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Abstract 

This study demonstrates a multi-modal analytical sequence suited to the characterisation 

of sandy soils, which remain an underutilised form of forensic trace evidence. Within the 

Swan Coastal Plain in Perth, Western Australia, most soils are heavily leached with only 

small deviations in their mineral compositions. Their lack of clay and organic matter has 

led to inorganic methods of analysis predominating, in addition to experimentation with 

modified techniques. One example is utilisation of the quartz-recovered fine fraction, 

which is suitable for dry, quartz-dominated sandy soils. In this study, preliminary 

investigations used the spectroscopic techniques microspectrophotometry, infrared 

spectroscopy, and x-ray diffraction, to develop a multi-faceted approach for the forensic 

analysis of the quartz fine fraction of soils. These data were then combined with principal 

component analysis to demonstrate how chemometrics can assist with objective 

characterisation and differentiation of sandy soil samples for forensic purposes. 

Chemometric analysis has not previously been attempted with data obtained from the 

quartz fine fraction. This methodology is transferable to other jurisdictions where dry, 

sandy soils predominate. 
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1.0 Introduction 

Soil can be of major value as trace evidence due to its complexity, heterogeneity, and 

transferability (1-5). There has been a reported increase in prevalence of soil evidence in 

recent international criminal investigations, leading to increased demand for more 

reliable techniques for objective forensic examination of soils (6-9). Making more 

extensive use of soil evidence requires improved knowledge of the soils within specific 

regions, such as the Swan Coastal Plain within Perth, Western Australia. Understanding 

the frequency and nature of a particular trace is central to being able to evaluate its source 

(10). This is particularly true for soils, as their properties can fluctuate greatly across 

different locations. 

The Swan Coastal Plain in Western Australia encompasses most of the Perth 

metropolitan region (11-13). It is formed of four main systems; the Quindalup, Spearwood, 

and Bassendean dunes, and the Pinjarra Plain (11-14). A more detailed description of the 

Perth dune systems can be found in Pitts et al. (15). Within these dunes, the majority of 

soils are heavily leached quartz sands, with only small deviations in their mineral 

compositions (13, 14). Analytical approaches focusing on the inorganic content of these 

soils predominate, due to the lack of clay and organic matter. While there is a current 

demand for increased use of soil evidence to assist in solving crime, there is still an 

absence of any in-depth investigations in published literature into sandy soils, such as 

those found on the Swan Coastal Plain, and their role as geological evidence in a forensic 

context. 

Within forensic soil science, techniques for the analysis of the inorganic content have been 

widely established across many disciplines (2, 6, 9, 16-19). Most of the methods that make 

use of bulk soil samples for analysis (20) are impractical for soils that have minimal 

variation in their bulk chemistry, such as quartz sands (21, 22). These soils require more 

detailed examinations to be able to distinguish between different sources. In many 

approaches to forensic soil analysis, several techniques are undertaken on separated 

fractions of soil, allowing further differentiation compared to the bulk chemistry (22-25). 

The comparison of the quartz-recovered fine fraction (primary and secondary minerals < 

20 µm found as clay and fine silt coatings on quartz grains) is a method recently developed 

by Pitts and Clarke, which allows for differentiation of minute and fractionated forensic 

samples (21). 

A further challenge to forensic soil analysis is the interpretation of results. This is an 

issue that has been the topic of significant discussion within the international forensic 

community over recent decades (10, 26, 27). One approach that will assist in a more 

objective and transparent interpretation of soil evidence is to utilise multivariate 

statistical methods, or chemometrics, to evaluate the relationships between samples (18, 

24, 28). Data can be analysed using unsupervised techniques to establish patterns or 

correlations, such as principal component analysis (PCA), or supervised techniques that 

require pre-established groupings, such as linear discriminative analysis (LDA) (18, 24, 

29). When PCA is used in conjunction with detailed chemical analysis methods, it can 

quickly simplify data and visualise its distribution to provide a quantitative measure of 

similarity between samples (8, 9, 24, 28, 29). This can prove useful when undertaking 

common ‘questioned versus known’ comparisons. In addition, examination of loadings 

plots can provide information on the chemical factors that allow differentiation between 

samples (30). 

Whilst the use of chemometrics has been extensively applied to organic forensic soil 

analysis (2, 4, 6, 9, 18, 29, 31-34), there has been limited reports of use with inorganic 
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data (3, 22, 35, 36). In addition, most published studies have previously focused on a single 

approach for the analysis of samples, overlooking the detail that in standard forensic 

practice it is far more common to utilise multiple examination methods (2, 18, 24, 29, 35, 

36). Soil analysis, like other areas of forensic analysis, is typically carried out in a 

sequence, utilizing the least destructive methods first and gathering further information 

as the sequence progresses. It would therefore be more realistic to look at a suite of 

instrumental methods and experiment with combining them in a sequence. The use of 

chemometrics should be demonstrated alongside each stage of the sequence, including 

visual examination, to highlight how it can provide investigators with supporting 

information. Chemometric analysis has also never been demonstrated on data obtained 

from methods analysing the quartz fine fraction within soils, so its suitability for use with 

different soil types, such as the dry quartz sands found within Western Australia, has not 

been shown. 

In this study, preliminary proof-of-concept investigations explored the use of well-

established spectroscopic techniques to further develop a multi-faceted approach for 

forensic analysis of the quartz fine fraction of soils, that can provide better evidence of 

association in a courtroom context. These data were then used in combination with PCA 

to demonstrate how chemometrics can be utilised for the objective characterisation and 

differentiation of sandy soil samples for forensic purposes. 

2.0 Materials and Methods 

2.1 Collection of soil samples 

Soil samples were collected from a large range of areas across the Perth (Western 

Australia) metropolitan region, with the locations specifically chosen to allow for a 

selection of samples from differing dune and plant systems. This was done by first gently 

clearing the area of large organic material such as leaf litter or mulch, placing a wooden 

frame (30 cm x 30 cm) onto the sample surface, and then using a small shovel to collect 

approximately 30 mL of the first 0-5 cm in depth of soil from one corner of the grid into a 

clean plastic container. This process was repeated in the other three corners as well as 

the centre, producing a total of 5 soil samples per location. The GPS coordinates of these 

locations were recorded, along with information on the accompanying geological and 

botanical influences surrounding the sites. All samples were initially stored in a -20 °C 

freezer and then freeze-dried to minimise degradation. Nine (9) initial locations were 

selected for preliminary investigations, with 2 soil samples from each location analysed 

for this study (these were randomly selected from the total of 5 collected). 

2.2 Preparation of quartz fine fraction 

Preparation of the quartz fine fraction was based on the method developed by Pitts and 

Clarke (21). Soil samples were passed through a 2 mm sieve to remove any larger organic 

material and man-made remnants. Roughly 100 - 250 mg of quartz grains were hand-

picked from each sample under a microscope, weighed accurately, and transferred to 

liquid scintillation vials. Deionised water was added to each vial to a height of 

approximately 1.5 cm, and samples were then ultrasonicated for 10 minutes. One by one, 

samples were agitated and then settled for 30 seconds before the liquid was decanted into 

new vials, to isolate particles of approximately < 20 µm. These were then centrifuged, and 

the supernatant was removed without disturbing the semi-solid layer concentrated below. 

The semi-solid material was then mixed with the remaining liquid before the suspensions 

were pipetted onto sample holders and dried as a thin film. 
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2.3 Microspectrophotometry analysis 

The prepared quartz fine fractions were homogenised and mounted on glass microscope 

slides for analysis. Spectra were acquired from 310 – 800 nm using a CRAIC QDI 2000 

microspectrophotometer, calibrated using NIST traceable standards, operated in 

reflectance mode with 150x magnification. An auto-set optimisation, dark scan, and 

reference scan were obtained prior to each sample analysis. Ten replicate scans were 

taken over different areas of each sample to account for intra-sample variation. 

2.4 Attenuated total reflectance infrared analysis 

The prepared quartz fine fractions were homogenised and analysed with constant applied 

pressure on a Thermo Scientific Nicolet iS50 FTIR spectrometer with a single-bounce 

diamond ATR crystal. Spectra were recorded in absorbance mode over a range of 4000 – 

400 cm-1, with 64 accumulated scans at a spectral resolution of 4 cm-1. Three replicate 

scans were recorded for each soil sample. A background scan of the clean diamond crystal 

was acquired before each sample scan. Spectra were initially ATR-corrected for further 

chemometric analysis but ultimately resulted in unreliable data, as the refractive index 

of a natural heterogeneous material like soil cannot accurately be determined, so 

uncorrected spectra were utilised instead. 

2.5 X-ray diffraction analysis 

X-ray diffraction analysis of samples was carried out under ambient laboratory conditions 

using a Philips Analytical PW1820 automatic powder diffractometer (APD) with Bragg-

Brentano para-focusing geometry and CoKα radiation. Scanning, using a step size of 0.05° 

from 4-80° 2θ and a counting time of 12 seconds per step, was found to provide data of 

good quality from sample deposits. XRD patterns were zero-offset corrected using the 5.91 

Å reflection of the low background plate. 

2.6 Order of analysis 

In this study, analysis methods were determined by focusing on non-destructive 

instrumental techniques that can be used to provide information on primarily the 

inorganic content of soils. Analysis was initiated by conducting a visual examination of 

the soil samples as the first step, followed by analysis of the colour instrumentally using 

MSP, then ATR-FTIR spectroscopy, and lastly XRD. This is the order in which a forensic 

examiner would generally already carry out the forensic analysis of soils (8, 37). While 

XRD is presented as the final step in our methodology, the sample preparation was 

actually carried out with XRD as the first step due to practicality. XRD involves analysis 

of the whole sample as a thin film whereas MSP and ATR-FTIR require a smaller fraction 

of the sample as a powder. In order to minimise degradation and maximise recovery of 

already small samples, the quartz fine fraction suspensions were pipetted straight onto 

individual clean low background plates for the XRD. These were left to dry overnight, 

resulting in thin solid films. These films were then removed from the low background 

plates and stored in aluminium foil for further analysis. 
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2.7 Statistical analysis of spectroscopic data 

Chemometric analysis was conducted using The Unscrambler® X 10.5 (CAMO Software 

AS, Oslo, Norway). The regions associated with interference from the ATR diamond 

crystal (2350 – 1950 cm-1) in IR trials and the low background plates (narrow regions 

centred on approximately 18.9, 38.5, and 59.3 degrees 2θ) in XRD trials were excluded 

from chemometric analysis to prevent them from influencing the model. In chemometric 

analysis of XRD patterns, generally peak picking or profile fitting occurs first, and the 

data generated from this is then utilised for multivariate analysis (21). This study 

however made use of the whole XRD pattern for chemometric analysis (minus the peaks 

associated with the low background plates) in the same way that MSP and ATR-FTIR 

spectra are used in their entirety. Data were baseline offset corrected and normalised 

(range normalised for all XRD trials, unit vector normalised for all other trials) prior to 

PCA analysis. Data were then mean-centred and subjected to principal component 

analysis (PCA) using the non-linear iterative partial least squares (NIPALS) algorithm. 

3-dimensional scores plots were generated using the scores from the relevant principal 

components (PCs) to visualise the sample distribution. 

3.0 Results and Discussion 

3.1 Preliminary considerations 

A total of 18 samples from 9 locations were chosen for analysis (full details outlined in 

Table 1). Photographs taken of the soil samples (Fig. 1) prior to sieving and quartz 

recovery were used to determine their overall visual colour. It should be noted that the 

assigned visual appearances for each sample are intended as a broad colour descriptor to 

allow for general groupings of the soils. It is evident that several of the soil samples are 

immediately distinguishable from one another based on visual inspection alone, however 

locations 1, 3, 8, and 9 have little distinctive differences, requiring more advanced 

techniques to objectively tell them apart. 

 
 

Figure 1. Soil samples obtained from the 9 different locations used throughout this study, 

illustrating the visual colour differences. 
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Table 1. The soil samples used in preliminary trials throughout this study, with their associated 

locations and visual descriptions (*sample 2a was only included in XRD trials). 2 samples were 

analysed from each location. Map showing locations and GPS coordinates is included in ESI (Fig. 

A1 & Table A1). 

Soil 

Sample 

Location 

No. 

Location  

(Perth Suburb) 

Visual 

Appearance 
Dune System 

1a 
1 Kings Park Grey sand Spearwood 

1b 

2a* 
2 Coolbinia 

Dark brown 

sand/mulch 
Spearwood 

2b 

3a 
3 Bayswater Grey sand Bassendean 

3b 

4a 
4 Balga Yellow sand Spearwood 

4b 

5a 
5 Edgewater 

Yellow/brown 

sand 
Spearwood 

5b 

6a 
6 Murdoch University Brown sand Spearwood 

6b 

7a 
7 Champion Lakes Red sand 

Pinjarra Plain 

(mixed) 7b 

8a 
8 Yangebup Grey sand Spearwood 

8b 

9a 
9 Banjup Grey sand Bassendean 

9b 

3.2 Microspectrophotometry 

MSP spectra (Fig. 2) were collected from the extracted quartz fine fraction of 17 soil 

samples originating from the 9 different locations detailed in Table 1. Whilst some 

samples could be separated from the population based on visual examination of the 

spectra alone, e.g. sample 7a, others were too alike to confidently distinguish. 

Chemometric methods were employed to identify and enhance any differences between 

them. 

 
Figure 2. MSP reflectance spectra showing the variability in composition of 4 soil samples 

collected from differing locations within the Swan Coastal Plain. 
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PCA performed on these spectra revealed that 97.9% of the total variance in the dataset 

could be described by the first three PCs (Fig. A2). Three-dimensional score plots 

generated using these PCs (Fig. 3) revealed that most of the soil samples formed clusters 

based on the location from which they were collected, however, there was also a great deal 

of overlap throughout most of these clusters. 

 
Figure 3. 3-dimensional PCA scores plot (shown from two perspectives) showing the variability of 

soil samples from different locations based on their corresponding MSP spectra, with individual ‘a’ 

samples represented by dots and ‘b’ samples represented by triangles. 

As anticipated, the samples that achieved the greatest separation from the rest of the 

population were the red sands from location 7, as they had stronger differences in their 

MSP spectra due to their distinctive colour. Whilst commonly referred to as “red” sands 

throughout this study, this term was only adopted due to its regular use in Australia, and 

it must be noted that the appearance of location 7’s soil could easily be described as orange 

(thus reinforcing the issues of subjective descriptions of colour). Location 9 soils contained 

the most intra-sample variability in their composition, with the samples spread out 

considerably across all PCs and overlapping with almost all the other location clusters on 

at least one PC. In this instance, using the full MSP data for chemometric analysis 

highlights the large degree of intra-variability within soil samples, due to their naturally 

occurring environments. 

The factor loadings for the first three PCs (Fig. 4) can be studied to determine the regions 

in the MSP spectra that are associated with (and likely responsible for) the discrimination 

of samples along each component. 
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Figure 4. Factor loading plot of PCs 1-3 for PCA of the soil MSP reflectance dataset, with the main 

areas of interest highlighted. 

The loadings plot for PC-1 has a global minima ca. 580 nm, associated with the reflectance 

of the yellow/orange region of the visible light spectrum. Samples separated along this PC 

may therefore contain different proportions of the yellow/orange components present in 

their soil. For example, all the yellow and red sands (locations 4, 5, and 7) are skewed 

along PC-1 in a negative direction. This is due to their high proportion of yellow/orange 

components combined with the negative association of PC-1 with this spectral region. The 

loading plots for PC-2 and PC-3 are very similar, revealing a negative correlation with ca. 

490 nm, associated with the reflectance of blue/green light, and positive correlation ca. 

600 – 620 nm, associated with the reflectance of orange light. The red soils from location 

7 are best separated from the rest of the population along PC-2, while all the similarly 

coloured brown sands are situated nearest the red sands, also in a positive direction along 

PC-2. The loading plot for PC-3 also displays one global minima ca. 690 nm, associated 

with the reflectance of red light. However, these loadings exhibited a large degree of noise. 

It is questionable as to whether PC-3 (responsible for just 2% of the total variance) 

represents any systematic variation between samples, or simply noise in the dataset. 

When the scores plot was replotted utilising only PC-1 and PC-2 (Fig. 5), comparable 

separation was achieved to that from the 3D model, indicating that PC-3 does not 

significantly contribute to the separation of these samples. 
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Figure 5. 2-dimensional PCA scores plot showing the variability of soil samples from different 

locations based on their corresponding MSP spectra, with individual ‘a’ samples represented by 

dots and ‘b’ samples represented by triangles. 

Colour coding of the soil samples in the PCA model based on visually assigned groupings 

(outlined in Table 1) rather than sampling location, resulted in clustering based on their 

overall colour as expected (Fig. 6). 

 
Figure 6. 2-dimensional PCA scores plot showing the variability in the visual appearance of soil 

samples based on their corresponding MSP spectra. 

The red sands were again discriminated from the rest of the population, however, there 

was a great deal of overlap between the yellow and yellow/brown sands, yellow/brown and 

brown sands, and the brown and dark brown sands respectively. The grey sands were 

once again dispersed throughout the plot, overlapping with all clusters except the red 

sands. While the MSP spectra are very closely correlated with the visual appearance of 

the soils, they do account for more of the micro-heterogeneity in colour compared with 

visual examination. This may become a disadvantage when using complex statistical 
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methods on the data, as reflectance spectra can be noisy and not reproducible. This may 

lead to greater uncertainty and more difficulty when attempting to differentiate between 

samples, and ultimately can result in the overlapping of samples or significant separation 

within a sample class. This issue has previously been encountered for soil samples of 

larger particle sizes (9). Unfortunately, even after isolation of the quartz fine fraction (< 

20 µm), this micro-heterogeneity still poses difficulties with MSP, indicating that the only 

solution may be to use a macro-spectrophotometric approach instead. 

3.3 Infrared spectroscopy 

Use of IR spectroscopy has been hesitantly applied to naturally occurring heterogenous 

materials due to the large degree of variability within samples (4, 9). While studies have 

been conducted that make use of IR spectroscopy to analyse soil for forensic purposes, 

these have involved very different soil types to those found in the dry, sandy climate of 

Western Australia (9, 29, 38). 

ATR-FTIR absorbance spectra (Fig. 7) were collected from the extracted quartz fine 

fraction of the same 17 soil samples outlined above. 

 
Figure 7. ATR-FTIR absorbance spectra showing the variability in composition of 4 soil samples 

collected from different locations within the Swan Coastal Plain. The region associated with the 

ATR-IR diamond (2350 – 1950 cm-1), though present in these spectra, was removed prior to 

chemometric analysis. 

Whilst some obvious differences can be seen between sample spectra, chemometric 

methods were applied to maximise the differentiation between samples. A PCA model was 

built using these spectra to highlight the variance in samples obtained from different 

locations. PCA revealed that 93.2% of the total variance in the dataset could be described 

by the first three PCs (Fig. A3). Three-dimensional score plots generated using these PCs 

(Fig. 8) resulted in most soil samples forming distinct clusters based on the location from 

which they were collected, with only a few locations displaying slight intra-site sample 

separation. 
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Figure 8. 3-dimensional PCA scores plot (shown from two perspectives) showing the variability of 

soil samples from different locations based on their corresponding ATR-FTIR spectra, with 

individual ‘a’ samples represented by dots and ‘b’ samples represented by triangles. 

Soils from locations 3 and 6 exhibited the largest degree of separation between intra-site 

samples, forming two separate clusters based on individual samples rather than the 

overall location from which they originated. Both locations were accessible by the public 

and highly managed, with one being a public park and one a garden at a university 

campus. 

The factor loadings for the first three PCs are shown in Fig. 9. 

 
Figure 9. Factor loading plot of PCs 1-3 for PCA of the soil ATR-FTIR absorbance dataset, with 

the main peaks of interest highlighted and annotated with their contributing compounds. 
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Many of the peaks within the loadings are distorted due to a high degree of interference 

and overlap between positive and negative correlations, making mineral identification 

challenging. Minor variations in mineral content would create differences in the overall 

spectra, but it is difficult to completely identify the cause from the loadings alone. 

Identification was attempted based on the known IR spectra of common minerals and 

compounds found within Swan Coastal Plain soils, found in Table 2 below. 

Table 2. Common minerals found in soil, and their associated IR peaks. 

Mineral/compound IR peaks (cm-1) 

Kaolinite2 3695, 3620, 1113, 1031, 1008, 912, 754, 698, 538, 470, 430 

Quartz2 1082, 790/778, 692, 459  

Hematite2 1179, 1117, 1084, 610, 548, 470 

Gibbsite2 3454 (broad), 1585, 1425, 975, 578 

Vermiculite3  3330 (broad), 1640, 944 (skewed), 815, 719  

Goethite2 3457 (broad), 3102, 1641, 1425, 900, 803, 664, 568, 461/426/402 

Microcline feldspar1 1129, 985, 768, 725 

Humic acid (sodium salt)3 3277 (broad), 2919/2850, 1563, 1380, 1090- (broad) 

1Thermo Fisher Scientific for Nicolet FTIR, “HR comprehensive Forensic FT-IR”  
2Thermo Fisher Scientific, 2008, “HR Inorganics” 
3SensIR technologies, 2001, “Common chemicals by Diamond ATR” 

ATR-FTIR spectra obtained from representative samples situated at the extremes of each 

PC (Figures A4-A8) were used to inform the mineral associations made using the loadings 

plot. Variation along PC-1 is attributed to negative correlations with kaolinite, with 

positive contributions from quartz and possibly gibbsite/organics. Samples from location 

7 are best separated along this PC in a negative direction, closely followed by locations 4, 

6, and 5, alluding to greater relative levels of kaolinite in these soils. Samples from 

locations 8 and 9 are best separated in a positive direction on PC-1, due to having 

relatively higher concentrations of quartz. PC-2 suggests negative correlation with 

quartz, with possible smaller contributions from gibbsite and carbon-based organics. It 

also shows a positive correlation with kaolinite, with some variation seen in the spectra 

around the 1030 cm-1, 1006 cm-1, and 940 cm-1 regions. Samples from location 9 are again 

the best separated from the rest of the population due to negative scores along PC-2, 

suggesting that they once again contain higher relative levels of quartz, and lower 

amounts of kaolinite in their quartz-recovered fine fraction. PC-3 has a positive 

correlation with quartz and possibly gibbsite, and negative correlations with possible iron 

oxides/hydroxides, C-H from organics (humus), and kaolinite. Samples from location 8 

were skewed positively along PC-3 due to lacking kaolinite and containing relatively 

higher concentrations of quartz/gibbsite. Samples from location 6 were close behind, 

however, this may be due to sample heterogeneity as the other location 6 sample has a 

less positive score along PC-3. Samples from locations 2 and 3 (the latter again shows 

sample variability) were situated at the most negative point along PC-3, indicating that 

they may contain the highest levels of iron oxides/hydroxides, C-H from organics (humus), 

and kaolinite in their soil. 
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While tentative assessments can be made regarding the identification of minerals 

contributing to the loadings, it is necessary to allow for the possibility that compounds 

other than the common minerals listed in Table 2 are being detected through ATR-FTIR 

analysis. Using another analysis technique in sequence with ATR-FTIR, such as XRD, 

would allow for cross-referencing of the minerals being detected to confirm the above 

associations. 

While the previous PCA model was able to distinguish samples based on their original 

locations, improved separation was investigated by attempting to reveal greater structure 

in the ATR-FTIR data based on other attributes, such as their visual appearance. Colour 

coding of the soil samples in the PCA model based on their visual appearance (outlined in 

Table 1) resulted in most of the distinct colour groups clustering similarly, except for the 

grey sands, which were dispersed across a larger area within the plot (Fig. 10). 

 
Figure 10. 3-dimensional PCA scores plot (shown from two perspectives) showing the variability 

in the visual appearance of soil samples based on their corresponding ATR-FTIR spectra. 

Slight overlap was observed in clusters of similar colours, for example, yellow, 

yellow/brown, and red sands on PCs 1-3, as most of the separation along these PCs is 

potentially due to minerals that are responsible for the red and yellow hues of the soils, 

such as hematite, goethite, and kaolinite (often stained red brown from felsic). There was 

also a degree of intra-site variability, mainly within the brown sands. The yellow/brown 

sands were positioned in the model between the grey sands and the yellow sands on PC-

1, with a small degree of overlap, highlighting their similarity with both groups. It is 

evident that the minerals seemingly responsible for most of the variance within the ATR-

FTIR model are also associated with the apparent colour of the soils. Whilst this method 

of interpretation was useful for visualising the dataset, it did not add further 

discrimination between soils similar in appearance. A more precise determination of the 

colour of these soils could provide further information that would enhance separation of 

visually comparable soils. 

MSP was therefore investigated as a grouping method for the PCA model generated from 

the ATR-FTIR spectra. Munsell colour values are routinely used by soil scientists for 

classifying soil (9, 17); the system encompasses a three dimensional colour space that 

ascertains colours based on their hue (general colour), chroma (intensity of colour), and 

value (lightness of colour) to assign descriptive values consisting of letters and numbers 
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(39). This method was employed to allocate each soil sample a Munsell value generated 

from its MSP spectra. However, a difficulty arose in this case when attempting to group 

soil colours for interpretation of the PCA model, as any minor change in colour will alter 

the associated Munsell value and result in numerous individual qualitative classifiers 

that are challenging to categorise into groupings. 

As classifiers for PCA must be input as a category to allow several samples to belong to 

each grouping, MSP spectra for each replicate were converted into 1931 L*a*b* values. 

The L*a*b* colour system is another method of measuring colour within three 

dimensional space that produces 3 numerical values that are better able to account for 

minimal variation between samples; L* is a measure of the lightness of a sample, a* 

encompasses the green-red components, and b* encompasses the blue-yellow components 

(40). As most of the soil samples being analysed were made up of similar colours, with the 

most distinguishably coloured samples already individualised, the a* and b* values 

generated from their MSP spectra were relatively uniform, with the L* value changing 

the most significantly between different samples. For this reason, the average L* value 

for each sample was obtained from its 10 replicate spectra, and this was used to classify 

each sample according to the information in Table 3. 

Table 3. The soil samples analysed with MSP and their associated L* values and assigned 

categories. 

Soil sample 
L* values 

from MSP 

Average L* 

value 

category 

Visual Appearance 

1a 56.14 54-58 
Grey sand 

1b 56.60 54-58 

2b 57.79 54-58 
Dark brown 

sand/mulch 

3a 62.94 62-66 
Grey sand 

3b 57.03 54-58 

4a 59.70 58-62 
Yellow sand 

4b 60.47 58-62 

5a 55.78 54-58 
Yellow/brown sand 

5b 63.24 62-66 

6a 68.38 66-70 
Brown sand 

6b 68.45 66-70 

7a 71.99 >70 
Red sand 

7b 71.71 >70 

8a 52.49 50-54 
Grey sand 

8b 45.89 <50 

9a 53.15 50-54 
Grey sand 

9b 52.18 50-54 

Colour coding of the samples within the ATR-FTIR PCA model was then carried out based 

on their L* values obtained from the MSP spectra (Fig. 11). 
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Figure 11. 3-dimensional PCA scores plot (shown from two perspectives) based on the ATR-FTIR 

spectra of soil samples, showing the variability in the L* values obtained from corresponding MSP 

spectra from the same soils. 

This resulted in most of the samples with similar L* values clustering near each other 

with limited overlap. In most instances however, several groups were formed within one 

L* value category, instead of clustering based on sample replicates. These intra-class 

samples exhibited slight separation from each other, notably within the 50-54 group 

which is distanced considerably across PCs 2 and 3. This is most likely due to an outlier 

originating from location 8, as the samples are clustered close to their location 

counterparts in the <50 category, despite the same site generating two different L* values. 

The 62-66 samples were also substantially separated from each other across PCs 2 and 3, 

due to locations 3 and 5 having been assigned two different L* value categories for their 

intra-site samples, highlighting the degree of colour heterogeneity between soils located 

just centimetres apart. This result was, at best, equal to that obtained through the 

grouping of the ATR-FTIR dataset using visual appearances of the soil, indicating that L* 

values are not necessarily able to give any further information on the colour of soils that 

is not already distinguishable with the naked eye. However, it is likely that information 

is potentially being lost when transforming these complex MSP spectra into single L* 

values, as spectra are generalised into patterns when being converted into numeric values 

and as a consequence, two slightly different spectra may be classified as the same colour 

(41). The data provided within MSP spectra may still be useful for conducting pairwise 

sample comparisons, by allowing for differentiation of samples that cannot otherwise be 

distinguished by eye or by colourimetric values such as L* a* b*. 

3.4 X-ray diffraction 

X-ray diffraction (XRD) was applied as a non-destructive method that can provide both 

qualitative and semi-quantitative information on the inorganic material present within a 

small sample (42). XRD patterns (Fig. 12) were collected from the extracted quartz fine 

fraction of the full 18 soil samples outlined in Table 1. 



Page 16 of 31 

 
Figure 12. XRD patterns showing the variability in composition of 4 soil samples collected from 

different locations within the Swan Coastal Plain (stacked for increased visibility). Low 

background plate peaks (narrow regions centred on approximately 18.9, 38.5, and 59.3 degrees 2θ), 

though present in these spectra, were removed prior to chemometric analysis. 

These patterns emphasise the high level of similarity between samples, and with it, the 

advantage of utilising chemometric analysis to identify subtle differences within a sample 

set that cannot be recognised visually by the examiner. This data was used to build a PCA 

model; PCA revealed that 93.6% of the total variance in the dataset could be described by 

the first four PCs, however upon visualisation of the influence of PC-4 on the scores plots, 

it did not improve the discrimination of soils, and hence the first three PCs (accounting 

for 89.5% of the variance) were utilised for the PCA model (Fig. A9). Three-dimensional 

score plots generated using the first three PCs (Fig. 13) resulted in most of the soils 

clustering based on the locations from which they were collected, however, locations 1, 2 

and 4 showed some intra-site variability, with samples from the same location separating 

within the model. 
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Figure 13. 3-dimensional PCA scores plot (shown from two perspectives) showing the variability 

of soil samples from different locations based on their corresponding XRD patterns, with individual 

‘a’ samples represented by dots and ‘b’ samples represented by triangles. 

These three sites were both easily accessible and subject to a high degree of human 

interference, e.g. a public park or roadside verge, with two of the locations highly 

managed. It is therefore logical to draw the conclusion that human interference is 

contributing to the variation shown across a significant number of these sites. Whilst the 

intra-site disparity and the resulting degree of overlap with other locations indicated a 

high variability in the composition of these soils, the separation between associated 

samples was not substantial. For example, the two samples from location 1 were 

separated from each other along PC-1, and samples from locations 2 and 4 were separated 

from their associated site samples along both PC-1 and PC-3. In contrast to the ATR-FTIR 

model, XRD achieved improved discrimination of the samples from locations 4, 5, 6 and 

7. Modelling based on ATR-FTIR spectra had these clusters situated very close together, 

whereas using the XRD data allowed for enhanced separation of nearly all these groups, 

with all intra-site samples still clustered closely, except for location 4. The XRD model 

also managed to isolate location 3 soils from location 2 soils, which overlapped in the ATR-

FTIR model. Chemometric analysis of the full XRD pattern shows strong promise for 

discriminating soils that cannot be entirely individualised through PCA of the ATR-FTIR 

data alone, especially when utilised in sequence with other techniques. This is an 

advancement from the work of Pitts and Clarke (21), who utilised percentage intensities 

for selected minerals. 

The factor loadings for the first three PCs are shown in Fig. 14. 

 
Figure 14. Factor loading plot of PCs 1-3 for PCA of the soil XRD dataset, with the main peaks of 

interest highlighted and annotated with their contributing minerals. 
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There is some uncertainty stemming from identification based on the XRD pattern alone, 

as kaolinite and halloysite are difficult to resolve and the presence of halloysite is 

questionable in sandy soils. Hence using the full pattern into PCA to capture all the 

information present is valuable, so that complete identification is not essential. The 

loading plot for PC-1 exhibits an overall positive correlation with kaolinite, with minor 

contributions from gibbsite and goethite, and a negative correlation with microcline 

feldspar. Samples from location 7 are best separated along PC-1 in a positive direction, 

and therefore may be assumed to have higher concentrations of kaolinite in their soil. The 

loading plot for PC-2 appears to be positively influenced by mica with possible 

contributions from quartz, and negatively influenced mostly by goethite and kaolinite 

(quartz and microcline feldspar are correlated with both positive and negative loadings 

across PC-2, which could potentially be a normalisation issue, negating their influence on 

the data). Location 7 soils are once again the most skewed by PC-2, this time in a negative 

direction, indicating higher amounts of goethite and kaolinite in these samples, consistent 

with PC-1. The loading plot for PC-3 is significantly positively correlated with microcline 

feldspar, with minor contributions from kaolinite (positive) and quartz (negative). 

Samples from locations 3 and 9 are best separated along this PC in a negative direction, 

and therefore may be assumed to have higher concentrations of quartz. Soils from location 

7 are positioned centrally on PC-3, while all other locations again exhibit a positive trend, 

indicating higher concentrations of microcline feldspar within their soils. 

The inclusion of samples from additional sites could help to increase separation. For 

example, aluminium substitution for iron within goethite will shift the positioning of 

goethite peaks, potentially allowing for greater differentiation between soils containing 

variably substituted goethite. This could also assist with determining the sample’s 

original location, as Swan Coastal Plain soils generally experience more substitution by 

aluminium compared with the iron-rich soils located further inland. The same 

phenomenon could also be applied to other minerals such as kaolinite and vermiculite 

(chloritized or not), where numerous substitutions are possible. Hence using the full XRD 

pattern, which captures any shifts away from ‘standard’ reflection positions, is 

recommended. 

As XRD specifically identifies the minerology of the soil samples, the PCA model was re-

visualised (Fig. 15) to present the samples grouped according to the dune system within 

the Swan Coastal Plain from which they originated (outlined in Table 1). 

 
Figure 15. 3-dimensional PCA scores plot (shown from two perspectives) showing the variability 

of soil samples from differing dune systems based on their corresponding XRD patterns. 
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Full visual separation between the Spearwood, Bassendean, and Pinjarra Plain dune 

systems was achieved, despite the spread of the samples within each cluster, confirming 

that the variation in mineral composition detectable by XRD was associated with the soils’ 

original dune system. Soils from the Pinjarra Plain, located further inland than the other 

dune systems, were shown to contain higher relative levels of kaolinite in comparison to 

other samples. The Pinjarra Plain is situated atop a bed of kaolinite clay, and hence these 

soils can contain relatively high concentrations of this mineral. Bassendean soils are 

situated between the Pinjarra Plain and Spearwood dunes, and were indicated to contain 

higher relative concentrations of quartz, a trend that has been observed in recent studies 

(21). Samples collected from the Spearwood dunes are also consistent with this previous 

study, containing higher levels of microcline feldspar and mica than their easterly 

counterparts (21). 

Taking the same approach as with the ATR-FTIR data, further grouping of samples in 

the PCA model based on their visual appearance (outlined in Tables 1 & 3) resulted in a 

few samples clustering close by their equally coloured counterparts, notably the 

yellow/brown sands and brown sands, as well as full separation of the red sands (Fig. 16). 

 
Figure 16. 3-dimensional PCA scores plot (shown from two perspectives) showing the variability 

in the visual appearance of soil samples based on their corresponding XRD patterns. 

The presence of some distinctively coloured minerals such as kaolinite and goethite are 

evidently shaping the model, however, there are other compounds influencing the PCs 

that are likely not associated with the overall colour of the soils. The use of visual colour 

to group samples within the model did not give increased discrimination over grouping 

based on locations, as it is likely that while the appearance of the soil is linked to the 

mineralogy, the minerals responsible for colour are present at low levels and hence not 

significant in the XRD patterns seen. This is especially true for the iron oxides, with a 

hint of Fe making soils coloured. It is expected that there would also be small amounts of 

organic material present within samples which, even if small, would contribute to the 

colour of the soils without being identified by XRD. For this reason, classifying the data 

based on their associated MSP L* values (outlined in Table 3) also failed to improve the 

discrimination of samples using our method (Fig. A10). The use of MSP calculated L* 

values for differentiation of soils could still be valuable for future studies that utilise 

larger sample sizes or different soil types. 
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3.5 Analytical Sequence 

As indicated in the methods, when focusing on the inorganic content of forensic soils, 

using several non-destructive techniques in combination allowed for more accurate 

identification of minerals and separation of soils from similar locations. These methods 

each provided information that builds on knowledge obtained from a previous technique; 

taken in isolation, each analysis method provided only part of the entire picture. 

PCA using the MSP spectra highlighted the large degree of variability within natural 

samples and, whilst achieving some clusters based on soil locations and visual 

appearance, did not allow for effective separation between locations. As expected, the MSP 

spectra were closely correlated with the visual appearance of the soils, essentially 

providing a more objective determination of the colour of the sample. However, when 

converting to L* a* b* colorimetric values this detailed information was lost, and the 

method was unable to provide any beneficial separation over visual examination of the 

soil, so is not favourable as an interpretation method for PCA in this instance. 

Nevertheless, MSP analysis is still valuable for forensic pairwise comparisons and may 

show value with highly coloured soils. 

Using the ATR-FTIR spectra resulted in tighter clustering of intra-site soils than any 

other method, with better separation between locations achieved. When samples in the 

model were grouped based on visual appearances, clusters were formed, albeit with a 

small amount of overlap between classes of similar colours. Separation also occurred 

within the colour classes based on individual locations. The compounds responsible for 

most of the variance within the dataset correlated both with the original location of the 

sample, as well as the overall visual appearance of the sample. 

PCA using the XRD patterns allowed for separation of most soils; the factor loadings 

indicated that the minerals most influencing separation were correlated with the dune 

system that the sample originated from and, though wide-spread, distinct clustering and 

full class separation were achieved using this method. The XRD model was also able to 

discriminate between samples that were left overlapping within the ATR-FTIR model, 

demonstrating how these methods can be used in combination with each other to provide 

additional information and increased separation. 
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Figure 17. Analytical sequence for examination of the quartz fine fraction of sandy forensic soil 

samples from the Swan Coastal Plain in Perth, Western Australia, with the information obtained 

through analysis at each stage. 

Sequenced analysis can be especially useful when samples are relatively similar and 

available instrumentation is limited, as different techniques can inform in 

complementary ways when paired with chemometric analysis. Sandy soils such as those 

found in the Swan Coastal Plain contain minimal organics, which reduces the breadth of 

instrumentation available for their analysis. 

4.0 Conclusions and Future Work 

Examination of the quartz-recovered fine fraction of Perth sandy soils has demonstrated 

that chemometrics can be used successfully in combination with spectroscopic techniques 

to discriminate between sandy soils. Analysis of these soils was especially challenging due 

to their very low levels of clay and organic matter, and the data generated through 

inorganic methods were difficult to objectively differentiate based on visual examination 

of the spectra, requiring more advanced statistical analyses. 

This approach provides good evidence that several analysis methods utilised in 

combination, with chemometrics performed alongside each stage of the sequence, can 

maximise the differentiation obtained by forensic practitioners when examining inorganic 

forensic soil samples. The method explored in this study not only provides a more objective 

interpretation of the examination of forensic soils, of which the significance has been 

highlighted many times within the forensic community (26, 27), but also offers a 
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statistical basis to determine the limits of performance. Additionally, by utilising a 

particularly challenging set of samples, detailed data is being collected on forensic soil as 

a form of forensic trace evidence in Western Australia, underpinning the interpretation 

of findings that might come from future analysis (10). 

While this study is transferable to other jurisdictions with dry, sandy soils, this research 

should be explored further by utilising a larger sample population and conducting more 

detailed statistical analysis of the data by performing other post-PCA methods, such as 

linear discriminant analysis. As previously shown with other forms of forensic evidence, 

e.g. fibres, this chemometric approach is also suitable for use with other statistical 

interpretation methods, such as a Bayesian interpretation or traditional ‘question vs 

known’ examinations (28, 43, 44). 
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Supplementary Information 

 

Figure A1. Map of the Swan Coastal Plain in Perth, Western Australia, illustrating the 9 locations 

that the soil samples were collected from for use within this study. GPS coordinates of sample 

locations were overlaid onto ‘Physiographic regions’ from Gozzard JR. Sea to scarp — geology, 

landscape, and land use planning in the southern Swan Coastal Plain. Geological Survey of 

Western Australia; 2010. p. 72. ISBN 978-74168-251-9. Image produced within QGIS 3.18.1-

Zürich. 

Table A1. GPS coordinates of the 9 locations that the soil samples were collected from for use 

within this study. 

Location Latitude Longitude 

1 -31.9646960° 115.8357950° 

2 -31.9138106° 115.8539786° 

3 -31.9176633° 115.9184918° 

4 -31.8549414° 115.8258240° 

5 -31.7741340° 115.7732363° 

6 -32.0652384° 115.8391782° 

7 -32.1059759° 116.0022922° 

8 -32.1238569° 115.8286284° 

9 -32.1243506° 115.9056052° 
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Figure A2. Scree plot depicting the cumulative variance in the MSP dataset retained by each PC. 

 

 

Figure A3. Scree plot depicting the cumulative variance in the ATR-IR dataset retained by each 

PC. 
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Figure A4. Representative raw ATR-FTIR spectra of sample 7a, which is situated at the most 

negative value of PC-1 within the ATR-FTIR PCA scores plots. The region associated with the 

ATR-IR diamond (2350 – 1950 cm-1), though present in these spectra, was removed prior to 

chemometric analysis. 
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Figure A5. Representative raw ATR-FTIR spectra of sample 9a, which is situated at the most 

positive value of PC-1 and the most negative value of PC-2 within the ATR-FTIR PCA scores plots. 

The region associated with the ATR-IR diamond (2350 – 1950 cm-1), though present in these 

spectra, was removed prior to chemometric analysis. 
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Figure A6. Representative raw ATR-FTIR spectra of sample 1a, which is situated at the most 

positive value of PC-2 within the ATR-FTIR PCA scores plots. The region associated with the ATR-

IR diamond (2350 – 1950 cm-1), though present in these spectra, was removed prior to chemometric 

analysis. 

 

 

Figure A7. Representative raw ATR-FTIR spectra of sample 2b, which is situated at the most 

negative value of PC-3 within the ATR-FTIR PCA scores plots. The region associated with the 

ATR-IR diamond (2350 – 1950 cm-1), though present in these spectra, was removed prior to 

chemometric analysis. 
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Figure A8. Representative raw ATR-FTIR spectra of sample 8a, which is situated at the most 

positive value of PC-3 within the ATR-FTIR PCA scores plots. The region associated with the ATR-

IR diamond (2350 – 1950 cm-1), though present in these spectra, was removed prior to chemometric 

analysis. 

 

Figure A9. Scree plot depicting the cumulative variance in the XRD dataset retained by each PC. 
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Figure A10. 3-dimensional PCA scores plot based on the XRD patterns of soil samples, showing 

the variability in the L* values obtained from corresponding MSP spectra from the same soils. 
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