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Repurposing of existing drugs is a rapid way to find potential new treatments for SARS-CoV-2. Here we applied a virtual 
screening approach using Autodock Vina and molecular dynamic simulation in tandem to screen and calculate binding 
energies of repurposed drugs against the SARS-CoV-2 helicase protein (non-structural protein nsp13). Amongst the top hits 
from our study were antivirals, antihistamines, and antipsychotics plus a range of other drugs. Approximately 30% of our top 
87 hits had published evidence indicating in vivo or in vitro SARS-CoV-2 activity. Top hits not previously reported to have 
SARS-CoV-2 activity included the antiviral agents, cabotegravir and RSV-604, the NK1 antagonist, aprepitant, the trypanocidal 
drug, aminoquinuride, the analgesic antrafenine, the anticancer intercalator, epirubicin, the antihistamine, fexofenadine, and 
the anticoagulant, dicoumarol. These hits from our in silico SARS-CoV-2 helicase screen warrant further testing as potential 
COVID-19 treatments 
 

.



 

 

Introduction 

The global COVID-19 pandemic continues to wreak economic and social havoc globally, with at least 330 

million infections and 5.6 million deaths globally (January 2022). Effective vaccines and drug therapies are 

essential to bringing the pandemic to an end. This global challenge has seen an unprecedented and intense 

focus on coronavirus research, resulting in the development of vaccines in impressively short times. 

Similarly, empirical and limited rational selection of drugs such as remdesivir and dexamethasone provided 

early drug treatments that limited morbidity and mortality. However, more effective drugs are still required 

to treat COVID-19 and other coronavirus diseases, such as SARS and MERS, as well as new viruses that may 

emerge in the future. 

Structural biologists have successfully characterized SARS-CoV-2 proteins that represent viable drug targets 

for structure-based computational design of new drugs, and for rapid repurposing of existing drugs for 

treatment of COVID-19. There has been extensive research into drugs that might interfere in the SARS-CoV-

2 spike protein’s interaction with its cognate human receptor, angiotensin-converting enzyme 2 (ACE2).  

Other heavily studied targets are the viral 3CL main protease (Mpro, nsp5), PL protease (PLpro, nsp3), and 

RNA-dependent RNA polymerase (RdRp, major protein nsp12) 1-7.  However, less attention has been paid to 

other potential target proteins such as the SARS-CoV-2 helicase, the focus of the current study. 

Time is critical when developing vaccines or drug treatments; new drugs typically take many years to reach 

the clinic. Repurposing existing drugs, clinical trials candidates, and approved natural products, that have 

been in man and whose toxicity, pharmacokinetics, and metabolism is already well understood, is a rational 

and rapid way to find effective therapies during a pandemic8.  Repurposing can be done by high throughput 

in vitro assays, in vivo studies in animals, and computational drug design methods. Several teams have 

undertaken wet-lab screening of existing drugs against viral targets or viral assays, but none have achieved 

sufficient high throughput to allow >10,000 candidates to be assessed. Computational screening can be 

performed easily on large numbers of molecules, with relative binding affinities allowing ranking of the 

candidates for focused in vitro and in vivo testing followed by human antiviral trials, with minimal delay9, 10. 

The SARS-CoV-2 helicase (non-structural protein nsp13) has been less studied but has considerable 

potential for the discovery of drugs against SARS-CoV-2. Of the 16 known CoV nsp proteins, the helicase is 

essential for viral replication and, not surprisingly, it has the highest sequence conservation across the CoV 

family.11 As such, this vital enzyme represents a promising target for anti-CoV drug development as drugs 

targeting it have the potential to be active against all SARS-CoV-2 strains.12  

The helicase contains 601 amino acids and is part of the superfamily 1B highly conserved within all 

coronaviruses. Helicases can have either 3’-5’ (SF1A subfamily) or 5’-3’(SF1B subfamily) translocation 

polarity, defined as the direction (characterized as 5'→3' or 3'→5') of helicase movement on the DNA/RNA 

single-strand along which it is moving13-17.  The SARS-CoV-2 helicase is a critical enzyme for viral replication 

as it initiates the first step of the RNA cap synthesis that is essential to protect the virus from innate 

immune attack, to stabilize it, and ensure its translation.  We previously developed an in silico screening 

protocol that was used to identify drug repurposing candidates for SARS-CoV-2 Mpro and RdRp5-7. The utility 

of this approach was established by the large numbers of predicted candidates that had experimentally 

validated activity against SARS-CoV-2 and/or the specific target proteins.  

Here we describe a comprehensive, combined molecular docking and molecular dynamics (MD) study of 

registered drugs, drug candidates, and approved natural products against the SARS-CoV-2 helicase. We 



 

 

identify the most promising drug candidates for repurposing and validate many of the computational 

predictions using experimental data from the scientific literature. 

Results  

The helicase is 603 long amino acid protein and has a shape of a triangular pyramid that is divided into five 

sections, a zinc-binding domain (ZBD) which is attached to two Rec-A domains (Rec1A and Rec2A) and a 

Rec1B domain via a stalk domain (Figure 1).  

 

Figure 1. Domain structure of SARS-CoV-2 helicase. Used with permission from Newman et al. 18 

The hydrolytic activity is attributed to six key residues (Lys288, Ser289, Asp374, Glu375, Gln404, Arg567 

found within the cleft between the 1A and 2A domains at the base. These residues are located at the active 

site of SARS-CoV-2 helicase enzyme. (Figure 2). The binding pocket of helicase has a volume of 325 Å3 and 

an area of 420Å2. 

 

Figure 2. Key active site residues for helicase bound to the AMP-PNP Mg2+ complex (left) and the AMP-PNP 

complex (right). Used with permission from Newman et al. 18 

 



 

 

The workflow for calculating the relative binding affinities of drugs for the helicase binding pocket is 

summarized in Supplementary Figure S1. Autodock Vina docking followed by MD simulation of the top 

candidates provides improved predictions of relative binding affinities compared to docking alone. For 

example, significant improvement in protein-ligand docking results was shown by subsequent high-

throughput MD simulations19.  

The MMPBSA and thermodynamic scores for the top 87 hits in our screen correlated strongly (r2=0.85). 

Given that many of the top-ranked molecules are conformationally flexible, binding energy penalties due to 

ligand entropy are likely to be significant. A substantial correlation was found between the Vina scores and 

the binding energies from MMPBSA and the thermodynamic cycle, important because of the different ways 

these algorithms treat ligand entropy20. 

The twenty molecules with the best helicase binding affinity are summarized in Table 1. The compounds 

can be broadly characterized as containing one or more hydrophobic aromatic moieties linked to another 

polycyclic moiety containing hydrogen bond donors or acceptors. The top-ranked molecules come from 

diverse drug classes, with antiviral agents making up 25% of the hits and antihistamines and antipsychotics 

also being well represented. 

Table 1. Binding energies of top 20 hits (ranked by MMPBSA score) against SARS-CoV-2 helicase. 

Database 
ID  

Drug Name Structure DGMMPBSA kcal/mol DGthermo 

kcal/mol 

DB08930 Dolutegravir 
(antiretroviral) 

 

-42.2 -45.9 

DB04703 
Hesperidin 

(citrus flavanone 
glycoside) 

 

-41.2 -39.6 

DB11751 
Cabotegravir 

(antiviral integrase 
inhibitor) 

 

-40.8 -42.3 

DB00872 
Conivaptan 

(vasopressin 
inhibitor) 

 

-40.2 -39.7 

DB00673 Aprepitant (NK1 
antagonist) 

 

-40.1 -45.6 

DB11799 Bictegravir (antiviral 
integrase inhibitor) 

 

-39.8 -41.2 

DB09238 
Manidipine* (Ca 
channel blocker, 

anti-hypertensive) 
 

-39.8 -41.3 

DB00932 Tipranavir (antiviral 
protease inhibitor) 

 

-39.7 -42.6 

DB04452 Aminoquinuride 
(trypanocidal agent) 

 

-39.6 -41.9 

DB01419 
Antrafenine 

(analgesic anti-
inflammatory) 

 

-39.1 -36.5 
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Database 
ID  

Drug Name Structure DGMMPBSA kcal/mol DGthermo 

kcal/mol 

DB15197 RSV-604 (antiviral) 

 

-38.8 -36.2 

DB004445 
Epirubicin 

(anticancer 
intercalator) 

 

-38.7 -35.6 

DB01100 Pimozide 
(antipsychotic) 

 

-38.4 -35.4 

DB01698 Rutin (flavonol 
glycoside) 

 

-38.3 -40.4 

DB00266 Dicoumarol 
(anticoagulant) 

 

-37.6 -38.4 

DB04842 Fluspirilene 
(antipsychotic) 

 

-36.8 -38.4 

DB03044 Doramapimod (p38 
MAP kinase inhibitor) 

 

-36.2 -39.5 

DB00950 Fexofenadine 
(antihistamine) 

 

-35.5 -37.7 

DB00637 Astemizole 
(antihistamine) 

 

-35.4 -38.7 

DB01100 Sertindole 
(antipsychotic) 

 

-34.6 -36.8 

 

The remaining high binding hits included drugs and natural products used to treat a diverse range of 

afflictions including cancers, infections, coagulation disorders, and hypertension. Several of the top hits 

from our screen had experimental their SARS-CoV-2 activity determined, as do ~30% of the 87 shortlisted 

compounds from our docking studies (Supplementary Table S1) 

The calculated binding energies of the top-scoring antiviral drugs, dolutegravir, cabotegravir, bictegravir, 

tipranavir and RSV-604 are similar (in the range of -38.8 to -42.2 kcal/mol by MMPBSA and -36.2 to -45.9 

kcal/mol by thermodynamic cycle). Some of the highest-ranked antiviral agents had also been identified as 

good binders in other in silico docking studies, providing a degree of validation that our computational 
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methods are appropriate and are yielding similar results to the other published studies for these antiviral 

drugs. 

Although the main aim of this study was to show that our computational methods are useful for rapidly 

identifying repurposed drugs likely to exhibit SARS-CoV-2 activities, we have also analyzed the binding of 

key repurposed drugs (Table 1) to the helicase active site. Figures 3-6 show LigPlot diagrams of the main 

interactions between four of the drugs and the binding site. They elucidate how the drugs bind to the 

active site of the helicase enzyme. Supplementary Figure S2 shows a superimposition of the drugs with the 

most favourable binding energies in the active site of the helicase. 

For hesperidin (Figure 3) four of the five rings are buried deep in the binding pocket, with the hydrophilic 

terminal sugar ring being exposed to the solvent. There are networks of hydrogens bond between the 

active site residues and the donor and acceptor groups on most repurposed drugs, especially for 

aminoquinuride and rutin. 

Supplementary Table S2 lists the key interactions between the top screening hits and the active site of the 

helicase. The 6 residues in helicase binding pocket Lys288, Ser289, Asp374, Glu375, Gln404, Arg567 are 

crucial for ATP hydrolysis and all screened drugs interacted strongly with these residues. These molecular-

level interactions involved in binding the drugs at ATP binding site of the SARS-Cov-2 helicase enzyme were 

investigated to decipher the key chemical forces crucial for intermolecular binding and stability of 

complexes. Cabetogravir, dicoumarol, fexofenadine, epirubicin, antrafenine, aminoquinuride, aprepitant, 

RSV-604 all formed strong hydrogen bonds with residues in the ATP-binding site at Rec1A domain. 

Aprepitant also formed π-stacking (Try541) and π-cation (Lys320) interactions with nsp-13. Antrafenine and 

aprepitant form halogen bonds with Ile399 and Asp374 respectively. 

 

Figure 3. LigPlot (left) shows the key active site residues interacting with hesperidin. The molecular model 

(right) shows the binding of hesperidin to the active site cleft of the helicase. The molecular surface 

denotes hydrophobicity of the pockets (blue hydrophilic, yellow/brown hydrophobic). Positions of key 

binding site residues are labelled.  



 

 

For the antiviral integrase drug, carbogravir (Figure 4), the tricyclic ring is buried deep within the active site 

of the helicase. Again, the abundant hydrogen bond donors and acceptors on the polycyclic moiety form 

hydrogen bonds with the binding site residues of the helicase. 

 

Figure 4. LigPlot (left) shows the key active site residues interacting with cabotegravir. The molecular model 

(right) shows the binding of cabotegravir to the active site cleft of the helicase. The tricyclic ring moiety is 

deeply embedded in a hydrophilic pocket. The molecular surface denotes hydrophobicity of the pockets 

(blue hydrophilic, yellow/brown hydrophobic). Positions of key binding site residues are labelled. 

The vasopressin inhibitor, canivaptan (Figure 5), buries its hydrophilic nitrogen-rich heterocyclic rings deep 

within the binding cleft, forming a range of hydrogen bonds with active site residues. 

 

Figure 5. LigPlot (left) shows the key active site residues interacting with canivaptan. The molecular model 

(right) shows the binding of canivaptan to the active site cleft of the helicase. The tricyclic ring moiety is 



 

 

deeply embedded in a hydrophilic pocket. The molecular surface denotes hydrophobicity of the pockets 

(blue hydrophilic, yellow/brown hydrophobic). Positions of key binding site residues are labelled. 

Aprepitant (NK1 antagonist) buries the morpholino ether moiety in the hydrophilic pocket and the 

hydrophobic bis trifluoromethyl substituted ring even deeper into this pocket. The environment mismatch 

is compensated by the favourable π-stacking and π-cation interactions referred to above.  

 

Figure 6. LigPlot (left) shows the key active site residues interacting with aprepitant. The molecular model 

(right) shows the binding of aprepitant to the active site cleft of the helicase. The molecular surface 

denotes hydrophobicity of the pockets (blue hydrophilic, yellow/brown hydrophobic). Positions of key 

binding site residues are labelled. 

Discussion 

Other relevant computational studies on top 20 repurposed candidates 

The only prior computational study that proposed that our top-ranked drug candidate dolutegravir may 

inhibit SARS-CoV-2 helicase, involved a deep learning model21. This study suggested that dolutegravir also 

inhibits several other viral targets. Indu et al. also used MD studies and Autodock Vina to identify 

dolutegravir as a potential inhibitor of SARS-CoV-2 Mpro and RdRp22. If these activities of dolutegravir are 

subsequently confirmed, its ability to hit several viral targets simultaneously may make it particularly 

effective for treating COVID-19 patients. For example, such multitarget drug approaches have been very 

effective in controlling HIV infections. 

Prior to this study, no reported computational studies reported that hesperidin, a citrus peel natural 

product, may inhibit SARS-CoV-2 helicase, although computational docking experiments by Adem et al. and 

Mosquer-Yuqui et al. identified hesperidin as a potential treatment 23, 24. Adem et al. used Molegro Virtual 

Docker 7 to analyze 80 flavonoid compounds binding to Mpro and found hesperidin had the highest 

predicted binding affinity23. Similarly, Mosquer-Yuqui et al. screened 92 phytochemicals from Andean 

medicinal plants against SARS-CoV-2 Mpro and RNA-dependent RNA polymerase (RdRp) using molecular 

docking24. Unlike Adem et al., they subsequently simulated the interactions of the top-ranked natural 

products, including hesperidin, using GROMACS MD. Hesperidin was also suggested as an antiviral 

candidate by other studies 25-27. For example, Meneguzzo et al. reported that hesperidin had a high binding 



 

 

affinity to ACE2 and could block SARS-CoV-2 entry via this receptor (Figure 7), outperforming drugs already 

recommended for human Covid-19 trials27. 

 

Figure 7. Multiple effects of hesperidin (coupled with ascorbic acid) on SARS-CoV-2 entry and replication, 

and systemic inflammation. Creative Commons Attribution (CC BY) license from Bellavite and Donzelli25.  

There are also no prior reports of predicted activity of cabotegravir against the SARS-CoV-2 helicase, 

although Petersen et al. predicted that cabotegravir might bind to Mpro using a combination of molecular 

docking and MD calculations28. Similarly, no studies have reported conivaptan as having potential helicase 

activity, although Gul et al. predicted conivaptan would have activity against SARS-CoV-2 RdRp29. Potential 

conivaptan binding to the SARS-CoV-2 nsp9 replicase was found by Chandel et al. using a combination of 

Autodock screening followed by MD simulations30. Several other recent computational studies have also 

reported potential binding of conivaptan to various SARS-CoV-2 targets (see summary in Piplani et al.)6, 7. 

Two prior studies predicted aprepitant (Emend) to be a helicase inhibitor. White et al. used Autodock Vina 

followed by MD simulations to identify aprepitant as having potential helicase activity 11. Borgio et al. also 

identified aprepitant as having potential helicase activity using MOE molecular docking and the MOE score 

or GBVI/WSA binding free energies31.  

Potential helicase activity of bictegravir has not been reported previously.  However several computational 

docking studies identified bictegravir as having potential activity against the SARS-CoV-2 2ʹ-O-ribose 

methyltransferase (2ʹ-O-MTase)32, the spike glycoprotein33, and Mpro28.    

Manidipine was predicted to be a promising binder to Mpro in a virtual screen using Glide SP, AutoDock 

Vina, and two protocols with AutoDock 4.2 followed by MD simulation using Gromacs 34.  

Tipranavir has been identified as a potential SARS-CoV-2 inhibitor in in vitro screens. No other 

computational studies have predicted tipranavir to be a helicase inhibitor. Kumar et al. reported potential 

activity against Mpro using docking with MD simulation35, whereas Gul et al., using a similar approach, 

suggested tipranavir would have activity of against both Mpro and RdRp 36.   Autodock Vina was also used by 

Mohamed et al. to identify tipranavir as a potential inhibitor of SARS-CoV-2 PLpro 10.  



 

 

Activity of antrafenine against SARS-CoV-2 helicase was predicted by Wu et al. (Supplementary Table S1) 

using a homology model and the ICM 3.7.3 modelling software37. Mevada et al. used Autodock Vina to 

screen drug candidates against SARS-CoV-2, including against the helicase and antrafenine was shown to be 

potentially active against the helicase and many other targets, including the viral spike protein38. However, 

as no post-docking MD simulations were conducted on the lead molecules the results would need to be 

viewed with caution.  Cozac et al. used machine learning and Autodock Vina calculations to predict 

antrafenine as an inhibitor of RdRp 39.  

In an earlier computational study, we identified RSV-604 as a potential SARS-CoV-2 Mpro inhibitor using 

Autodock Vina followed by MD simulation of the lead molecules in the active site of the protein5. Although 

no previous studies have predicted epirubicin to have activity against the SARS-CoV-2 helicase it has been 

identified as an inhibitor of chromodomain-helicase-DNA-binding protein 1 and HCV helicase40, 41. No prior 

studies have reported activity of fluspirilene against the SARS-CoV-2 helicase, although it has been 

predicted to have activity against the SARS-CoV-2 nsp9 replicase 42.  Tam et al. reported it to have Mpro 

activity, and the DG of binding calculated by Autodock Vina correlated well with experimental DG of 

binding from the experimental IC50 values of a range of putative antiviral agents43.  

Fexofenadine was predicted to have good Mpro activity by Autodock Vina and to be a moderate binder by 

Autodock44, 45. Astemizole was also predicted to bind well to the SARS-CoV-2 spike protein by the PLANTS 

algorithm. It was in the top 2% of molecules that were rescored using MD (Amber and the Nwat-MMGBSA 

method)46, 47. It was also predicted to bind to the viral RdRp with high affinity using Autodock Vina48.   Our 

earlier studies predicted sertindole to be a strong binder to SARS-CoV-2 RdRp6, 7, and the activity of 

sertindole against Mpro also was later reported by Vatensever et al.44.  

Experimental validation of computational predictions for top 20 repurposed candidates 

Xie et al. reported a nanoluciferase assay in Vero E6 cells for SARS-CoV-2 that returned an EC50>10µM and 

CC50 >50µM for bictegravir 49. This assay also found that remdesivir and chloroquine were highly active, 

although responses in human clinical trials have been less than impressive. However, remdesivir has 

received emergency use authorization for the treatment of Covid-19 infections. 

 

Figure 8. Experimental antiviral spectrum for hit compounds (cell assays (blue), animal model (green). From 

DrugVirus.info. 

 Manidipine has relatively broad-spectrum antiviral activity (see Figure 8), with in vitro IC50 values of 10µM 

against SARS-CoV-2 Mpro and 14µM against PLpro. It also exhibited antiviral activity against the SARS-CoV-2 

virus with EC50 of 15±1 µM in a plaque reduction assay50. Ghahremanpour et al. measured the activity of 



 

 

manidipine in a kinetic Mpro assay as 4.8 μM and Pickard et al. measured its activity in HUH7 cells 

(IC50=2µM) and Vero cells (IC50=7.5µM)51. 

As summarized in Figure 8, tipranavir also exhibits a relatively broad spectrum of antiviral activity. It was 

shown to inhibit replication of SARS-CoV-2 in VeroE6 cells, but the SI was relatively low (EC50 = 13 μM, CC50 

= 77 μM, SI = 6)52. There are no experimental studies showing pimozide inhibits the SARS-CoV-2 helicase. 

Vatansever et al. identified pimozide as a basic molecule that raises endosomal pH to interfere with SARS-

CoV-2 entry into the human cell host, and measured an IC50 against Mpro of 42 ± 2µM44. 

There is no published computational or experimental binding data for rutin binding to SARS-CoV-2 helicase, 

although Huynh et al., amongst several others, reported that MD calculations predicted rutin binding to 

Mpro 53. Aprepitant, which was predicted by our study to have activity against the helicase, has been shown 

to be effective in treating severe to critical COVID-19 patients in combination with dexamethasone 

(clinicaltrials.gov (NCT04468646))54. 

There are no reports in the literature of dicoumerol having activity against SARS-CoV-2, just a single report 

predicting binding to Mpro by Balakrishnan et al.55. Fluspirilene activity against SARS-CoV-2 was reported by 

Weston et al. They measured the IC50 as 3.1µM, CC50 as 30.3µM and SI=10 in Vero E6 cells56. This mirrors 

the activity of fluspirilene against MERS-CoV and SARS-CoV in Vero E6 cells of 7.5µM and 6.0µM, 

respectively 57. 

Doramapimod was reported to have an IC50 of 10µM against SARS-CoV-2 in MRC5-ACE2 cells, and showed 

synergism with remdesivir in killing the virus in vitro 58. Astemizole was reported to have an EC50 of 1µM 

SARS-CoV-2 in Vero E6 cells, together with EC50 values against MERS-CoV and SARS-CoV of 4.9µM and 

5.5µM, respectively57, 59. 

Experimental validation of predictions of the top 87 lead drugs 

Apart from the top 20 drug repurposing candidates with the highest predicted binding affinities to SARS-

CoV-2 helicase, a significant number of our other hits listed in Supplementary Table S1 also have published 

experimental validation of SARS-CoV-2 activity. Indeed, it is noteworthy that almost 30% of the drugs in our 

top 87 drug repurposing candidates have experimentally confirmed SARS-CoV-2 activity in vitro. While in 
vitro activity does not mean that all these drugs are operating by inhibiting the virus helicase or will have 

activity against the virus in vivo, this data shows that our computational screening method identified 

candidates that are highly enriched in compounds active against the virus. Our study suggests there is value 

in using in vitro assays to further screen the compounds in Supplementary Table S1 that have not yet been 

tested, to potentially yield additional existing drugs with unrecognized activity against SARS-CoV-2. As they 

are already approved drugs, any promising candidates can be rapidly advanced to human trials. 

Methods 

Protein structure preparation and grid preparation 

The Protein Data Bank (PDB) file of the SARS-CoV-2 helicase 6XEZ (https://www.rcsb.org/structure/6XEZ) 

was obtained with a reported resolution of 2.90Å. Protein preparation, removal of non-essential and non-

bridging water molecules, addition of hydrogen atoms and missing residues and loops for docking studies 

were performed using UCSF Chimera package (https://www.cgl.ucsf.edu/chimera/). 60  

Screening databases 



 

 

Drugs were downloaded from the DrugBank database (FDA approved). A total of 11,875 drugs were 

retrieved from Drugbank. The drugs were downloaded in sdf format and converted to .pdbqt format using 

Raccoon. 61 

Docking Methodology 

All unique small molecule drug structures were docked against the helicase protein structure using the 

AutoDock Vina (version 1.1.3) package61. AutoDock Vina employs a gradient-based conformational search 

approach and an energy-based empirical scoring function. AutoDock Vina is also flexible, easily scripted, 

extensively validated in many published studies with a variety of proteins and ligands and takes advantage 

of large multi-CPU or -GPU machines to run many calculations in parallel. The code has also been employed 

very successfully to dock millions of small molecule drug candidates into a series of protein targets to 

discover new potent drug leads. The package includes useful scripts for generating modified .pdb files 

required for grid calculations and for setting up the grid calculations around each protein automatically. 

AutoDock Tools (ADT) was used to prepare the required files for Autodock Vina.61 Non-essential 

heteroatoms, unnecessary protein chains or substructures (if any) and water molecules were removed, 

non-polar hydrogen atoms were added to the protein structure and structure converting to .pdbqt format. 

Binding pockets were predicted using castp (http://sts.bioe.uic.edu/castp) AutoDock Vina requires the 

removal of hydrogens, the addition of polar hydrogens, setting of the correct atom types, and calculation of 

atom charges compatible with the AutoGrid code. The algorithm generates a grid around each protein and 

calculates the interaction energy of a probe noble gas atom at each grid position outside and within the 

internal cavities of the protein. The grid size used was 137.6 x 210.1 x 135.1Å. Grid resolution was set to 1 

Å, the maximum number of binding modes to output was fixed at 10, and the exhaustiveness level 

(controlling the number of independent runs performed) was set at 8. The docking calculations employed a 

genetic algorithm to optimize the binding conformations of the ligands during docking to the helicase site. 

Drugs were docked individually to the active site of the helicase with the grid coordinates (grid centre) and 

grid boxes of appropriate sizes generated by the bash script vina_screen.sh (Supplementary Information). 

The top-scoring compounds were identified with a python script script1.py (Supplementary Information) 

and subjected to molecular dynamics simulation. The docked structures were analysed using UCSF Chimera 

and LigPlot+ software to illustrate hydrogen-bond and hydrophobic interactions60, 62. The 87 drugs from 

Drugbank database with the most favourable helicase binding energies were selected (see Supplementary 

Information). Molecular dynamics studies were subsequently conducted on this set of 87 compounds.  

Molecular Dynamics Simulations 

The top screened compound complexes with the helicase were minimized with CHARMm force field. The 

topology files of the ligands were prepared from Swissparam (http://www.swissparam.ch/) and minimized 

in Gromacs2020 (http://www.gromacs.org/)63, 64. Docked complexes of ligands and the helicase protein 

were used as starting geometries for MD simulations. Simulations were carried out using the GPU 

accelerated version of the program with the CHARMm force field I periodic boundary conditions in the 

ORACLE server. Docked complexes were immersed in a truncated octahedron box of TIP3P water 

molecules. The solvated box was further neutralized with Na+ or Cl− counter ions using the tleap program. 

Particle Mesh Ewald (PME) was employed to calculate the long-range electrostatic interactions. The cut-off 

distance for the long-range van der Waals (VDW) energy term was 12.0 Å.  The whole system was 

minimized without any restraint. The complexes were subjected to 2500 cycles of steepest descent 

minimization followed by 5000 cycles of conjugate gradient minimization. After system optimization, the 

MD simulations were initiated by gradually heating each system in the NVT ensemble from 0 to 300 K for 



 

 

50 ps using a Langevin thermostat with a coupling coefficient of 1.0/ps and with a force constant of 

2.0 kcal/mol·Å2 on the complex.  Finally, a production run of 20 ns of MD simulation was performed under 

a constant temperature of 300 K in the NPT ensemble with periodic boundary conditions for each system. 

During the MD procedure, the SHAKE algorithm was used to constrain all covalent bonds involving 

hydrogen atoms. The time step was set to 2 fs. The structural stability of the complex was monitored by the 

RMSD and RMSF values of the backbone atoms of the entire protein. Calculations were also performed for 

up to 100 ns on a few compounds to ensure that 20ns was sufficiently long for convergence. Duplicate 

production runs starting with different random seeds were also run to allow estimates of binding energy 

uncertainties to be obtained. 

 The binding free energies of the protein-ligand complexes were evaluated in two ways. The 

traditional method is to calculate the energies of solvated SARS-CoV-2 helicase and small molecule ligands 

and that of the bound complex and derive the binding energy by subtraction. 

ΔG (binding, aq) = ΔG (complex, aq) – (ΔG (protein, aq) + ΔG (ligand, aq)  (1) 

We also calculated binding energies using the molecular mechanics Poisson Boltzmann surface area 

(MM/PBSA) tool in GROMACS that is derived from the nonbonded interaction energies of the complex. The 

method is also widely used method for binding free energy calculations.  

 MMPBSA calculations were conducted by GMXPBSA 2.1 a suite based on Bash/Perl scripts for 

streamlining MMPBSA calculations on structural ensembles derived from GROMACS trajectories and to 

automatically calculate binding free energies for protein-protein or ligand–protein interactions65. GMXPBSA 

2.1 calculates diverse MMPBSA energy contributions from molecular mechanics (MM) and electrostatic 

contribution to solvation (PB) and non-polar contribution to solvation (SA). This tool combines the 

capability of MD simulations (GROMACS) and the Poisson–Boltzmann equation (APBS) for calculating 

solvation energy (Baker et., 2001). The g_mmpbsa tool in GROMACS was used after molecular dynamics 

simulations, the output files obtained were used to post-process binding free energies by the single-

trajectory MMPBSA method. In the current study, we used 100 frames at equal distances from 20ns 

trajectory files.  

 Specifically, for a non-covalent binding interaction in the aqueous phase the binding free energy, 

ΔG (bind,aq), is: – 

ΔG (bind,aq) = ΔG (bind,vac) + ΔG (bind,solv)    (2) 

where ΔG (bind,vac) is the binding free energy in vacuum, and ΔG(bind,solv) is the solvation free energy 

change upon binding: – 

ΔG (bind,solv) = ΔG (R:L, solv) - ΔG (R,solv) - ΔG (L,solv) (3) 

where ΔG (R:L,solv), ΔG (R,solv) and ΔG (L,solv) are solvation free energies of complex, receptor and ligand, 

respectively. 

Conclusions 

Here we show that the combination of advanced molecular docking algorithms with molecular dynamics 

simulations can reliably identify existing known drugs with potential activity against the SARS-CoV-2 

helicase. These candidates, if confirmed, could then be rapidly deployed to treat COVID-19 patients in 

clinical trials. The predictions of our computational studies have largely been validated by parallel 



 

 

experimental in vitro testing by other groups. Given the high speed with which potential COVID-19 drug 

candidates can be identified using computational methods, the approach is highly suited for rapidly 

identifying promising drugs not just for the current pandemic but for those outbreaks that will inevitably 

occur in the future. 
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Table S1. Binding energies and published SARS-Cov-2 data for 88 top ranked small molecule ligands 

 

No. Drugbank 
ID 

Name ΔGMMPBSA 

kcal/mol 

ΔGthermo 

kcal/mol 

Experimental SARS-CoV-2 data 

1 DB08930 Dolutegravir -42.15 -45.87 SARS-CoV-2 activity in Vero cells EC50 = 22µM, CC50 >40µM.1  

2 DB04703 Hesperidin -41.23 -39.58 SARS-Cov-2 Mpro inhibition IC50 = 8.3 µM.2 

3 DB11751 Cabotegravir -40.77 -42.31 … 

4 DB00872 Conivaptan -40.20 -39.65 SARS-CoV-2 EC50 10µM CC50 13µM in HEK-293T cells.3 EC50 = 12.2 μM against HCoV-
OC43. 

5 DB00673 Aprepitant -40.12 -45.58 … 

6 DB11799 Bictegravir -39.78 -41.22 Vero E6 cells for SARS-CoV-2 that returned an EC50>10µM and CC50 >50µM for 
bictegravir.4 

7 DB09238 Manidipine -39.77 -41.25 IC50 10µM against SARS-CoV-2 Mpro ; 14µM against PLpro. Apparent SARS-CoV-2 EC50 = 
15±1 µM in a plaque reduction assay.5 et al. Kinetic Mpro IC50 = 4.8 μM. SARS-CoV-2 
activity in in HUH7 cells (IC50=2µM) and Vero cells (IC50=7.5µM).6 

8 DB00932 Tipranavir -39.74 -42.56 Inhibits replication of SARS-CoV-2 in VeroE6 cells, but low SI (EC50 = 13 μM, CC50 = 77 
μM, SI = 6).7 

9 DB04452 Aminoquinuride -39.58 -41.89 … 

10 DB01419 Antrafenine -39.14 -36.47 … 

11 DB15197 RSV-604 -38.75 -36.21 … 



 

 

No. Drugbank 
ID 

Name ΔGMMPBSA 

kcal/mol 

ΔGthermo 

kcal/mol 

Experimental SARS-CoV-2 data 

12 DB004445 Epirubicin -38.74 -35.62 … 

13 DB01100 Pimozide -38.36 -35.44 IC50 for SARS-CoV-2 Mpro = 42 ± 2µM.8 

14 DB01698 Rutin -38.32 -40.44 IC50=32 µM for SARS-CoV-2 Mpro.9 

15 DB00266 Dicoumarol -37.56 -38.39 … 

16 DB04842 Fluspirilene -36.77 -38.38 IC50 = 3.1µM and CC50 = 30.3µM with SI=10 in Vero E6 cells.10 In vitro activity in MERS-
CoV and SARS-CoV-1 (SARS) = 7.5µM and 6.0µM respectively in Vero E6 cells.11 

17 DB03044 Doramapimod -36.21 -39.45 IC50 = 10µM against SARS-CoV-2 in MRC5-ACE2 cells. Useful synergism with remdesivir 
in killing the virus in vitro.12 

18 DB00950 Fexofenadine -35.47 -37.66 … 

19 DB00637 Astemizole -35.35 -38.70 EC50 = 1µM in Vero E6 cells infected with SARS-CoV-2.13 EC50 values for MERS-CoV and 
SARS-CoV-1 (SARS) of 4.9µM and 5.5µM respectively.11 

20 DB01100 Pimozide -34.67 -38.21 SARS-CoV-2 Mpro IC50 = 42 µM.8 

21 DB06144 Sertindole -34.56 -36.77 … 

22 DB12580 Tradipitant -34.21 -32.11 Phase 3 clinical trial for COVID-19 NCT04326426.14 

23 DB08881 Vemurafenib -33.78 -30.25 SARS-CoV-2 in vitro inhibition in Vero cells, IC50 =7.0 µM and CC50 >50 µM.15 

24 DB09295 Talniflumate -33.22 -31.47 … 

25 DB09048 Netupitant -32.45 -30.74 … 



 

 

No. Drugbank 
ID 

Name ΔGMMPBSA 

kcal/mol 

ΔGthermo 

kcal/mol 

Experimental SARS-CoV-2 data 

26 DB11759 Penvonedistat -32.44 -35.41 … 

27 DB00966 Telmisartan -32.31 -35.08 … 

28 DB09298 Silibinin -32.26 -30.41 … 

29 DB11995 Avatrombopag -31.52 -35.47 … 

30 DB12877 Oxatomide -31.41 -30.47 In vitro SARS-CoV-2 inhibition in Vero CCL-81 cells IC50 25 µM and CC50 = 40µM.16 

31 DB06555 Siramesine -30.47 -31.53 … 

32 DB14883 Lorecivivint -30.41 -32.96 … 

33 DB03966 Clorobiocin -29.60 -31.92 … 

34 DB12306 Cipargamin -29.47 -30.45 … 

35 DB12566 Decernotinib -29.31 -24.74 … 

36 DB01260 Desonide -29.18 -29.15 … 

37 DB11925 Vistusertib -28.97 -25.23 SARS-CoV-2 activity in Vero E6 cells, IC50 <25 nM.17 

38 DB13791 Penfluridol -28.75 -30.41 SARS-CoV-2 in vitro activity in Vero CCL-81 cells, EC50 1.9 µM and CC50 = 3.3 µM.16 In 
vitro activity in Vero E6 cells with IC50 = 2.4 µM and CC50 = 12.9 µM.18 

39 DB15583 Fluazuron -28.24 -31.42 … 

40 DB07138 Neflamapimod -28.03 -30.38 … 

41 DB12703 Omipalisib -27.98 -24.36 … 



 

 

No. Drugbank 
ID 

Name ΔGMMPBSA 

kcal/mol 

ΔGthermo 

kcal/mol 

Experimental SARS-CoV-2 data 

42 DB12264 Atevirdine -27.89 -29.33 … 

43 DB13434 Fenticonazole -27.87 -23.12 … 

44 DB13074 Macimorelin -27.84 -22.34 … 

45 DB00342 Terfenadine -27.33 -28.88 SARS-CoV-2 IC50 = 3.0 μM in Vero cells.19 

46 DB11616 Pirarubicin -26.74 -26.33 IC50 = 4-7 µM in nsp15 FRET assay.20 

47 DB01349 Tasosartan -26.32 -26.44 … 

48 DB15630 Glumetinib -26.10 -24.85 … 

49 DB00547 Desoximetasone -26.09 -25.29 … 

50 DB11977 Golvatinib -25.65 -28.45 … 

51 DB06589 Pazopanib -25.58 -25.14 … 

52 DB00568 Cinnarizine -25.54 -25.10 SARS-CoV-2 activity in Vero CCL-81 cells, EC50=40 µM, CC50 = 100µM.16 

53 DB11830 Mocetinostat -25.45 -27.99 … 

54 DB00619 Imatinib -25.36 -27.87 Inhibits SARS-CoV-2 with an IC50 = 130 nM in Vero cells.21 EC50 = 2.5 µM, CC50 > 40µM in 
Vero E6 cells.22 SARS-CoV-2 EC50=4.9 μM, IC50=37.3 μM by luciferase assay in lung 
organoids.23 

55 DB12427 Orvepitant -25.36 -22.78 … 

56 DB14895 Vibegron -24.88 -20.32 … 



 

 

No. Drugbank 
ID 

Name ΔGMMPBSA 

kcal/mol 

ΔGthermo 

kcal/mol 

Experimental SARS-CoV-2 data 

57 DB13248 Phthalylsulfathiazole -24.52 -26.74 … 

58 DB13005 Rebastinib -24.51 -22.52 … 

59 DB06660 Saredutant -24.48 -22.45 … 

60 DB11986 Entrectinib -24.23 -27.12 … 

61 DB09003 Clocapramine -24.22 -20.58 … 

62 DB06446 Dotarizine -24.13 -20.33 … 

63 DB09143 Sonidegib -24.11 -21.20 … 

64 DB06077 Lumateperone -23.87 -20.96 … 

65 DB06638 Quarfloxin -23.56 -27.18 … 

66 DB13919 Candesartan -23.21 -27.33 Inhibits human coronavirus (HCoV) strain OC43 propagated in LLC-MK2 cells, IC50 = 
3.6µM, CC50 ~10µM.3 

67 DB15391 Elenbecestat -23.12 -25.63 … 

68 DB08901 Ponatinib -22.89 -27.03 Inhibition of SARS-CoV-2 in Huh7 cells engineered with the human ACE-2 receptor using 
immunofluorescence, EC50 = 1.1µM, CC50 = 8.7 µM.24 

69 DB12412 Gemigliptin -22.88 -20.79 … 

70 DB12978 Pexidartinib -22.87 -20.23 SARS-CoV-2 inhibition IC50 = 5.4 µM in Caco-2 cells.25 

71 DB04908 Flibanserin -22.47 -19.25 … 



 

 

No. Drugbank 
ID 

Name ΔGMMPBSA 

kcal/mol 

ΔGthermo 

kcal/mol 

Experimental SARS-CoV-2 data 

72 DB12562 Setipiprant -22.32 -25.92 … 

73 DB06212 Tolvaptan -22.29 -25.47 … 

74 DB13042 Fenoverine -22.10 -23.44 … 

75 DB06630 Anacetrapib -21.98 -23.47 … 

76 DB13814 Talampicillin -21.64 -20.10 … 

77 DB11904 Flumatinib -21.25 -19.23 … 

78 DB12492 Piritramide -21.23 -18.53 … 

79 DB13050 Tirilazad -21.21 -25.31 … 

80 DB11851 Bafetinib -20.78 -22.35 SARS-CoV-2 inhibition in A549 cells over-expressing ACE2, EC50 2.2 µM.26SARS-CoV-2 
inhibition in SARS-CoV-2 titres in A549-ACE2 cells, IC50 = 790 nM.27 

81 DB12121 Entospletinib -20.54 -19.41 … 

82 DB12414 Usistapide -20.45 -19.74 … 

83 DB14878 Liafensine -20.23 -24.56 … 

84 DB12154 Itacitinib -19.74 -22.45 … 

85 DB15444 Elexacaftor -19.32 -23.22 … 

86 DB15006 Flufenoxuron -19.30 -23.12 … 

87 DB12465 Ketanserin -18.45 -20.98 … 



 

 

Table S2. Molecular interactions between 20 top scoring drugs and the helicase active site 

 

Drug Helicase active site interacting residues Hydrogen bonding residues – distance Å 

6XEZ(ADP) Gly285, Thr286, Gly287, Lys288, His290, Arg443, Glu540 Thr286(N-O2B)- 2.62 

Thr286(OG1-O2B) – 2.92 

Aminoquinuride Gly282, Pro283, Pro284, Gly285, Thr286, Lys288, His290, Asp401, Gln404, Arg443, Gln537, Gly538, 
Arg567 

Gly282(O-N)- 2.56 

Gly285(O-N)-2.96 

Thr286(O-N)- 3.08 

Ser289(OG-N8)-3.05 

Antrafenine Lys288, Ser289, Asp315, Ala316, Glu319, Lys320, Asp374, Glu375, Gln404, Gly538, Ser539, Glu540, 
Tyr541, Arg567, Lys569,  

Lys569(NZ-O1)- 3.34 

Aprepitant Thr286, Gly287, His290, Leu317, Lys320, Glu375, Arg443, Lys465, Gly538, Lys569 Lys465(NZ-O3)-3.22 

Astemizole Pro284, Thr286, Lys288, Ser289, His290, Ile293, Lys320, Glu375, Gln404, Arg443, Gln537, Glu540, 
Asn562, Thr566, Arg567, Lys569 

Glu540(OE1-N3)-3.09 

Arg567(NH1-O)-3.0 

Bictegravir Gly285, Ser289, His290, Leu317, Lys320, Glu375, Gln404, Arg442, Arg443, Gly538, Glu540, Arg567 Gly285(N-O4)-3.33 

Ser289(OG-O3)-3.29 

Cabotegravir Gly285, Thr286, Ser289, His290, Leu317, Glu375, Gln404, Thr440, Arg442, Arg443, Gln537, Gly538, 
Glu540 

Ser289(OG-O3)-3.24 



 

 

Conivaptan Pro284, Lys288, Ser289, Asp315, Ala316, Leu317, Lys320, Asp374, Glu375, Ile399, Asp401, Gln404, 
Gly538, Ser539, Gly540, Tyr541, Arg567, Lys569,  

Ser289(OG-O1) -2.58 

Lys320(NZ-O2) – 2.91 

Gln404(NE2-N3) – 2.82 

Dicoumarol Pro284, Gly285, Thr286, Gly287, Lys288, Ser289, Lys320, Tyr324, Gln404, Gln537, Gly538, Val563, 
Arg567  

Thr286(O6-N) – 3.23 

Thr286(O6-OG1) – 2.92 

Doramapimod Gly282, Pro283, Pro284, Gly285, Thr286, Lys288, Ser289, Leu317, Asp374, Glu375, Asp401, Gln404, 
Gln537, Gly538, Asn562, Val563, Arg567,   

Asp374(OD1-N4) – 2.63 

Epirubicin Gly282, Pro283, Pro284, Gly285, Thr286, Lys288, Ser289, His290, Ala313, Leu317, Asp374, Glu375, 
Asp401, Gln404, Arg442, Arg443, Gln537, Gly538, Thr566, Arg567 

Arg567(NH2-O) – 2.69 

Fluspirelene Gly282, Pro284, Gly285, Thr286, Gly287, Lys288, Ser289, Ala316, Lys320, Asp374, Glu375, Ile399, 
Gly400, Asp401, Gln404, Gly538, Ser539, Glu540, Asn562, Thr566, Arg567,  

Asn562(ND2-F1) – 2.63 

Hesperidin Gly285Ala312, Asp315, Ala316, Glu319, Lys320, Gln531, Gly538, Ser539, Glu540 Tyr541 Ser539(OG-O7) – 3.20 

Tyr541(OH-O13) – 3.21 

Manidipine Gly282, Pro284, Gly285, Thr286, Lys288, His290, Lys320, Tyr324, Asp374, Glu375, Ile399, Gly400, 
Asp401, Gln404, Arg443, Gln537, Gly538, Glu540, Asn562, Val563, Arg567 

Tyr324(OH-N1) – 2.89 

Arg442(N-O4) – 3.11 

Pimozide Gly282, Pro283, Pro284, Gly285, Thr286, Gly287, Lys288, Ser289, His290, Tyr324, Asp401, Gln404, 
Arg442, Arg443, Gly538, Asn562, Thr566 Arg567,  

Gly282(O-N3) – 2.58 

Rutin Gly282, Pro283, Pro284, Gly285, Thr286, Gly287, Lys288, Ser289, His290, Ile293, Leu317, Lys320, 
Tyr324, Glu375, Gly400, Asp401, Gln404, Thr440, Arg442, Arg443, Gly538, Arg567 

 Gly285(N-O) – 2.94 

Ser289(O15-O) – 3.09 



 

 

Arg442(N-O13) – 2.65 

Arg567(NH2-O6) – 3.03 

Sertindole Pro284, Lys288, Ser289, His290, Ile293, Lys320, Tyr324, Asp374, Glu375, Gln404, Gln537, Gly538, 
Asn562, Val563, Arg567,  

Asn562(ND2-F) – 2.76 

Tipranavir Gly282, Thr286, Gly287, Lys288, Ser289, His290, Ile293, Lys320, Tyr324, Gly538, Ser539, Glu540, 
Arg443, Lys569 

Tyr324(OH-O3) – 3.05 

Gly538(N1-O) – 3.14 

Fexofenadine Gly285, Thr286, Lys288, Ser289, Lys320, Tyr324, Arg442, Arg443, Lys465, Glu540  

Doultegravir Gly285, Thr286, Gly287, Ser289, His290, Leu317, Glu375, Gln404, Thr440, Arg442, Arg443, Gly538, 
Glu540, Arg567  

Ser289(O3-OG)- 3.08 

Arg442(N-F1) – 3.19 

Arg443(N-F1) – 3.17 

RSV-604 Gly282, Pro283, Pro284, Gly285, Lys288, Ser289, Leu317, Tyr324, Asp374, Glu375, Gln404, Gln537, 
Gly538, Arg567 

 

 

 



 

  

Figure S1 Flowchart for computational screening of small molecules against the helicase 

 



 

 

Figure S2. Superimposition of four top-scoring repurposed drugs in the helicase active site. 

 

  



 

 

Scripts Used: 

 

1)Conf.txt 

receptor = 6Y2F.pdbqt 

center_x=  9.245 

center_y=  -0.788 

center_z = 18.371 

size_x = 50 

size_y = 50 

size_z = 50 

num_modes = 10 

exhaustiveness = 50 

2)vina_screen.sh 

#! /bin/bash 

for f in CHEMBL*.pdbqt; do 

    b=`basename $f .pdbqt` 

    echo Processing ligand $b 

mkdir -p $b 

    vina --config conf.txt --cpu 50 --ligand $f --out $[b]/out.pdbqt --log $[b]/log.txt 



 

 

done 

3)Script1.py 

#! /usr/bin/env python 

import sys 

import glob 

def doit(n): 

file_names = glob.glob('*/*.pdbqt') 

    everything = [] 

    failures = [] 

    print 'Found', len(file_names), 'pdbqt files' 

    for file_name in file_names: 

        file = open(file_name) 

        lines = file.readlines() 

file.close() 

        try: 

            line = lines[1] 

            result = float(line.split(':')[1].split()[0]) 

everything.append([result, file_name]) 

        except: 



 

 

failures.append(file_name) 

everything.sort(lambda x,y: cmp(x[0], y[0])) 

    part = everything[:n] 

    for p in part: 

        print p[1], 

    print 

    if len(failures) > 0: 

        print 'WARNING:', len(failures), 'pdbqt files could not be processed' 

if __name__ == '__main__': 

doit(int(sys.argv[1])) 
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