Cel-
lvibrio japonicus, referred to as CjX183. This
is a small domain of Cbp2D, a probable ac-
tivating partner for the lytic polysaccharide
monooxygenase (LPMO) produced by Cellvib-
rio japonicus. This LPMO catalyses the ox-
idative cleavage of glycosidic bonds in cellulose
and such enzymes facilitate industrial biofuel
production from biomass.13 It has recently been
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shown that CjX183, a type-c cytochrome do-
main, can transfer electrons to LPMOs via the
reversible redox reactivity of the heme cen-
tre,14 with these authors making use of direct
current voltammetry (DCV) measurements of
the Fe3+/2+ redox chemistry of CjX183 can
be obtained via adsorption of purified CjX183
onto a pyrolytic graphite edge electrode.

In this work widely used standard DC mea-
surements of the electrochemistry are provided ,
along with two further experimental techniques
— purely sinusoidal voltammetry15 (PSV),
and ramped Fourier-transform AC voltam-
metry16 (r-FTACV) — to explore the same
chemistry under identical experimental condi-
tions. Lessons learned from analysis of this
data is then used to develop a workflow, firstly
to constrain the size of the parameter inference
problem by placing constraints on individual
parameters, and, secondly, to exclude whole
inferred optimal parameter sets derived from
one experiment where that parameter set can
be shown to correspond to a local optimum by
using data from a different experiment. Ulti-
mately this approach has resulted in a rational
and reproducible approach to the estimation of
optimal parameters, and likely distributions of
those parameters, for CjX183.

This combination of the use of multiple sen-
sitive voltametric measurement techniques and
the complementary application of modern com-
putational analysis methods allows for the de-
livery of a protein-film voltammetry electro-
chemical toolkit that enables more robust and
efficient and accurate extraction of of the key
biochemical parameters governing this redox
system. In particular, it is possible to recover
consistent parameter values, and confidence
measures on those values, of reaction rates from
distinct experimental runs, verifying the repro-
ducibility of the parameter recovery process
for all of the key parameters in a protein-film
volatmmetry experiment.

Methods

Experimental procedures

The expression and purification of CjX183 was
based on protocols reported by the Hemsworth
group in Leeds,14 with several alterations. Es-
cherichia coli BL21(DE3) competent cells were
co-transformed with the two plasmids, pCW-
CjX183 and pEC86, simultaneously. Prior to
inducing with IPTG the cultures were cooled
to 16 °C (not 20 °C) and IPTG was added to
a final concentration of 1 mM (not 0.4 mM).
Post cell harvest, the cells were resuspended in
50 mL of cold lysis buffer (20 mM Tris pH 8.0,
150 mM NaCl, 10% v/v glycerol). A protease
inhibitor tablet (Thermo Scientific) and 20 µL
of Benzonase (2.5 U µL−1) were added to the
resuspended solution. The solution was placed
on ice and sonicated in 30 second bursts with
the same amount of cooling time in between
until the cells were lysed. The lysed cell solu-
tion was centrifuged (30750 g, 4 °C, 30 min)
to isolate the supernatant and imidazole added
such that that imidazole concentration reached
30 mM. The protein was purified per the estab-
lished protocol except with buffer A as pH 8.0,
20 mM Tris, 200 mM NaCl, and 30 mM imi-
dazole, and buffer B which is the same except
with 300 mM imidazole.

A custom-built electrochemical cell was set-up
exactly as previously described for studies of
wild type CjX183,14 inside an anaerobic cham-
ber (< 40 ppm oxygen). A 10 µL aliquot of
protein was pipetted onto the working electrode
tip and left to adsorb until a film has formed.
The cell was maintained at 5 °C (realistically
between 4 and 6 °C) and all measurements were
performed in pH 7, 50 mM sodium phosphate,
150 mM NaCl buffer.

Three different voltammetric methods were
carried out, DCV, r-FTACV and PSV. The
DCV experiments were carried out initially af-
ter protein absorption and then after r-FTACV
and PSV experiments. The experiments were
conducted using an Ivium potentiostat and Ivi-
umSoft control software. The potential was
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cycled between -0.39 V to 0.30 V (vs the ref-
erence electrode, which is +0.239 V vs. SHE)
for 4 scans with a 5 second equilibration at the
start potential, using a scan rate of 30 mV s−1

and a potential step of 5 mV. The same method
was carried out for the trumpet plot analysis
with a scan rate varying from 10 to 30000 mV
s−1. All potentials are reported “vs. ref”, using
the reference value stated above.

Three successful repeats of r-FTACV were
recorded for each protein film. The r-FTACV
experiments were conducted using a custom
potentiostat developed by collaborators at
Monash University and the instrument was
controlled using custom software.16 Each r-
FTACV experiment commenced with a 5 sec-
ond pre-treatment at -345 mV (vs the reference
electrode) and an r-FTACV potential input be-
tween -345 mV and 255 mV was applied with a
scan rate of 22.35 mV s−1, as well as a sinusoidal
oscillation with a frequency of approximately 9
Hz and amplitude of 150 mV.16

Ten successful repeats of PSV were recorded
for each protein film. The PSV experiments
were conducted using the same potentiostat as
for r-FTACV and the instrument was controlled
using custom software. Each PSV experiment
commenced with a 5 second pre-treatment at
-45 mV (vs the reference electrode). The volt-
age was cycled between -344 mV to 254 mV
with a frequency of approximately 9 Hz and a
phase of 270°for 26.8 seconds (equivalent to 268
oscillations).

Experimental techniques: DCV,
PSV and r-FTACV

In this section the relative strengths and weak-
nesses of the three chosen experimental tech-
niques are summarised: Direct Current Voltam-
metry (DCV), Purely Sinusoidal Voltamme-
try (PSV), and ramped Fourier-Transform AC
Voltammtry (r-FTACV).

In DCV experiments a simple cycle of a lin-
ear potential-time ramp is used as illustrated in
Figure 1A. Previous studies on surface-confined

proteins have shown that this simple choice of
potential-time variation limits the amount of in-
formation recoverable from the current output
when studying non-catalytic electron transfer
processes.5,17 This is because the total current
measured in a voltammetric experiment is a
sum of both Faradaic contributions and non-
Faradaic “background” current which arises
due to capacitive charging at the electrode-
solution interface. In DCV, the low ratio of
Faradaic to non-Faradaic current impedes the
extraction of redox reaction parameters. How-
ever, DCV has been used extensively by elec-
trochemists for many years, as it is relatively
simple to both perform and interpret.

To overcome the shortcomings of the DCV tech-
nique, differential pulse voltammetry methods
have been developed: these techniques involve
applying amplitude potential pulses on a linear
ramp.16 Ramped Fourier Transform Alternat-
ing Current Voltammetry (r-FTACV) uses a
large-amplitude sinusoid overlaid on top of a
DCV ramp as shown in figure 1C. The large-
amplitude sinusoid present in r-FTACV results
in a non-linear Faradaic current response if an
electroactive species is present in solution or
adhered to the working electrode surface. This
non-linearity can be observed in the Fourier
transform of the current, where harmonic cur-
rent responses (“harmonics”) are observed at
integer multiples of the frequency of the in-
put sinusoid.5,16 In contrast, an ideal double-
layer capacitive background current response
has a linear dependency,18 and graphite elec-
trodes give rise to non-Faradaic current that is
only observed in the lower harmonics. Conse-
quently, by band-selecting and inverse-Fourier
transforming only higher harmonic signals, r-
FTACV measurements can be analysed to ex-
tract baseline-free Faradaic current.

However, whilst r-FTACV is the most sensi-
tive of the techniques used in this paper, its
limitation is that it is very computationally
expensive to simulate because of the pres-
ence of two time-scales (linear scan rate and
sinewave frequency).15 Consequently the sim-
ulation time increases as a function of the in-
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put frequency, which prevents simulation of
the experiments required to accurately deter-
mine rapid electron transfer rate constants.
Purely sinusoidal voltammetry (PSV) can also
be used to infer redox reaction parameters, as
was demonstrated for an electrode-immobilised
ferrocene derivative, a one-electron transfer
molecule which was covalently attached to an
electrode to provide approximately 80 pmol
cm−2 surface coverage.15 PSV can be thought
of as a DCV experiment with a variable scan
rate, without discontinuities at the switching
potentials. The advantage of PSV is that it
has just a single time constant (the potential
sinusoid frequency), meaning that the compu-
tational cost is greatly reduced. This results in
an experiment that can be simulated 10 times
faster than r-FTACV while still containing har-
monic current responses, and therefore access
to purely Faradaic signals. Additionally, for a
fixed number of oscillations, PSV simulation
time is independent of the frequency of the po-
tential sinusoid. Thus, while r-FTACV fitting
for the ferrocene system required several hours,
PSV fitting took only 45 minutes. Since solving
the inverse problem (finding input parameter
values that generate a simulation that is “best
fit” to the experimental data) takes a signifi-
cant number of simulations (tens to hundreds
of thousands), this increase in simulation speed
has had a significant impact on the efficiency
of parameter inference.

Before describing how each of these experimen-
tal techniques can be used in complimentary
fashion first to constrain the parameter search
space, and then to solve the inverse parameter
inference problem, the underpinning mathe-
matical model of the experimental system is
briefly delineated, along with the mathemati-
cal descriptions of the time-dependent applied
potential that defines each of the three experi-
ments.

Mathematical Model

The overall aim of this combined modelling and
experimental work is to estimate the unknown
reaction parameter values that give rise to the

Faradaic current resulting from a surface con-
fined redox reaction. For CjX183, the mathe-
matical model is common to all three voltam-
metric techniques, with the only difference be-
ing in the time-varying potential that is im-
posed as a boundary condition on the electrode
surface. In all three techniques, the observed
experimental measurement is the time-varying
total current, I, which is modelled as the sum of
the Faradaic current If , which is dependent on
the rate of change of the proportion of the oxi-
dised molecule on the electrode ψ, and the ca-
pacitive current Ic. It is assumed that the kinet-
ics of the Faradaic process are well-described by
the Butler-Volmer equations, and assume that
the oxidised and reduced species do not inter-
act with each other (i.e. a Langmuir isotherm).
The effective potential Er is the applied input
potential Eapp, minus the Ohmic drop, such
that Er = Eapp − IRu. The total expression
for If is therefore given by

If = FAΓ
dψ

dt
=

(1− ψ)k0e

(
F
RT

(1−α)(Er−E0)
)
− ψk0e

(
−αF
RT

(Er−E0)
)
.

(1)

The definitions all of the parameters in the
mathematical model above, and in the equa-
tions defining the applied potentials below, are
gathered together in table 1. The applied po-
tential then differentiates the three different
voltammetry experiments. For DCV the form
is

Eapp(t) =

{
Estart + vt, if t ≤ tr,

Ereverse − v(t− tr), if tr ≤ t,

(2)
where Estart is the starting potential, from
which the potential is increased to the switching
potential Ereverse, and then back down again.
For r-FTACV, the linear ramp (written as Edc)
is added to an AC waveform

Eapp(t) = Edc(t) + ∆E sin(ωt+ η), (3)

where η is the phase, and ∆E the amplitude
of the sinusoid. For the capacitive current Ic,
the current arising from an ideal capacitor is
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linearly dependent on the derivative of the ef-
fective potential. The non-linear capacitance
is modelled as a 3-rd order polynomial of the
form.

Ic =

Cdl(1 + CdlE1(Er) + CdlE2(Er)
2 + CdlE3(Er)

3)
dEr

dt
.

(4)

For PSV, the linear ramp is omitted to obtain

Eapp(t) = Ehalf +∆E sin(ωt+ η), (5)

where Ehalf = (Ereverse+Estart)/2, and all other
parameters are as defined previously.

Mathematical definition of the inverse
problem

The simplest form of inverse problem defines
an objective function which measures the dis-
tance (typically the Euclidean or least-squares
distance) between the measured experimental
data and the simulated data. The solution of
this inverse problem then involves finding the
single set of parameter values that minimises
the objective function over the whole parame-
ter space. This is an optimisation problem and
can be defined mathematically. For the case
of fitting to the total current Idata, with Nt

recorded current values, and a simulated cur-
rent Isim which is a function of the simulation
parameters θ

Φt(θ) =

√√√√ Nt∑
j=1

(Idata(tj)− Isim(θ, tj))2. (6)

Parameter space is searched to find a θ that
returns the minimum value of Φt(θ). Alterna-
tively, the objective function can compare data
in the frequency domain, filtered to contain N
harmonics h0, h1...hN . An objective function is
defined using least squares, where Nω is the
length of the Fourier spectrum, F , as gener-
ated by the fast Fourier transform algorithm,
and ωk is the kth fast Fourier transform com-
ponent. For the case which uses the absolute

value of the Fourier spectrum,

Φf (θ) =

√√√√ Nω∑
k=0

F Th(ωk)(|Fdata(ωk)| − |Fsim(θ, ωk)|)2,

(7)

F Th(ωk) =

hN∑
n=h0

F Th
n (ωk), (8)

F Th
n is a top-hat filter (equation 9) centred on

the nth harmonic, and ωinput is the input fre-
quency where w is the width of the window,
with a maximum value of 0.5 (as the spacing
between each harmonic has a value of ω).

F Th
n (ωk) =

{
1, if

n·ωinput

w
≤ ωk ≤ n·ωinput

w

0, otherwise
(9)

In addition to optimisation, it is possible to
use an alternative, Bayesian approach to solv-
ing the inverse problem which involves defining
a likelihood function which is maximised as
a function of the parameters. This approach
yields a distribution of possible parameter val-
ues (see, for example, figure 6). Full details
of the use of Bayesian in parameter inference
for voltammetric data can be found in earlier
publications.6

There are multiple algorithmic routes to solv-
ing the inverse problem in electrochemistry, as
reviewed in detail previously.6,20 In this work
the approach used to solve the minimisation
problem defined in equation 6 above is to use
the CMAES algorithm, which returns a sin-
gle best-fit parameter vector. When taking a
Bayesian approach, Markov-chain Monte Carlo
(MCMC) sampling is used to yield a posterior
parameter distribution, which can be analysed
to determine the degree of correlation between
the inferred parameter distributions. It is in
the latter approach that demonstrates a more
powerful methodology for electrochemical data
analysis.

Optimisation

All optimisation was performed using the
CMAES algorithm, as implemented in the
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Table 1: Symbol Glossary

Symbol Description
E0 The reversible potential — the potential at which the concentration of reduced and

oxidised species is equal
E0

µ The mean of a normal distribution of reversible potentials19

E0
σ The standard deviation (s.d.) of a normal distribution of reversible potentials19

k0 The rate at which the redox reaction occurs
Ru The portion of solution resistance that is not compensated for by the potentiostat,

hence the “uncompensated resistance”
Cdl The magnitude of the background current arising from linear double-layer capaci-

tance effects
CdlEX Terms used to model non-linear capacitance effects, where X is the order number,

described in the mathematical model section of the SI
Γ The concentration of electroactive species on the surface of the electrode
ω The frequency of the input sinusoid (for PSV and r-FTACV)
η The phase of the Faradaic current

Cdlη The phase of the capacitive current
α The symmetry factor, which is a measure of the relative ease with which the tran-

sition state is formed in the course of the oxidative and reductive reactions

PINTS repository,21 which returns best-fit
point values for each parameter fitted. For
PSV, r-FTACV and background-subtracted
DCV, a least-squares objective function was
constructed in either the time- or frequency-
domains as appropriate. These objective func-
tions can be found in the SI. To fit peak-
potential data as observed in a trumpet plot,
two objective functions were used, for the oxida-
tive and reductive peak potentials respectively,
and optimised both simultaneously.

For each fitting attempt, initial parameter val-
ues chosen randomly within the boundaries
listed in table 2. Each fitting attempt was run
until the change in the objective function after
200 iterations was < 10−7. To obtain the values
recorded in table 2, this process was repeated
10 times, with 10 different random initialisa-
tions, and noted the best-scoring parameter
vector.

Bayesian Inference

An adaptive Markov-chain Monte-Carlo
(MCMC) algorithm was used in order to obtain
estimates of the posterior distribution P (θ|yD),
where yD is some form of voltammetry data,

and θ are the model parameters. More informa-
tion on the algorithmic details and mathemati-
cal properties of this approach can be found in
the literature, including previous work.6 For all
MCMC fitting approaches, an uninformative
log-prior was used, and log-likelihood functions
were as detailed in the SI. Three independent
chains were initialised from best-fit estimates
obtained by minimisation using the CMAES
algorithm. The chains were run for 10000 sam-
ples, and the first 5000 samples were discarded
as “burn-in”.

Challenges in solving the inverse
parameter inference problem

Solving the inverse problem for every param-
eter in table 1, including the three CdlEX pa-
rameters, requires finding a minimum in 14
dimensions. As outlined in the Introduction,
this is challenging in and of itself, but is com-
pounded by a number of further complications.
Information about the key parameters of inter-
est (E0, E0

µ, E
0
σ, Γ and k0) is contained within

the Faradaic component of the total current
but, for protein-film voltammetry experiments,
this is swamped by background signals aris-
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ing from capacitive effects and uncompensated
resistance. The Faradaic signal is further ob-
scured within the measured current by exper-
imental measurement error, arising from pro-
cesses such as shot noise, or thermal electron
fluctuations.22 The magnitude of this noise,
as indicated elsewhere,15 is proportional to
the total current. Furthermore, as has been
demonstrated previously,15,19 several of the pa-
rameters in table 1 have similar effects over the
potential window of interest. This manifests
itself as correlations between sets of parame-
ters, as illustrated, for example, for Ru and
k0 in figures S1 and S2. This is known as pa-
rameter compensation.19 The effect is further
compounded by the impact of the background
non-Faradaic current on the parameter recov-
ery process, which is described in more detail
in the Results section. Overall, this means that
the inverse problem is made very difficult by
the presence of multiple local minima, often in
disparate parts of the overall parameter space.

As described earlier, in this circumstance, it
is particularly helpful firstly to make use of all
prior information (data) to narrow down the
parameter search space by placing constraints
to ensure that only those parameter ranges
which are admissible after making use of the
prior information are included. The approach
taken to derive these constraints is outlined in
Figure 4 in the Results section, and full details
are given in the SI. The Results section then
goes on to describe in detail the workflow that
allows for the use of DCV, PSV and r-FTACV
data to make the overall inverse problem of
parameter inference tractable, and to obtain
reproducible parameter values across different
experimental data sets.
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Figure 1: DCV (left), PSV (centre) and r-FTACV (right) experimental data. A-C: Potential inputs
for the three experiments. D-F: Total current response of CjX183 (blue) and a bare glassy-carbon
electrode (orange) to the three experimental inputs. G: DCV peak position data from CjX183. H:
magnitude of the Fourier spectrum corresponding to harmonics 1-10 for CjX183 (blue) and a bare
electrode (red) for PSV and r-FTACV. I and J: PSV and r-FTACV harmonics 1-6 from CjX183
(blue) and a bare electrode (red) 9



Results and Discussion

Preliminary Investigations

Examples of the experimental data generated
by DCV, PSV and r-FTACV voltammetric ex-
periments interrogating CjX183 adsorbed to
the surface of a graphite electrode are shown in
figure 1, with figures 1A-C showing the poten-
tial input and the subsequent figures showing
various forms of the current for the three ex-
periments. As can be seen in figures 1D-F,
comparison of experiments conducted in the
presence and absence of protein (“blank” and
“CjX183”) shows that the contribution of the
Faradaic current to the total current response
is significantly stronger in the DCV and r-
FTACV total currents than in the PSV total
current, where, to the eye, the signal attributed
to the protein (the two “bumps” at ∼ ± 0.18V)
is almost totally overwhelmed by background
current. As discussed in the introduction, one
method of voltammetric analysis in the pres-
ence of large background currents is background
subtraction, where the current from an unmod-
ified electrode (i.e. purely capacitive current)
is subtracted from the current of a modified
electrode, to obtain a purely Faradaic current
response, hypothetically free of non-Faradaic
background contributions. However, as shown
in figure 1, processing the CjX183 experimen-
tal data in this way would not yield purely
Faradaic current: the presence of protein on
the electrode clearly alters the observed back-
ground current, meaning the background sub-
traction would only serve to bias the results.

In previous work, where parameters were in-
ferred from a voltammetric PSV experiment
interrogating ferrocene attached to a glassy
carbon electrode,15 the Faradaic-to-background
current ratio was significantly higher, and con-
sequently accurate parameters could be ob-
tained consistently by fitting to the total PSV
current. However, when fitting to the total
current generated by CjX183, it was deter-
mined that it was possible to obtain multiple
“plausible” fits with highly dissimilar parame-
ter values (as recorded in table S1 in the SI),

with none of the proposed simulations pro-
viding a good fit to either the higher PSV or
r-FTACV harmonics. Coupled with the fact
that two markedly different sets of Faradaic
parameters generate similar total current fits
indicate that the inferred Faradaic parameters
have little effect on the goodness-of-fit of the
two simulations. As can be seen in figure 2, the
best-fit total-current simulations are primarily
a good fit to the first harmonic, which, as can
be seen in figure 1, is two orders of magnitude
larger than any of the higher harmonics. This is
a demonstration that, within the total current
of the protein-film PSV experiment, the small
amount of Faradaic current arising from the bi-
ological electron transfer process is swamped by
the background current contributions, as was
not the case for surface-linked ferrocene. Ad-
ditionally, background currents arising from a
PG electrode are generally more complex than
for a glassy carbon electrode, because of the
roughness of the surface.

Given that fitting the total PSV current in the
time domain did not provide a satisfactory re-
sult, filtering approaches were used. By inspec-
tion of the harmonics for the “blank” (protein-
free) experiment in figure 1, it was judged that
PSV harmonics 0-3 contained most of the ca-
pacitive current contribution, and filtered this
out by band selecting harmonics 4 and above
from the Fourier spectrum of the CjX183 PSV
current. It should be noted that this filtered
data contains little information about capaci-
tance — a detail that will be returned to in a
later section.

It was also determined that the effects of ther-
modynamic dispersion in the model should be
included, from inspection of the r-FTACV ex-
perimental harmonics, as described in previous
work.19 This can be achieved by comparing the
r-FTACV harmonics against a non-dispersed
simulation. Such a simulation can be obtained
by fitting to PSV data, and then using the
best-fit parameters to obtain an r-FTACV sim-
ulation — if the higher r-FTACV experimental
harmonics are of a lower magnitude and are
wider than the non-dispersed simulation, then
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Figure 2: A: PSV total current, and two simulations with highly differing parameter values obtained
by fitting to PSV total current (referred to as θ1 and θ2, the parameter values of which can be found
in the SI in table S1). When observing the fit in harmonics 1-6 (B), it should be observed that the
relatively good fit between simulation and experiment in the time-domain is not replicated in the
higher harmonics.

this is an indication that thermodynamic dis-
persion is present. The presence of thermody-
namic dispersion also implies the presence of
kinetic dispersion, but in the close-to-reversible
kinetic regime, kinetic dispersion does not have
a significant effect on the Faradaic current, and
so it was not modelled for reasons of computa-
tional efficiency19

After an initial parameter inference attempt,
fitting to harmonics 4-10 of the CjX183 cur-
rent, it was determined that it was possible
to obtain parameter vectors that provided a
reasonably good fit to these PSV harmonics,
but when compared to r-FTACV harmonics
data as shown in figure 3, the fit is poor —
with a mismatch between the predicted and
experimental harmonic magnitudes, and im-
plausible waveshapes — the parameters used

to generate the simulation can be found in ta-
ble S2 in the SI under “low k0”. The poor
fit is particularly apparent in r-FTACV har-
monic 4, where one single merged set of peaks
is visible in the simulation while two separately
resolved sets of peaks are observed in the ex-
perimental data. Based on previous studies,
this type of deviation between simulation and
experimental r-FTACV data is attributable to
the simulation being generated by a parameter
set in which the electron-transfer rate k0 is too
small. The conclusion was that that exploring
a very broad region of parameter space during
the modelling of PF-PSV high harmonic data is
not an effective way to obtain realistic electro-
chemical reaction parameters. This is a direct
illustration of the phenomenon of parameter
compensation described earlier and illustrated
in Figures S1 and S2. In these circumstances,
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it is often the case that the optimisation algo-
rithm returns a parameter set corresponding
to a local (rather than the global) minimum
in parameter space; in the example shown in
figure 3, this is driven by the kinetic parameter.

The next section therefore summarises, de-

Figure 3: An example of how a relatively good
agreement between PSV experimental (blue)
and simulated (orange) harmonics 4-7 (A) does
not translate well to an r-FTACV harmonic
comparison (B), driven by a low inferred k0
value.

scribed in detail for each parameter in the
SI, how this problem can be avoided by using
prior information and information from mul-
tiple experimental techniques to constrain the
parameter search space and return a consistent
and reproducible global optimum.

Constraining the search space

From the preliminary investigation above, it be-
came apparent that an important part of ob-
taining a robust fit was to constrain the param-
eter space in which the minimisation algorithm
searches. Parameter space was constrained to
prevent physically impossible parameter values,
aiming to exclude the areas of space that re-
sulted in good fits only to the filtered portion
of the current from one technique, but failed
to generate a good-fit to data from other tech-
niques. This is a process that must be under-
taken with great caution; it carries the obvi-
ous danger of excluding the region of parame-
ter space in which the “true” parameter values
reside. The bounds used for each parameter is
shown in table 2. In the SI, the reasoning for
each bound is discussed in detail in the order
in which they are presented in the table, and in
figure 4, this process is shown graphically.
As can be gleaned from figure 4, the process

of bounding parameter space required many fit-
ting runs to gain a deeper understanding of the
inference problem. This is a situation in which
the speed advantage of PSV becomes relevant.
A single fitting run, returning a best-fit parame-
ter set for PSV took approximately 45 minutes,
while the same attempt with r-FTACV took
several hours. Therefore, using PSV analysis,
multiple model combinations can be tried in
the time it takes to undertake one r-FTACV fit-
ting attempt. As the fitting process is repeated
ten times to ensure a high search coverage of
parameter space, r-FTACV fitting timescales
quickly become untenable.

Inferring parameters from multi-
ple films

Using the bounds shown in table 2, it was
possible infer parameters from three PSV ex-
periments interrogating different protein prepa-
rations of CjX183, where for each preparation
both PSV and r-FTACV measurements were
obtained. The resulting best fits are shown in
figure 5, with the inferred parameters shown in
table 2, where each column shows data from a
different electrode film. In figures 5A-C, PSV
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Figure 4: Flowchart representation of the fitting methodology proposed in this paper. For certain
parameters the mechanism by which boundary values can be obtained has been presented graphi-
cally; these figures are written in brackets as appropriate.

harmonics 4-10 for both the experimental and
simulated currents are shown, with the simula-
tions using the parameters in table 2. In figures
5D-F r-FTACV simulations also use the input
simulation parameters written in table 2, except
for the input frequency and phase. For figures
5G-I, limited optimisation was performed on
parameters thought likely to change as a result
of so-called “film-loss” effects, which change as
a function of CjX183 molecules coming off the
electrode over time, specifically the E0

µ, E
0
σ and

Γ parameters — the former two as the distri-
bution of E0 values will change as a result of
molecules coming off the electrode. In addition,
the sinusoidal frequency ω was fitted, which is
different for r-FTACV and PSV experiments,
and set the phase to zero. The altered values
are written in brackets in table 2. This was
done to show that only a relatively small modi-

fication in the PSV parameters is required to go
from an excellent fit to the PSV harmonics to
an excellent fit to the r-FTACV harmonics. Be-
cause the r-FTACV inference approach requires
searching in four-dimensional parameter space,
the time for a single fitting run is shorter than
it would be for the full 13-dimensions searched
in the PSV case. In practice, this was 2-3 hours
for a r-FTACV harmonic data fitting attempt,
as opposed to a predicted 10+ hours for all 13
dimensions.

The multiple comparison approach for validat-
ing the “best-fit” reaction model parameters
uses both inter-technique and inter-experiment
comparisons, such as the type performed in fig-
ure 5, allows the removal of spurious parameter
combinations, or those that provide a good fit
to only one subset of the data. Consequently,
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Figure 5: Best-fit simulations and data for harmonics 4-10 of PSV experiments 1-3 (figures A-C),
using simulation parameters reported in table 2. Figures D-F show r-FTACV harmonics 4-7, from
r-FTACV experiments 1-3 (performed using the same CjX183 modified electrode as the appropriate
PSV experiment), and simulations obtained using the same parameters as those used to generate the
top row, except for the values of the phases (both of which were set to 0) and the input frequency
(which was set to 8.96, 8.75 and 8.83 Hz respectively). Figures G-I show the same r-FTACV
harmonic data as figures D-F, along with best-fit simulations, obtained using the parameters in
brackets in table 2.
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the fact that the values inferred from PSV data
can a) with a small level of alteration provide
a good fit to r-FTACV harmonics obtained
during the same set of measurments and are b)
consistent across experiments conducted on dif-
ferent days, demonstrate that the inferred val-
ues are robust. The PSV parameters can also
be evaluated in light of values obtained by other
analysis methods. In this study, these methods
are the estimates of the kinetic parameter from
trumpet plot data,8–11,23 and surface coverage
estimates from analysis of a single scan-rate
DCV experiment charges calculated from peak
area, shown in figures S8 and S7 respectively.
With regards to the former, the value of the ki-
netic parameter inferred from the trumpet plot
was within 60s−1 of the value inferred from
the PSV currents, and as shown in figure S8,
simulating trumpet plot data with the PSV-
inferred value of ∼172s−1 does not significantly
alter peak-position divergence point. With re-
gards to the surface coverage, although the
exact value inferred from the peak-integration
technique is dependent on the subtraction ap-
proach, the values inferred from PSV are in
agreement with the range of values inferred by
this method.

In terms of the values that best report on the
CjX183 redox chemistry, because r-FTACV is
more sensitive to parameter changes as demon-
strated using Bayesian inference on synthetic
noisy data in previous work,15 it is the position
of the authors that the values that generate the
best-fit to the r-FTACV harmonics are those
that best describe the properties of CjX183.

The midpoint potential of a cytochrome’s heme
Fe2+/Fe3+ redox couple can vary from -639 to
+161 mV (vs. ref.)24 However, in the region
of physiological pH, the values for E0 tend to
range from around -49 to +11 mV (vs. ref.)25,26

The average value extracted for the midpoint
potential mean and standard deviation as part
of the best fit parameters was ∼-65 mV vs ref-
erence, and as such the inferred distribution
of CjX183 midpoint potentials is close to or
within the suggested physiological range.

When rationalising the electron transfer rate
constant measured in this paper, it is impor-
tant to consider that the CjX183 protein under
analysis is an artificially small fragment of a
larger naturally occurring protein. However,
the average best fit rate constant of ∼175 s−1

is fully consistent with the range of values de-
termined in previous electrochemical studies of
different cytochrome proteins. For example, the
electron transfer rate constant for cytochrome-
c incorporated onto a calcium alginate film on
a glassy carbon electrode was found to be 20.9
s−1,27 the electron transfer rate constant for hu-
man, bovine and porcine cytochrome P450c17
on a PGE electrode were determined as 164, 157
and 153 s−1 respectively,28 and while more var-
ied due to changing chain length, the electron
transfer rate constant for rat heart cytochrome-
c adsorbed onto gold electrodes modified with
self-assembled monolayer has been determined
to fall around 700 s−1 when the length of the
carbon chain on the monolayer is between 4
and 7 carbon atoms in length.29

Based on the geometric surface area of the
working electrode (0.03 cm2) and the width of
the protein structure, by assuming spherical
close packing of protein on the electrode, a the-
oretical maximum monolayer surface coverage
of CjX183 on the electrode can be calculated as
4.401 pmol cm−2. The extracted best fit surface
coverage parameter from the experimental data
is 17.3 pmol cm−2, this difference can be at-
tributed to a non-spherical protein with better
packing efficiency and a non-planar electrode
surface (i.e. area greatly exceeding 0.03 cm2

due to abrasive treatment of the graphite cre-
ating a rough surface). In general, protein film
voltammetry experiments report pmol cm−2

coverage values.4 What it is essential to note,
however, is that the exact reported parameters
are conditional on the modelling choices made.
In all cases the reported α value is the value
of the upper bound, and the solver converged
to the value of the upper bound regardless of
what this boundary was set to. This is not un-
expected — as detailed in previous work, when
the kinetic regime is approaching reversibil-
ity (reaction is approaching equilibrium on the
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Table 2: Best fit parameters for harmonics 4 and above of PSV experiments 1, 2 and 3. The
resulting simulated PSV current is shown in figures 5A-C. The same values were used to generate
r-FTACV simulations shown in figures 5 D-F, and the values in brackets were used to generate the
r-FTACV simulations in figures 5G-I

Parameter Symbol Bounds PSV 1 PSV 2 PSV 3

Midpoint poten-
tial mean

E0
µ (V) [-0.1, -0.04] -0.072

(-0.061)
-0.067
(-0.063)

-0.065
(-0.061)

Midpoint poten-
tial standard de-
viation

E0
σ (V) [1e-4, 0.06] 0.045

(0.033)
0.053
(0.036)

0.051
(0.035)

Rate constant k0(s
−1) [50, 500] 173.8 176.5 172.9

Surface coverage Γ (mol cm−2) [9e-12, 9e-11] 1.35e-11
(1.68e-11)

2.05e-11
(1.83e-11)

1.79e-11
(1.45e-11)

Linear double-
layer capaci-
tance

Cdl (F) [1e-7, 1e-5] 9.8-6 1.0e-5 1.0e-5

1st order Cdl CdlE1 [-0.1, 0.1] 0.014 0.079 0.095
2nd order Cdl CdlE2 [-0.05, 0.05] 0.04 0.021 0.045
3rd order Cdl CdlE3 [-0.05, 0.05] -5.6e-4 -4.4e-4 -3.8e-4
Uncompensated
resistance

Ru (Ω) [0, 900] 148.7 316.8 81.5

Potential fre-
quency

ω (Hz) [8.56, 9.46] 9.015
(8.96)

9.015
(8.75)

9.015
(8.83)

Cdl phase Cdl phase (rads) [3.77 , 5.65] 4.73 4.70 4.71
Phase Phase (rads) [3.77 , 5.65] 4.57 4.60 4.63
Symmetry factor α [0.4, 0.6] 0.6 0.6 0.6
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timescale of the experiment), the effect of the
symmetry factor is low. The upper bound was
set at 0.6 for reasons of chemical plausibility,
but it is common practice to set the value of α
to 0.5 under these conditions (i.e. not to fit α
at all). When this was attempted, the inferred
kinetic values were totally reversible (i.e. hit
the upper kinetic boundary regardless of its
value), which is shown in the SI. Additionally,
in the SI, in table S5 and figure S12, the ef-
fect of holding the α parameter constant in the
range 0.5-0.6 while fitting the other parameters
is shown. When α < 0.55 the kinetic values are
total reversible — the upper k0 bound was set
at 3000 s−1, and when α was below the critical
value of 0.55, the solver always returned a k0
value of 3000 s−1, which is incompatible with
the value obtained from the trumpet-plot anal-
ysis above.

In terms of the capacitance, the value for all
three experiments is at or close to the upper
bound of 1e-5F. This may indicate that the ca-
pacitance values are not physically realistic. As
obtaining accurate estimates of the Faradaic
parameters is the aim of this procedure, the
primary concern is that the unrealistic capaci-
tance estimates are not affecting the accuracy
of the other inferred parameters. For example,
inaccurate estimates of the background current
could lead to inaccurate estimates of the level of
uncompensated resistance through the Ohmic
drop effect. The uncompensated resistance is
in turn known to be correlated with changes
in the kinetic parameter (which can also be
demonstrated using Bayesian inference analy-
sis, in a section below), and consequently poor
estimates of the background current could lead
to poor estimates of the kinetic value. This
is why a DCV trumpet plot measurement is
highly useful for setting the bounds of k0. In-
deed, the key strength of the multi-experiment
approach described here is to be able to ad-
dress such concerns about spurious parameter
combinations. A longer and more detailed de-
scription of the capacitance modelling choices
can be found in the SI.

Bayesian inference

Importantly, because of the speed at which
PSV can be simulated, a much more quantita-
tive visualisation of parameter uncertainty can
be obtained. Figure 6, presents inferred dis-
tributions for key parameters for PSV experi-
ments 1-3, along with appropriate parameters
as inferred from the trumpet plot (E0 from the
trumpet plot has been graphed alongside the
E0

µ parameter as they both have the same ef-
fect on the appearance of the total current19).
The parameters Cdl and α are excluded because
the MCMC algorithm does not converge if the
chains get stuck at an upper or lower bound.
It was not practically feasible to undertake a
Bayesian inference attempt for r-FTACV, be-
cause of the high computational cost of the
multiple ∼10+ hour fitting runs required for
a many-parameter MCMC. Figure 6 demon-
strates that despite the above discussed issues
of parameter compensation and the possibility
of spurious minima, the parameter values in-
ferred for the three separate PSV experiments
are very much in the same regime, as are pa-
rameters inferred using an entirely separate
experimental technique.

In figure 7, the degree of correlation using
MCMC-inferred posterior distributions for PSV
experiment 1 can be assessed, with the results
for experiments 2 and 3 shown in figures S13
and S14. The histogram of samples for each
parameter is shown along the diagonal (with
the parameter indicated on the x-axis), and
a scatter plot for each pair-wise combination
of parameters are shown on the off-diagonals,
with the y− and x−axes indicating which pa-
rameters are being plotted together. If two
parameters are totally uncorrelated, then the
histogram will be a circle. An ellipse angled
upwards indicates positive correlation, i.e. an
increase in the value of the x-axis parameter
is associated with an increase in the y−axis
parameter, and vice versa for negative corre-
lation. The narrower the ellipse, the stronger
the degree of correlation. From the figure it
is therefore clear that many parameters are
correlated with each other. In particular, of
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Figure 6: Inferred parameter histograms generated by pooling three independent MCMC chains,
using harmonics 4 and above of the respective PSV experiments in the likelihood function, and using
the parameters in table 2 as the starting point. Cdl and α were not included in this parameter
inference approach for technical reasons mentioned in the text. The DCV histograms were as
inferred from running an MCMC process on the trumpet data in figure S4, and as such only values
for the parameters E0 and k0 were inferred.

the reaction model parameters there are cor-
relations between k0, the uncompensated re-
sistance, phase, Cdl phase and CdlE2. Thus,
it is clear how challenging it is to define the
electron-transfer rate. The positive correlation
between E0

σ and Γ explains that the discrep-
ancy between the best-fit PSV and r-FTACV
values is driven by these parameter compensa-
tion effects. As the two-step fits presented in
figure S9 in the SI show, an increased Cdl value
is associated with lowered E0

σ and Γ values —
indicating that the choice of Cdl bound (such
that the returned value is relatively small) has
led to slightly over-inflated predicted values for
the positively correlated E0

σ and Γ parameters.
This again shows the utility of the multiple-
experiment approach. For r-FTACV, this com-
pensation between Cdl, E

0
σ and Γ is not of the

same magnitude, which allows for the detection
of the slight over-estimation described above in
figure 5.

What figure 7 shows is that the choice of how
to bound parameter space is not a neutral de-
cision; because of parameter correlation, these
choices affect every value returned. Conse-
quently, although the MCMC analysis reports
very high confidence in the inferred values,
the exact values are contingent on the mod-
elling choices that have been made. However,
it bears repeating that this does not undermine
the conclusions about the reliability of the in-
ferred CjX183 redox reaction parameters; the
multi-experiment verification approach allows
for verification of the inferred model parame-
ters in a way that is not affected to the same
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Figure 7: 2D histograms generated from the MCMC process for PSV experiment 1

extent by parameter compensations, the degree
of which are peculiar to the specific data being
analysed. Comparisons of experiments of the
same type can be used to avoid the problem
of fitting to noise in a single fitting run, and
comparisons of different types of experiments
provides an alternative perspective to as to
spot parameter compensation effects, as with
the example of Cdl, E

0
σ and Γ in the previous

paragraph. The fact that it is possible to have
this highly granular discussion about the pre-
cise values of the returned parameters is an
indication of the power of this framework. The
use of PSV is essential to obtain this level of
understanding, as the 600,000 forward problem
simulations required for a single MCMC run
can be completed in just over an hour.

Conclusions

In this paper, it was demonstrated that it is
possible to obtain a highly detailed picture of
the electrochemistry of the single-electron re-
dox reaction of CjX183, to the extent that the
parameters values inferred are consistent across
multiple experiments using different prepara-
tions of the same protein. The ability to ro-
bustly determine the electrochemical proper-
ties of metalloproteins allows for tracking how
these properties change as a function of dif-
ferent physiological conditions, providing deep
insight into the bioenergetics of living systems.
The multi-experiment approach, coupled with
Bayesian inference, allows for increased confi-
dence that the parameters reported are in a
regime that is a good reflection of the underly-
ing chemistry.

In previous work,15 it was found that when in-
ferring parameters from PSV total current-time
data for a simple chemical system (a ferrocene
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Figure 8: The three experiments analysed in
this paper, direct current voltammetry (DCV)
as a current vs. potential plot, purely sinu-
soidal voltammetry (PSV) current harmonics 4-
7 vs. potential, and ramped-Fourier Transform
Alternating Current Voltammetry (r-FTACV)
current harmonics 4-7 vs. time. The ex-
periments are ranked according to how inter-
pretable they are, and the amount of Faradaic
information they provide. Orange arrows in-
dicate simulation of current using a vector of
chemical parameters θ, and black arrows indi-
cate that the results of these simulations are
used to assess the goodness-of-fit.

derivative), there was one optimal parameter
set which, when used to simulate a ramped ex-
periment, also provided a good fit to r-FTACV
data collected for the same electrode film. How-
ever, for the cytochrome data analysed in this
paper, the signal-to-background ratio is sig-
nificantly worse, and filtering approaches are
required to lessen the impact of background
current, which was not necessary for the anal-
ysis of ferrocene. The challenge is that this
filtering discards a large quantity of Faradaic
information. As a result, multiple parameter
vectors that generate an equally “good fit”
were found. This is exacerbated by the other
weakness of PSV; because the filtered PSV
current is largely uninterpretable by eye, it is
not possible to a priori select one parameter
vector over another. To address this problem,
a protocol was developed that uses prelimi-
nary DCV analysis and visual inspection of
r-FTACV to appropriately bound parameter
space for subsequent PSV fitting runs. The
validity of this method is indicated by the fact
that this approach enables the inference of pa-
rameters from PSV high harmonic current-time
data, and the “best-fit” parameter set also pro-
vides a good fit to r-FTACV data collected
for the same electrode film. This process is
represented graphically in figure 5. If the aim
of understanding protein bio-electrochemistry
by tracking changes in inferred parameters is
to be realised, then parameter inference needs
to be rapid, accurate and reproducible. The
framework that described in this paper fulfils
these three criteria. The framework laid out in
this paper leverages the advantages and mit-
igate the disadvantages of three voltammetry
techniques to provide a highly accurate protein
electron-transfer analysis toolkit. In figure 8,
PSV, r-FTACV and DCV methods are ranked
by the “interpretability” (ease of visual inspec-
tion) and Faradaic information content of the
current output of a PFV experiment. The har-
monic current for the PSV and r-FTACV cases
is shown as this is the form of the data anal-
ysed. In terms of Faradaic information, DCV
is ranked last, because of the challenges associ-
ated with background subtraction; the highest
ranked is r-FTACV, because it is highly sensi-
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tive to changes in redox reaction parameters,
an effect explored in previous work, and the ca-
pacitive and Faradaic current contributions can
be clearly separated by filtering. In terms of
interpretability, PSV is ranked last because the
Faradaic contribution is difficult to discern in
the oval total-current versus potential voltam-
mogram and the appearance of the harmonics
is non-intuitive; r-FTACV is ranked highest, as
the effect of the distinct Faradaic parameters
of interest can be determined through visual
inspection. This is far from the first study to
extract redox reaction parameters from PFV
measurements. There is a great deal of litera-
ture, including detailed review papers,3,4 that
is related to attempts to infer redox reaction
parameters from PFV data. In some sense, all
of these studies require fitting a model to exper-
imental observations. A large amount of effort
and debate is expended on PFV model devel-
opment; there are challenges related to dis-
tinguishing between different catalytic mecha-
nisms,30 along with challenges related to disper-
sion31 and substrate transport.32,33 Although
the majority of published studies assume that
the Faradaic reactions are well-described by
Butler-Volmer kinetics (as in this work), there
may be a need to incorporate Marcus theory
instead.11 Additionally, the choice of isotherm
(such as the Langmuir isotherm, which is as-
sumed in this work) is an important consider-
ation. The key contribution is to demonstrate
how this new, integrated DCV, r-FTACV and
PSV measurement and analysis protocol ul-
timately enables Bayesian statistical analysis
to be utilised to visualise the potential pit-
falls in the chosen modelling approach. This
is an important step forward in enabling criti-
cal evaluation of the limitations in the chosen
parameter inference process. For researchers
looking to use this methodology, the following
“recipe” for robustly inferring parameters is
proposed.

1. Collect experimental data. For each elec-
trode functionalised with protein, it is rec-
ommended to collect PSV, r-FTACV and
DCV data (the latter at different scan
rates), in that order. This is because

there will naturally be some film-loss as
a result of consecutive experiments, and
consequently the experiments have been
ranked in order of how important having
good signals is for the purposes of analy-
sis.

2. Obtain estimates for E0 and k0 bounds
by fitting trumpet plot data, a relatively
simple process. This information should
then be used to judge parameters inferred
from analysis of PSV and r-FTACV data.
You can also use MCMC at this juncture
to explore the confidence in the inferred
values.

3. Define boundaries for fitting PSV data.
Initial boundaries should be encompass a
reasonably large area of parameter space,
but as a rule of thumb should not cover
more than two orders of magnitude. If
this scale of coverage is necessary, con-
sider log-transformations.

4. Determine if it is feasible to fit PSV data
in the time domain, without using disper-
sion. If inferred Faradaic parameters are
highly divergent between different time-
domain fitting runs, then it is recom-
mended to fit in the Fourier domain. If
this is the case, inspect the harmonics of
the blank PSV data to see what portions
of the Fourier domain needs to be zeroed-
out, as demonstrated in figure 1.

5. Fit the form of the PSV data chosen
above, using a simulation without dis-
persion. Using the parameters result-
ing from this inference process, gener-
ate a ramped simulation and compare
to the r-FTACV data harmonics to as-
sess the translatablity of the parameters.
It should be reasonably clear if you are
neglecting thermodynamic dispersion, as
the simulated harmonics will be narrower,
and will not decrease in magnitude with
harmonic number to the extent observed
in the experimental data. If thermody-
namic dispersion is present, you should
go back to fitting the PSV data accord-
ingly. If the kinetics of the system are
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irreversible/quasi-reversible then it may
be worth considering kinetic dispersion as
well, as discussed in previous work,19 but
this scenario has not been encountered to
date.

6. Keep on comparing your PSV fits to the
r-FTACV harmonics. Some other points
to note:

• If fitting to the Fourier domain,
keep checking that the predicted to-
tal current simulation is not signifi-
cantly greater in magnitude than the
experimental current data, as shown
in figure S5.

• If a parameter is consistently hit-
ting a defined boundary, then con-
sider raising or lowering this bound
as appropriate, unless this is outside
of the realms of chemical plausibility.
Beware of parameter compensation
effects.

• A good rule of thumb is that you
will see a set of “good-fit parame-
ters” multiple times in ten runs with
random initialisations. Using the
boundaries in table 2, the values re-
ported were observed 2-4 times out
of ten.

7. Choosing which parameters to report is
something of a personal choice — the ra-
tionale was that the inferred parameters
for the three experiments should be in the
same regime while providing a good fit to
each. For future work, the authors intend
to extend the repertoire of techniques
to include higher frequency PSV exper-
iments, square wave voltammetry and
electrochemical impedance spectroscopy,
and to move towards systems that have
more complex chemistries, including mul-
tiple electron-transfer reactions and cat-
alytic processes.
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