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Understanding the excited state properties of molecules provides insights into how they interact with light. These
interactions can be exploited to design compounds for photochemical applications, including enhanced spectral conver-
sion of light to increase the efficiency of photovoltaic cells. While chemical discovery is time- and resource-intensive
experimentally, computational chemistry can be used to screen large-scale databases for molecules of interest in a
procedure known as high-throughput virtual screening. The first step usually involves a high-speed but low-accuracy
method to screen large numbers of molecules (potentially millions) so only the best candidates are evaluated with ex-
pensive methods. However, use of a coarse first-pass screening method can potentially result in high false positive or
false negative rates. Therefore, this study uses machine learning to calibrate a high-throughput technique (xTB-sTDA)
against a higher accuracy one (TD-DFT). Testing the calibration model shows a ∼6-fold decrease in error in-domain
and a ∼3-fold decrease out-of-domain. The resulting mean absolute error of ∼0.14 eV is in line with previous work in
machine learning calibrations and out-performs previous work in linear calibration of xTB-sTDA. We then apply the
calibration model to screen a 250k molecule database and map inaccuracies of xTB-sTDA in chemical space. We also
show generalizability of the workflow by calibrating against a higher-level technique (CC2), yielding a similarly low
error. Overall, this work demonstrates machine learning can be used to develop a both cheap and accurate method for
large-scale excited state screening, enabling accelerated molecular discovery across a variety of disciplines.

I. INTRODUCTION

Understanding the excited state properties of molecules
helps describe how they interact with light. These photo-
chemical interactions can include fundamental processes such
as photosynthesis,1 human vision,2 or photostability3. Pho-
tochemistry is also important in designing new molecules
with certain properties, for example spectral converters for
photovoltaics,4 which are of particular interest in this study.
Using an interplay between their excited states, certain
molecules can up- or down-convert wavelengths of light to
improve photovoltaic efficiency. Unfortunately, existing spec-
tral conversion molecules have low efficiency,5 so further ex-
ploration is required. It is difficult to explore the excited
state space of molecules with experimental methods alone,
so researchers often turn to computational methods for more
detailed study.6,7 Traditionally, time-dependent density func-
tional theory (TD-DFT) has been the workhorse for excited
state energy calculations. However, TD-DFT can be compu-
tationally intensive, and for applications in high-throughput
screening or generative design, a faster method must be used.

TD-DFT often relies on DFT for ground-state calculations
of charge density and structure optimization. Recently, work
has been done in tight binding as an approximation to DFT to
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improve its computation time while retaining most of its ac-
curacy. Specifically, density functional tight binding (DFTB)8

was developed in the late 1990’s9 and exhibited a combi-
nation of the accuracy of DFT and the efficiency of semi-
empirical quantum chemistry methods. More recently, the
eXtended Tight Binding (xTB)10 methods were developed
to solve the issues with DFTB of extensive parameterization
and low transferability.8 They differ from DFTB methods in
that they utilize top-down parameterization, with semiempir-
ical parameters fit to a large dataset rather than computed
with first-principles calculations.10 The primary approxima-
tions are considering molecular orbitals to be a linear com-
bination of atomic orbitals (LCAOs), using the local density
approximation (LDA) for exchange-correlation energy, and
using a truncated Taylor expansion to map density to total
energy.10

To accelerate excited-state calculations, Grimme intro-
duced the simplified Tamm-Dancoff density functional ap-
proach (sTDA)11 as an approximation to TD-DFT. The key
approximations of sTDA include simplifications to two-
electron integrals and setting an upper limit to the excita-
tion space, which improve computation time by 2 orders of
magnitude.11 As sTDA was developed to calculate excitation
spectra, there is no excited state relaxation component, and
only vertical excitation energies can be calculated. The differ-
ences between vertical excitation, vertical emission, and adi-
abatic energy are shown in Figure 1. In this work, only verti-
cal excitations are considered. The additional computational
expense of excited state relaxation is prohibitively slow for
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Figure 1. Schematics depicting the basics of molecular excitation
and emission. (a) Typical Jablonksi diagram from ground state (S0)
to excited state (S1), with various vibrational levels (0-3) depicted for
both states. (b) Demonstration of Frank-Condon principle of 0→1
vertical excitation (blue arrow) followed by nuclear re-configuration
and 1←0 vertical emission (red arrow). Also shown is the 0→0
transition energy in yellow. (c) The expected experimental excita-
tion/absorption curve (blue) and emission curve (red), along with the
theoretical 0→0 energy difference (dashed yellow line), demonstrat-
ing the Stokes shift. Note that in computation, often the energy min-
imum is used instead of the lowest vibrational level, so the starting
energies for excitation and emission may be different in experiment.

high-throughput workflows. Further, the Stokes shift for rigid
molecules should be small, on the order of 0.1 eV.12 From
now on, for concision, the vertical excitation energy will be
referred to as the excitation energy or excited state energy.

xTB and sTDA can be combined in a workflow called xTB-
sTDA, allowing ultrafast computation of excited states.13

This has been used extensively, with several studies us-
ing the method to screen large databases of materials such
as copolymers,14 conjugated polymers,15 small aromatic
molecules,16 photocatalysts,17 and organic dyes.18

However, due to the approximations presented above, there
is a tradeoff between accuracy and computational speed. In
Grimme and Bannwarth’s original paper introducing xTB-
sTDA, they reported a mean absolute error (MAE) between
xTB-sTDA and coupled-cluster/TD-DFT calculated excited
state energies of 0.34 to 0.48 eV, depending on the complex-
ity of the input structure.13 Even though xTB-sTDA is often
used as a first-pass in high-throughput screening, with higher-
quality computational methods used to evaluate properties of
a screened subset of molecules, having an accurate first-pass
method is essential to ensure all suitable candidates are in-
cluded in the suggested subset.

Therefore, a method of improving the accuracy of xTB-

sTDA in a way that preserves its high-throughput character-
istics is desired. One approach is to calibrate the results of
xTB-sTDA against a higher-accuracy computational methods
using machine learning (ML). This type of calibration from
a baseline method to a reference method is known as the
delta-ML or ∆-ML approach19, and has been applied widely
in the literature for various computational techniques. For ex-
ample, it has been used for calibrating ground state energies
and structures from semiempirical methods to DFT and cou-
pled cluster (CC) accuracy,20 and calibrating DFT molecular
dynamics simulations21 or potential energy surfaces22 to CC
accuracy. Recently, the ∆-ML approach has been applied to
calibrate excited state properties, for example calibrating pho-
toemission spectra from DFT to G0W0,23 and calibrating ex-
cited state energies with TD-DFT against CC methods24 and
against experiment.25–29 For xTB-sTDA, a few studies have
used a linear calibration technique to correct excited state
energies,15,16,18 instead of ML. However, the improvement
from linear calibration was low, with a mean absolute error
(MAE) of around 0.2 eV, compared to around 0.1 eV for the
ML studies presented above. To the authors’ knowledge, no
previous study has applied ML to calibrate xTB-sTDA.

Due to the promising potential of ML to increase the accu-
racy of baseline methods, this work presents a ML calibration
of the excited state energy levels output by xTB-sTDA, with
the motivation of more efficient exploration of excited state
space. As mentioned previously, existing spectral conversion
materials utilize excited states to up- or down-convert photon
energy, but have low efficiency due to (a) energy level mis-
alignment which leads to energy loss and (b) low absorption-
to-emission probability. This study focuses on the first issue,
making it easier to accurately predict energy levels and there-
fore design high-efficiency spectral conversion materials. The
following sections present the methods and results of our ex-
cited state energy calibrations.

II. METHODS

A. Reference computational technique

xTB was originally parameterized from the spin-
component-scaled coupled cluster (SCS-CC2)30 method
and TD-DFT, so one of these would be a natural choice as
the reference computational technique. Coupled-cluster (CC)
methods are typically the most accurate, predicting excitation
energies within 0.1 eV of experiment. However, because of
the computational expense of CC, it is difficult to generate a
large amount of data using these methods. Instead, TD-DFT
is generally the workhorse for excited state calculation,
despite its relatively high errors, with an MAE of 0.2 to 0.4
eV (depending on the functional) compared to experiment or
the theoretical best estimate.31

A general-purpose exchange-correlation functional is
B3LYP32, which has been shown to have an MAE around
0.25 eV, while LDA, GGA, and other hybrid functionals
have higher error.33 While B3LYP performs well for local-
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ized densities, range-separated hybrid functionals such as
CAM-B3LYP34 are increasingly used for delocalized densi-
ties such as those in excitations as they include a long-range
correction.35 However, these range-separated hybrid function-
als are more computationally expensive than B3LYP. Due to
its accuracy and efficiency, B3LYP is the most commonly
used functional in computational molecular chemistry.36

In this work, we choose TD-DFT based on B3LYP as the
reference method, for several reasons. First, we require large
chemical diversity in our training set, and most of the exist-
ing molecular excited state databases use TD-DFT.24,37–40 The
largest databases, namely PubChemQC38 and QM-symex,41

use B3LYP. Second, B3LYP was used in previous works using
linearly calibrated xTB-sTDA15,16 and is used extensively in
machine learning and high-throughput screening studies.42–46

Third, while B3LYP is less accurate than range-separated
hybrid functionals, it is not significantly worse.35,47 Since
xTB-sTDA is semi-empirical, it is often used as a first-pass
screening and naturally has inconsistencies and false posi-
tive/negative errors. Calibrating to B3LYP accuracy should
lower the rate of these errors. For these reasons, the reference
method was chosen to be TD-DFT with B3LYP.

B. Training dataset

Specifically, the training sets for the ML models consid-
ered in this study were derived from the existing PubChemQC
(PCQC)38 and QM-symex40 databases. For concision, we will
use the (functional/basis set) notation to describe the level of
theory used in calculations. PCQC includes the first 10 sin-
glet excited state energies (S1−10) for 3.5M molecules com-
puted using B3LYP/6-31G(d) for ground state optimization
and B3LYP/6-31+G(d) for excitation. Similarly, QM-symex
computes both S1−10 and the first 10 triplet excited state ener-
gies (T1−10) for 173k molecules using B3LYP/6-31G(2df,p)
for ground state optimization and B3LYP/6-31G for excita-
tion.

We are interested in calibrating both singlet (S1) and triplet
(T1) excited state energies output by xTB-sTDA, but PCQC
does not include triplet excitations. Calculating triplet ex-
citations for 3.5M molecules independently would be pro-
hibitively expensive, so it was necessary to determine which
molecules in PCQC would be relevant to spectral conver-
sion applications and therefore have interesting excited state
properties. To extract such molecules from PCQC, a litera-
ture scraping workflow was developed. We used the SCO-
PUS API48 to obtain abstracts of articles tagged with "triplet-
triplet annihilation" or "singlet fission" keywords. Then, we
used ChemDataExtractor49 to extract molecule names from
the abstracts. We then used the PubChem API50 to con-
vert molecule names into PubChem CIDs and conduct a
2D Tanimoto-coefficient based similarity search among Pub-
Chem molecules to expand the molecular space of interest.
We then cross-referenced the identified molecules against
PCQC to get the singlet energies, and triplet energies were
independently generated with TD-DFT using equivalent set-

tings to PCQC. Overall, this process allowed us to select 10k
molecules of interest from PCQC, named SCOP-PCQC (af-
ter SCOPus-PCQC). To balance the 10k molecules in SCOP-
PCQC, a 10k subset of QM-symex was randomly selected and
named QM-symex-10k.

However, this 10k molecule subset of PCQC may be too
small for ML model training. In addition, a model trained
on only molecules relevant to spectral conversion may have
poor out-of-domain performance. Therefore, we turn to ac-
tive learning to add diverse molecules to the training set with
further sampling of PCQC.51 Here, we use active learning
techniques to evaluate regions of chemical space where the
ML model is uncertain. Active learning is an ML technique
often used to sample unexplored regions of state space. Our
implementation uses a trained ensemble of ML models to
measure uncertainty of the remaining chemical space. Specif-
ically: first, a 10-ensemble ML model was trained on the 10k
SCOP-PCQC molecules to directly predict S1 and T1 ener-
gies. Then, the ensemble was used to predict S1 and T1 en-
ergies on the remaining 3.5M molecules in PCQC. The 100k
molecules with the highest uncertainty (variance in ensemble
prediction) were chosen as an expansion to SCOP-PCQC, la-
beled SCOP-AL-Exp, for each of S1 and T1. This process
helps ensure broad applicability of the ML model. More de-
tails about the active learning process are available in SI Sec-
tion V.

C. Test datasets

To evaluate the generated models, various test datasets
were used. First, we used 10-fold cross-validation with
80%/10%/10% training/validation/test splits to quantify in-
domain accuracy. In k-fold cross-validation, k non-overlap-
ping test sets are generated, and models are trained on the re-
maining 90% of data. Validation sets are also non-overlapping
and are used to prevent overfitting.

To prove broader applicability, external test sets were also
compiled. 1143 molecules from Wilbraham et al.’s paper on
Mapping the optoelectronic property space of small aromatic
molecules (MOPSSAM) was used, 143 from their calibration
training set and 1000 randomly selected from the remaining
250k molecules.16 10k molecules from Fallon et al.’s paper
on indolonaphthyridine thiophene (INDT) derivatives were
also used as they are promising candidates for singlet fission.7

1000 molecules from Abreha et al.’s VERDE database (Verd-
eDB) were used, as the classes of molecules identified (por-
phyrins, quinones, dibenzoperylenes) are relevant for vari-
ous green chemistry excited state applications.39 Finally, to
truly test the broader applicability of the model, another active
learning cycle was run on PCQC. Using a training set com-
posed of the 10k molecules from SCOP-PCQC plus the 200k
molecules from SCOP-AL-Exp, an ensemble ML model was
generated and used to evaluate uncertainty on the remaining
PCQC molecules. 100k of the highest uncertainty molecules
for each of S1 and T1 were chosen as the last test set, labeled
PCQC-AL. Additional information about active learning is in
SI Section V).
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Figure 2. Embedding of (a) training datasets, and (b) test datasets in global chemical space. Training datasets include SCOP-PCQC (green),
QM-symex-10k (red), SCOP-AL-Exp-S1 (purple), SCOP-AL-Exp-T1 (blue), and QM-symex (yellow). Test datasets include MOPSSAM 143
(blue), MOPSSAM 1k (green), INDT (yellow), VerdeDB (red), and PCQC-AL (purple). The grey datapoints show all molecules not included
in the category. A UMAP model was created on all 414k training and test molecules to get their relative positions in chemical space. The
Jaccard-Tanimoto similarity coefficient is calculated between each pair of molecules, and UMAP uses this metric for dimensional reduction to
2D space. Additional data on chemical makeup of the training datasets is presented in SI Section I.

To visualize the training and test datasets, we plotted the
locations of the datasets in chemical space. We used uni-
form manifold approximation and projection (UMAP),52 a
dimensionality reduction technique that reduces the high-di-
mensional space of chemical structure into 2 dimensions for
ease of visualization. We use the Jaccard-Tanimoto similar-
ity between Morgan fingerprints of molecules as a measure
of proximity in chemical space. We first generated a global
UMAP based on all molecules, then categorized them into (a)
training and (b) test, and colored them based on their dataset,
shown in Figure 2.

-A few trends become apparent from this visualization. As
seen in Figure 2(a), SCOP-PCQC is primarily localized to two
regions, while the active learning expansions have broader
coverage of chemical space. Many molecules in the SCOP-
AL-Exp set are localized around the SCOP-PCQC molecules,
suggesting that despite the chemical similarity of structures,
their excited state energies may be significantly different.
We further observe that the QM-symex-10k dataset provides
a uniform sampling of the overall QM-symex dataset, and
that the QM-symex datasets are significantly different from
PCQC. Turning to test datasets, we note that the INDT dataset
is significantly different from both the PCQC and QM-symex
based training datasets. VerdeDB has some molecules outside
but near the PCQC training sets, while others are within the
PCQC space. Finally, both MOPSSAM datasets seem to lie
within the PCQC training set space, implying good predictive
performance is expected.

D. Computational details

Since the supervised ML model takes in molecular structure
and excited state data, we must obtain excited state data for all
molecules. xTB-sTDA data was all independently generated.
A 3D structure was first intialized using OpenBabel’s gen3d
function for a short conformer search and preliminary geom-
etry optimization.53 Full ground-state optimization was con-
ducted with GFN2-xTB54 with the tight threshold and a ben-
zene generalized-Born surface-area (GBSA) solvation model
to mimic a non-polar environment. xtb4stda55 was then
used to prepare the wavefunctions output by xTB for sTDA.
Finally, sTDA was used to calculate excited-state properties,
using an energy threshold of 10 eV. The -t flag was used for
triplet excited state calculations. For TD-DFT data, database
values were used where available. PCQC had S1 TD-DFT
data, but T1 data was independently generated. MOPSSAM
had S1 TD-DFT data for the 143 calibration set, but not for the
1000 sampled molecules, so this was independently generated
(see Figure S11 for a comparison of MOPSSAM 143 S1 data
vs. S1 data generated with our workflow, showing virtually
identical results). T1 TD-DFT data was also independently
generated. Both INDT and VerdeDB had S1 and T1 TD-DFT
data available. However, VerdeDB used the M06 functional
for calculations, so these molecules were re-calculated with
B3LYP.

Note that while the xTB-sTDA portion of the workflow was
standardized, the TD-DFT data was database-dependent. For
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consistency, only databases that used the B3LYP functional
were included in this study, but initial coordinate generation
technique and basis sets for (TD)DFT varied for each dataset.
The specific settings for each database are shown in Table S1.
Once excited state values using both xTB-sTDA and TD-DFT
were either compiled or calculated, they could be fed to the
ML model.

E. Choosing a machine learning architecture

The type and architecture of the ML model must be opti-
mized for performance. The 3 ML models considered were
DeepChem’s56 graph convolutional network57 (DC GCN),
DeepChem’s message passing neural network58 (DC MPNN),
and Chemprop’s directed message passing neural network59

(CP MPNN). These 3 models were chosen as they are com-
monly used graph neural networks, which have emerged as
a natural choice for molecules where nodes represent atoms
and edges represent bonds. The models each use different ar-
chitectures and methodologies for featurization and property
prediction. DeepChem’s GCN is based on Duvenaud et al.’s
paper which introduced a method to generalize conventional
circular fingerprints using convolutional neural networks to
generate neural graph fingerprints.57 DeepChem’s MPNN is
based on Gilmer et al.’s work which expands upon Duvenaud
et al.’s GCN and is better able to identify correlations between
node and edge states.60 Chemprop’s MPNN is based on Yang
et al.’s work which adds directionality to the message passing
step, preventing noisy graph representations.59

We are interested in comparing each model’s performance
in our application. The default, out-of-the-box settings for
each ML model were used, as described in SI Section III. Cal-
ibration of the 1000 molecules in the VerdeDB39 database was
used to compare the different ML models. The small size
and relatively homogeneous nature of this dataset makes it
suitable for quickly comparing different ML models. Only
the SMILES (simplified molecular-input line-entry system61)
representation of the molecule was provided as input, and the
goal of each model was to accurately predict the S1 and T1
error between xTB-sTDA and TD-DFT. Instead of predicting
both S1 and T1 error simultaneously, two separate single-task
models were generated, both using 10-fold cross-validation.
For each fold, the trained ML model was used to predict error
values of the test set. Then, each molecule’s predicted error
was added to the xTB-sTDA output to give a calibrated en-
ergy, called the xTB-ML value. The xTB-ML values were
compared to the TD-DFT reference results by calculating an
R2 score.

Figure 3(a) shows the results of comparison for S1 and T1
energies. As seen, all ML models vastly outperform the linear
calibration method. Between the ML models, CP MPNN per-
forms the best for both T1 and S1. Note that the large variabil-
ity in R2 can be explained by the presence of outliers in the test
set – since the test set was only composed of 100 molecules
(10% of 1k), a few outliers can vastly impact performance.

Figure 3(b,c) show plots of original vs. CP MPNN-
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Figure 3. (a) Comparison of various ML models in accurately cali-
brating xTB-sTDA against TD-DFT, quantified by R2 score. ‘orig’
= original xTB-sTDA data with no calibration, ‘lin calib’ = linear
regression calibration of xTB-sTDA data. All others are ML mod-
els as presented above. Blue bars are xTB-ML T1 energies while
orange bars are xTB-ML S1 energies. R2 for original S1 data is -
1.84 ± 0.65, the plot was truncated for clarity. (b,c) Plots of original
xTB data (‘orig’, red) and CP MPNN ML-calibrated xTB data (‘ML
calib’, blue) against reference TD-DFT data generated with Gaus-
sian, for (b) S1 energies and (c) T1 energies. Datapoints are all test
data compiled across 10 non-overlapping folds in cross-validation.
(d) R2 scores of xTB-ML vs. TD-DFT for various improvements
attempted to CP MPNN. ‘default’ bars use the out-of-the-box hyper-
parameter settings with no additional features. ‘100ep’ bars use 100
epochs instead of the usual 30. ‘hyperopt’ bars use hyperparameter
optimization. Bars labeled ‘multi’ use multitasking so only 1 model
predicts both S1 and T1.

calibrated xTB-sTDA data for (a) S1 and (b) T1 energies, with
test data from all 10 folds compiled and with outliers removed
(full plots with outliers available in SI Section IV). From this
analysis, it is evident that CP MPNN performs well in cali-
brating xTB-sTDA results, even with its default settings.

To see if the performance could be boosted further, various
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Figure 4. Workflow for xTB-ML calibration. Blue boxes represent data, red boxes represent intensive calculations, orange boxes represent
quick calculations, and green boxes represent final results. Starting with the training datasets, the TD-DFT and SMILES data are directly
extracted. If TD-DFT data is not already available, it is independently generated by first running DFT ground-state optimization and then TD-
DFT for excited state calculations. For the xTB-sTDA portion, the SMILES strings are converted to 3D molecular structures with OpenBabel
and xTB, and then excited state calculations are conducted with sTDA. Then the SMILES string (Class 1) or the SMILES string and sTDA
energy (Class 2) are fed to the ML model, which is trained to predict the the error between xTB-sTDA and TD-DFT. The resulting ML model
can be used to predict values of various test datasets and quantitatively evaluate its accuracy.

architectural improvements were attempted. These included
increasing the number of epochs (number of iterations to op-
timize the neural network weights) to 100, conducting hyper-
parameter optimization (finding the best ML architecture i.e.
hidden size, depth, dropout, and number of feed-forward lay-
ers), and conducting multi-task training (using a single model
to predict both S1 and T1 energies simultaneously). More de-
tails about these optimization approaches are available in SI
Section III.

The results from these improvements are shown in Figure
3(d). As seen, there are only small differences in performance
between the default settings and any potential improvements
to the ML settings. For T1, hyperparameter optimization pro-
vides minimal improvement, while including additional fea-
tures or adding multitasking reduces accuracy. For S1, both
hyperparameter optimization and multitasking marginally im-
prove performance. There is thus a tradeoff in using multi-
tasking as it could reduce accuracy for T1 predictions but im-
prove accuracy for S1, while also reducing overall computa-
tion time. Because of the time savings of the multi-task model
and previous works showcasing the benefits of multi-property
prediction,62–64 this was used for ML for the following sec-
tions. Hyperparameter optimization was not performed for

the following models, due to the only marginal improvement
seen. Based on this analysis, a larger-scale calibration model
can now be developed using CP MPNN.

F. Machine learning calibration workflow

Combining all of the above methodology, a workflow was
developed to create ML models that calibrate the xTB-sTDA
energy of molecules against TD-DFT reference. The work-
flow can be separated into three distinct steps: data generation,
model training, and model testing. In the data generation step,
S1 and T1 excited state energies using TD-DFT and sTDA
were either extracted from existing databases or calculated,
if necessary. The errors between the energies derived from
the two techniques were calculated and used as the ground-
truth values that the ML model tried to predict. The SMILES
strings were also extracted for molecules and used as a repre-
sentation of molecular structure.

In the model training step, ML models were trained to take
input data and predict xTB-sTDA vs. TD-DFT error. Two
classes of models were trained, one with only the SMILES
string as input (Class 1) and another with both SMILES
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and sTDA energy as input (Class 2). During training, the
SMILES string was converted to the graphical representa-
tion of the molecule, which was then featurized using an
MPNN. If the sTDA energy was used (Class 2), it was con-
catenated as an extra feature at this step. Then, feature to
property prediction was conducted using a feed-forward NN.
To improve reliability of results and ensure all molecules were
included in the training process, a 10-model ensemble was
generated with 10-fold cross-validation using 80%/10%/10%
train/validation/test splits. This process resulted in an opti-
mized ensemble ML model for error prediction.

Once the ML model was trained, it was tested on various
datasets. Using the respective inputs, the ML model predicted
xTB-sTDA vs. TD-DFT errors for the test molecules. When
the errors were added to the original xTB-sTDA values, the
final calibrated energies were obtained. These were compared
to the TD-DFT-calculated values to get a quantitative measure
of accuracy of each ML model.

Figure 4 presents an overview of the calibration workflow.
The following section details the results of applying the above
calibration workflow to generate an optimized ML model.
The model is then applied for high-throughput screening and
chemical space mapping.

III. RESULTS

A. Cross-validation

Before considering external datasets, ML model perfor-
mance was evaluated on subsets of the training sets them-
selves. 10-fold cross-validation (training on 90% of the data
and testing on the remaining 10% 10 times with non-overlap-
ping test sets) was conducted separately on the SCOP-PCQC,
QM-symex-10k, SCOP-AL-Exp, and QM-symex datasets.
Class 1 models (only molecular structure as input) and Class 2
models (both molecular structure and sTDA energy as input)
were both tested. Results are compiled in Figure 5(a), with
plots of Class 2 models for SCOP-AL-Exp and QM-symex
shown in Figure 5(b)-(e). As seen, the original data has low
accuracy when compared to TD-DFT results, and linear cali-
bration improves the accuracy slightly. However, there is not
a clear linear shift due to some groups of molecules located
farther from the line of best fit. In contrast, for both datasets,
the ML-calibrated values have much lower MAE and demon-
strate significant improvements from uncalibrated xTB-sTDA
values, especially for T1 data. The increase in accuracy with
ML is likely because ML detects higher-order patterns, allow-
ing groups of molecules to shift locally instead of having to
follow a global calibration rule.

As seen, the ML models performed well in cross-validation.
However, it is possible that the ML model only performed
well because the datasets were homogeneous, so similar
molecules to those in the test set were included in the train-
ing set. To evaluate the broad applicability of our model, we
used external test sets of molecules not included in either of
the datasets above.

orig lin C-1 C-2 orig lin C-2 C-1

SCOP-PCQC (10k) 0.32 0.29 0.21 0.17 0.68 0.31 0.20 0.15

QM-sym-10k (10k) 0.68 0.46 0.21 0.14 1.16 0.38 0.18 0.09

SCOP-AL-Exp (200k) 0.56 0.47 0.27 0.20 0.79 0.49 0.26 0.17

QM-symex (100k) 0.69 0.42 0.14 0.04 1.14 0.33 0.14 0.03

0.03 1.16

Calibration type

MAE (eV)

S1 MAE T1 MAETraining set (size)

(a)

Figure 5. (a) Table comparing cross-validation results for various
training datasets and various levels of calibration. ‘orig’ = raw xTB-
sTDA values,‘lin’ = linearly calibrated data, ‘C-1’ = ML calibrated
data with Class 1 model, ‘C-2’ = ML calibrated data with Class 2
model. (b) - (e) Plots of xTB-sTDA calibration of (b) SCOP-AL-Exp
S1, (c) SCOP-AL-Exp T1, (d) QM-symex S1, and (e) QM-symex
T1 energies, using Class 2 cross-validation (CV) models. 10-fold
CV was conducted, meaning all data points shown are test points
predicted by an ML model trained on the other 90% of data. Only
one fold is shown here for clarity of visualization, but the metrics cor-
respond to an average over all 10 folds. Inlaid box shows quantitative
measurements of accuracy for original, linearly calibrated, and ML
calibrated data. Red dots are original data with no calibration, green
dots are linearly calibrated data, and blue dots are calibrated with
ML. (Best R2 is 1, while best MAE is 0.)

B. External test datasets

To test broad applicability, a more general ML model is
needed. Therefore, an overarching ML model was trained
on the 10k SCOP-PCQC molecules combined with the 10k
QM-symex-10k molecules, for a total training size of 20k
molecules. The overarching ML model was first tested on the
MOPSSAM 143 external dataset. As seen in Figure 6, the
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Figure 6. Plot of xTB calibration of the 143 MOPSSAM molecules
for (a) S1 and (b) T1 energies using a Class 1 ML model. Red dots
are original data with no calibration, green dots are linearly calibrated
data, and blue dots are calibrated with ML. Training data was the 20k
molecules in SCOP-PCQC + QM-symex-10k, and test data was the
143 molecules shown here. Inlaid boxes show quantitative measure-
ments of accuracy for original, linearly calibrated, and ML calibrated
data.

ML calibrated xTB-sTDA data matches TD-DFT values bet-
ter than both the original data and the linearly calibrated data.
While the data are sparse, there are a few regions where the
improvement is clearly visible. For example, for high S1 ener-
gies, the linear calibration tends to overcorrect, while for low
S1 energies the linear calibration undercorrects. In contrast,
the ML model is more flexible and adequately corrects mod-
els in both regions. For T1 energies, the ML model performs
similarly to linear calibration with both MAE and R2 metrics.
This is likely because xTB-sTDA nearly always over-predicts
the T1 energy, so calibrating it only requires shifting in one di-
rection, which makes linear calibration sufficient for the task.
For S1 energies, there are both instances of over- and under-
prediction, which motivates the need for an ML model. How-
ever, there is clearly room for improvement in these results, as
the ML MAE is still high.

Two avenues of improvement were pursued - first, using a
larger training set, and second, adding additional input data to
the ML model. As discussed in the Methods section, a larger
training set was generated using active learning to sample re-
gions of chemical space not represented in the 20k training set.
The expanded ML model uses 200k molecules chosen with
active learning plus all QM-symex molecules (120k), added
to the initial 20k training set, for a total of approximately 300k
molecules. To distinguish the two ML models generated, the
20k model is named xTB-ML-20k while the expanded 300k
model is xTB-ML-300k. The second improvement explicitly
included the xTB-sTDA calculated energy as an input to the
ML model. As discussed previously, for these models, called
Class 2, the xTB-sTDA energy was concatenated to the gen-
erated molecular features during the training process.

The performance of Class 1 and 2 xTB-ML-20k and
xTB-ML-300k models are compared for several external
datasets: MOPSSAM 143, MOPSSAM 1000, INDT, Verd-
eDB, and PCQC-AL. Figures replicating Figure 6 for the var-
ious datasets are available in SI Section VI, with primary ac-

curacy metrics presented in Figure 7.
As seen, all ML models improve raw xTB-sTDA values,

but to different extents depending on the training and test set
considered. For the MOPSSAM and PCQC-AL datasets, us-
ing larger datasets with more input data generally improves
results. This result is intuitive, as more data allows the ML
model to learn more about patterns in the datasets. The lowest
MAE obtained was 0.08 eV using the Class 2 xTB-ML-300k
model on T1 energies of MOPSSAM 143.

For the INDT and VerdeDB datasets, the results are less in-
tuitive. In these cases, the Class 1 xTB-ML-20k ML model,
i.e. the model trained on a smaller training set with less input
data, performs better. There are several reasons this could
be happening. The INDT and VerdeDB datasets are com-
posed specifically of molecules relevant to photon conversion
or green chemistry applications. Similarly, the xTB-ML-20k
dataset is composed primarily of literature scraped molecules
intended for spectral conversion applications, so it is more
likely to include molecules similar to those in INDT or Verd-
eDB. Although the training set size in xTB-ML-300k is larger,
the method of expansion through active learning specifically
includes molecules significantly different than the 20k train-
ing set, so the model may not increase in accuracy for photon
conversion molecules, i.e. is not backwards compatible. In
terms of why the Class 2 models perform worse than Class
1 models, this could be related to the nature of the training
sets used. Both the 20k and 300k training sets have only a
few low-excited state energy molecules. Therefore, the cali-
bration in this region may be inaccurate. As seen in Figure
S15, the INDT dataset is primarily composed of low-energy
molecules. Therefore, if the energy is localized by providing
the sTDA energy, the molecule may undergo an inaccurate
calibration. This localization is minimized if the calibration
is done solely based on molecular structure, allowing a more
accurate calibration.

Most of the best-performing ML models result in an MAE
of less than 0.20 eV. However, the one dataset with large
MAEs is the PCQC-AL T1 energies. As seen in Figure S17,
most of the calculated energies follow a general linear trend.
However, there is a large cluster of molecules distinctly sepa-
rated from the rest that is inflating the MAE. This is expected
from the active learning workflow, which selects molecules
difficult to predict with the existing model. Naturally, if a
subset of these molecules were included in the training set,
the overall MAE would likely improve drastically. Regard-
less, while this test dataset has large errors, by design these
are the largest errors one can obtain, and for general PCQC
molecules the error should be lower.

Overall, these results show that the ML models significantly
improve raw xTB-sTDA calculated values. In most cases, the
best-performing ML model reduces the MAE by more then
half. Further, while not shown in Figure 7, the ML models
also consistently outperform linear calibration, showing the
benefits of a higher-order calibration. We have thus shown
that machine learned calibrations can help improve the ac-
curacy of xTB-sTDA results over a wide variety of datasets,
when compared to a TD-DFT (B3LYP) reference. We can
now use these models for various applications.
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MOPSSAM (143) 0.26 0.16 0.17 0.11 0.11 0.59 0.17 0.13 0.10 0.08

MOPSSAM (1k) 0.20 0.17 0.16 0.15 0.14 0.39 0.19 0.15 0.14 0.12

INDT (10k) 0.35 0.13 0.20 0.43 0.28 0.40 0.13 0.15 0.60 0.38

Verde (1.5k) 0.41 0.30 0.29 0.26 0.32 0.48 0.19 0.22 0.26 0.29

PCQC AL (200k) 0.56 0.42 0.28 0.33 0.20 1.22 1.15 1.03 1.06 0.99

0.08 1.22
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Figure 7. Performance of xTB-ML-20k and xTB-ML-300k on various external test datasets, compared to raw xTB-sTDA energies. Two
classes of model are tested, Class 1 with only molecular structure as input and Class 2 with both molecular structure and xTB-sTDA energy
as input. Test datasets are completely different than the training datasets, and are split into 3 categories: MOPSSAM (for comparison to
previous work in xTB-sTDA calibration), datasets relevant for TTA/SF (INDT and VerdeDB), and a broader applicability dataset (PCQC-AL).
Performance is measured with the MAE, which is calculated with TD-DFT (B3LYP) as reference.

C. Applications of xTB-sTDA calibration

1. Direct vs. calibration ML models

ML has been used extensively in the past to explore the ex-
cited state space of molecules, primarily being used to directly
predict excited state properties such as energies, spectra, and
dynamics.65,66 However, we expect a ML model trained to
directly predict TD-DFT results to perform worse than a cal-
ibration model where the baseline method does most of the
work and the calibrator simply shifts the result in the right
direction. This calibration or ∆-ML approach has been used
extensively in the past, and has shown superior performance
to pure ML models.19–25,28,29 Calibration is particularly use-
ful for improved out-of-domain predictive performance. Be-
cause supervised ML is a data-driven method, it may have
poor performance on molecules distinctly different than those
in the training set. In contrast, xTB-sTDA is data-agnostic,
so it should give reasonable results regardless, and ML should
slightly improve results through calibration.

To prove this for the xTB-ML models generated in this
work, we consider Class 1 ML models trained on the 20k
and 300k datasets presented previously, but instead of being
trained on the error between TD-DFT and xTB-sTDA (as
xTB-ML-(20k,300k) are), the new models, called TDDFT-
ML-20k,300k, are trained directly on TD-DFT values. (Note
that direct Class 2 ML models would give equivalent results to
calibration Class 2 models, since the sTDA energy is provided
as input.) xTB-ML-(20k,300k) and TDDFT-ML-20k,300k are
then tested on the MOPSSAM 143 dataset, with TDDFT-ML
directly predicting values, and xTB-ML predicting the errors
which are added to the sTDA energies to get the final cali-
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Figure 8. Comparing direct vs. calibration ML models for
MOPSSAM. ‘orig’ data is uncalibrated xTB-sTDA data, ‘direct ML’
indicates results of directly predicting TD-DFT data with ML using
a (a) 20k and (b) 300k molecule training set, and ‘xTB ML’ indicates
results of calibrating xTB-sTDA values with (a) Class 1 xTB-ML-
20k. and (b) Class 1 xTB-ML-300k.

brated values. The results of this analysis are shown in Figure
8.

As seen, the performance of the directly trained ML model
is worse than the ML-calibrated xTB data for both dataset
sizes. The TDDFT-ML-20k model performs similarly to the
linear calibration model (seen in Figure 6), while the xTB-
ML-20k model already significantly outperforms both. How-
ever, it is well known that direct ML models often require
more training data than calibration ML models. When expand-
ing the training set to 300k, the TDDFT-ML-300k model out-
performs linear calibration but still underperforms compared
to both xTB-ML-20k and xTB-ML-300k. Thus, calibrating



7

xTB with ML gives much higher accuracy than using ML to
directly predict energies. The benefit to a direct ML model
is computational speed, as it can screen approximately 2 or-
ders of magnitude more molecules in a given time period than
xTB-ML. However, our goal is to attain approximately the
same accuracy as TD-DFT methods, so a direct ML model
would not be useful. From the above analysis, our assumption
of the improved performance of a calibration ML model is up-
held. We now apply our generated calibration ML models for
high-throughput screening and chemical space mapping.

2. High-throughput screening for spectral conversion

As discussed in the Introduction, one of the motivations
of developing this ML calibration is fast and accurate high-
throughput virtual screening (HTVS) of spectral conversion
materials. The two spectral conversion techniques of interest
are triplet-triplet annihilation (TTA) up-conversion and sin-
glet fission (SF) down-conversion. In general terms, TTA in-
volves two sensitizer molecules that absorb low-energy light
and transfer their energy to a single emitter molecule which
then re-emits the high-energy light. SF involves two emitter
molecules, where one absorbs high-energy light and transfers
half its energy to a neighboring emitter, and both re-emit low-
energy light. In such molecules, the S1 excited state is usually
involved in absorption/emission while T1 is typically used for
energy transfer. The excited state energy levels of sensitizers
and emitters must be well-aligned for efficient spectral con-
version – figures of merit (FOMs) to evaluate this alignment
are:

FOMsens =

{
0 S1 < T1

e−
∣∣∣1− S1

T1

∣∣∣ S1 ≥ T1
(1)

FOMemit = e−
∣∣∣2− S1

T1

∣∣∣{SF S1 > 2T1

TTA S1 < 2T1
(2)

For sensitizers, the first check is if the energies are in-
valid, i.e. if the T1 is greater than the S1. Then, molecules
with S1 close to T1 are rated higher. Emitters can be sepa-
rated into those suitable for singlet fission (singlet more than
twice triplet) or triplet-triplet annihilation (singlet less than
twice triplet). The same FOM formula is used for both cases,
where S1 close to twice T1 is desirable. By ensuring the ratios
are as close as possible to ideal, we ensure there is minimal
loss in energy. Note that properties related to absorption-to-
emission likelihood such as oscillator strength, triplet-triplet
energy transfer probability, triplet-triplet annihilation proba-
bility, and others are also important, but are not considered in
the present analysis which focuses on optimizing excited state
energy level alignment. Although not considered here, xTB-
sTDA does output the oscillator strength of each transition,
which can be directly used, demonstrating a further benefit of
the calibration method.

We screen the 250k molecules considered in Wilbraham et
al.16 for sensitizers and emitters, to demonstrate the applica-
bility of xTB-ML to high-throughput screening. We use the

Figure 9. (a,b) Plots of 250k molecules showing difference in cali-
brated (a) S1 and (b) T1 with ML model compared to linear model.
Red dots are without calibration, yellow dots are with linear cali-
bration, and blue dots are with ML calibration. (c,d) Plots of 250k
molecules showing S1 and T1 energies, colored with FOM for (c)
sensitizers and (d) emitters. (c) and (d) share a colorbar. Target prop-
erties are correct ratio of S1/T1 as defined in Equations 1 and 2.

Class 2 xTB-ML-300k model as it is the most accurate for the
MOPSSAM dataset. First, we calibrate S1 and T1 energies
using the ML model, and compare the results to the linear cal-
ibration done in the original work. The results are shown in
Figure 9(a,b).

For S1, the linear calibration is minimal. The ML calibra-
tion remains centered around the raw data for mid- to high-
energies, but changes more drastically at low energies. This
mirrors the previous discussion of Figure 6, where the linear
calibration either over- or under-corrects, but the ML model
is more flexible. For T1 calibration, at mid- to high-energies,
both linear and ML calibration shift the energy down, reflect-
ing the tendency of xTB-sTDA to consistently overestimate
T1 energies. For low T1 energies, the ML model increases
the raw energy, suggesting sTDA tends to sometimes spuri-
ously calculate low T1 energies which can be corrected with
ML. Note that because TD-DFT data was not calculated for
these 250k molecules, we cannot compare the calibration to
ground truth, but based on the metrics presented in Figure 7,
it is likely the ML-calibrated values are more accurate.

Now that we have both S1 and T1 energies calculated for
250k molecules with xTB-ML, we can identify potential sen-
sitizers and emitters, using the FOMs defined in Equations 1
and 2. Figure 9(c,d) shows the results of screening molecules
for potential sensitizers and emitters.

As seen, there are several molecules that would function as
potential sensitizers and emitters for photon conversion. SI
Section VII contains further details about the chemical com-



8

position of the candidate molecules and their distribution in
chemical space. The suggested molecules could then be veri-
fied with higher-accuracy techniques such as range-separated
hybrid TD-DFT or CC2 to confirm their suitability.

Note here the importance of accuracy for a first-pass screen-
ing methodology such as xTB-sTDA. If the uncalibrated re-
sults were used, likely several suggested molecules would not
be suitable (false positives), and several suitable molecules
would not be suggested (false negatives). Using xTB-ML im-
proves the quality of suggestions by reducing both of these
rates.

We have therefore used the Class 2 xTB-ML-300k model
to make quick, relatively accurate calculations for S1 and T1
energies, and have used the results to screen for potential sen-
sitizers and emitters. This screening was relatively fast as the
dataset size was small (250k) and xTB-sTDA results were al-
ready provided by Wilbraham et al.16 For larger datasets on
the order of millions (PubChem)67 or billions of molecules
(GDB-17)68, running xTB-ML becomes expensive. A more
intelligent sampling technique (such as active learning) could
be used to screen such large databases, and this is an avenue
of future work.

3. Mapping inaccuracies of xTB-sTDA in chemical space

Since our ML model predicts the error in xTB-sTDA, an in-
teresting application is to map the error in S1 and T1 calcula-
tions in a global chemical space, to see if there are some areas
where xTB systematically over- or under-estimates, or areas
where xTB is projected to be fairly accurate. For this analysis,
we use Class 1 xTB-ML-300k, as it is shown to be accurate in
the general chemical domain and does not require xTB-sTDA
computations, so large-scale predictions can be made quickly
with ML.

We first used UMAP to generate a chemical space map of
all PCQC molecules. We then colored the global chemical
space map in 3 different ways, as shown in Figure 10.

For the first two plots (Figure 10(a) and (b)), we used our
ML model to predict the error in xTB-sTDA. Here, the error
is defined as:

∆Eerror = ETD-DFT−ExTB-sTDA (3)

so a negative error implies xTB-sTDA is over-predicting the
excited state energy. As seen in Figure 10(a), there are dis-
tinct regions where xTB-sTDA over-predicts S1 (right side),
regions where xTB-sTDA has reasonable accuracy (top left
and center), and regions where it under-predicts (bottom left
and top). In general, most molecules are within±0.5eV error.

In contrast, for the T1 energy, xTB-sTDA over-predicts for
almost all molecules, as seen in Figure 10(b). Note that the
scale in this plot is shifted from -0.5–0.5 eV (as in S1) to 0–
-1.0 eV, to make the distribution of errors clearer. Only a few
scattered molecules are under-predicted by xTB-sTDA and
are colored red, and all other molecules are over-predicted.
Similar to S1, xTB-sTDA over-predicts T1 for most molecules
on the right side, and gets reasonable accuracy on molecules

Figure 10. Global chemical space maps of the PubChemQC dataset.
Chemical space plots generated with the UMAP dimensionality re-
duction algorithm. Plots of xTB-sTDA (a) S1 and (b) T1 errors in
global chemical space. (c) Clustering of molecules in global chemi-
cal space using the HDBSCAN algorithm. (d) Number of molecules
per cluster in global chemical space.

in the middle and top left. T1 is also over-predicted on a clus-
ter of molecules on the bottom left and top.

Next, we used HDBSCAN69 to cluster the molecules based
on proximity, as shown in Figure 10(c). HDBSCAN takes as
input the reduced dimension data from UMAP and outputs a
number for each datapoint. It is a soft clustering, not creating
distinct categories but instead giving molecules a rating be-
tween 0 and 1 (or -1 for no cluster, as approximately 1/3 of the
molecules were unable to be clustered) and 100 distinct clus-
ters were created manually from these ratings. We used a min-
imum cluster size of 10 and the leaf cluster selection method.
We can see that HDBSCAN effectively clusters molecules in
space, with most molecules in close proximity included in the
same cluster. Some of the clusters themselves are spread out
across space, such as the purple cluster that includes many
molecules along the edge of the global space. Note that this is
a dataset-agnostic clustering, as the clustering algorithm only
sees molecular information and no labelled data. More details
about the HDBSCAN algorithm can be found in their paper69

and website.70

A natural question is whether each cluster as defined by
HDBSCAN has a particular error associated with it. For ex-
ample, it seems that xTB-sTDA does a relatively good job
for the red cluster, but over-predicts energies for molecules in
light blue, purple, and orange clusters. In contrast, the dark
green and red clusters seem to have low errors. Although
HDBSCAN is a soft clustering, we can categorize molecules
into 100 distinct clusters based on the number assigned to
them, as well as 2 additional clusters (1 each for unclustered
molecules and for outliers). Figure 11 quantifies the mean er-
rors for S1 and T1 energies for each cluster.

Subplots (a) and (b) show the mean errors (ME) of S1 and
T1, while (c) and (d) show mean absolute errors (MAE). As



9

0 20 40 60 80 100

Cluster num

−0.3

−0.2

−0.1

0.0

0.1

xT
B

er
ro

r
(e

V
)

S1 ME

(a)

0 20 40 60 80 100

Cluster num

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

xT
B

er
ro

r
(e

V
)

T1 ME

(b)

0 20 40 60 80 100

Cluster num

0.0

0.1

0.2

0.3

0.4

0.5

0.6

xT
B

er
ro

r
(e

V
)

S1 MAE

(c)

0 20 40 60 80 100

Cluster num

0.0

0.2

0.4

0.6

0.8

1.0
xT

B
er

ro
r

(e
V

)

T1 MAE

(d)

Figure 11. Mean errors for S1 and T1 energies of molecules in global
chemical space. (a) Mean S1 error, (b) mean T1 error, (c) mean abso-
lute S1 error, and (d) mean absolute T1 error. "Absolute" error takes
the absolute value of errors before averaging them.

seen, the red/yellow/green clusters are likely to have low error,
while the purple/dark green clusters have high error. While
this analysis is generally useful, the mapping and clustering
approach requires knowing the location and cluster catego-
rization of a specific molecule in global chemical space. Of-
tentimes, this is not known, or would require significant com-
putation.

Instead, it would be beneficial to have some chemical in-
tuition of accuracy based on the molecular structure, to have
greater confidence in xTB-sTDA calculations, or to know to
use the ML model or consider other computational techniques.
To this end, we can identify substructures that are more likely
to be present in low-error or high-error molecules.

We first use our ML model generated above to predict the
S1 and T1 error between xTB and TD-DFT for 1M molecules
randomly subsampled from PCQC. We then categorize the
molecules based on the predicted error as follows:

CatS1 =


Low |S1,err|< 0.05
HighUnder S1,err > 0.5
HighOver S1,err <−0.5

CatT1 =


Low |T1,err|< 0.05
HighUnder T1,err > 0
HighOver T1,err <−1.0

(4)

where "under" refers to xTB underestimating the energy while
"over" refers to overestimating (note the error definition in
Equation 3). For both T1 and S1 error, we define low error as
<±0.05 eV. However, for defining high error, for T1 we shift

Figure 12. Grid of molecular substructures over-represented in
molecules in each error category as predicted by the ML model, for
(a) low S1 error, (b) low T1 error, (c) high S1 overestimation, (d)
high T1 overestimation, (e) high S1 underestimation, and (f) high
T1 underestimation. According to RDKit,71 blue atoms are the cen-
ter atoms, yellow atoms are aromatic atoms, dark gray atoms are
aliphatic ring atoms, and light gray atoms/bonds are connectivity in-
variants.

the bounds down by 0.5 to reflect the distribution of errors, as
seen in Figure 10(c).

We can conduct substructure analysis on the low and high
overestimation categories (ignoring high underestimation due
to low fraction of molecules) to know when to trust the
xTB-sTDA results, or when to expect exceptionally high er-
rors. We use molZ72 to analyze which substructures are over-
represented in each category. The results of this substructure
analysis are shown in Figure 12.

From these plots, a few patterns become evident. Low er-
ror molecules are more likely to be aromatic, potentially with
sequential attached rings, for both S1 and T1. In contrast, S1
high overestimation, S1 high underestimation, and T1 high un-
derestimation molecules are likely to be not aromatic, with
some unconventional molecular structures included in these
groups. In particular, the S1 overestimation group includes 5
and 7 C-ring molecules, and both S1 and T1 underestimation
include charged N atoms. There are some aromatic substruc-
tures in the T1 overestimation molecules, but they are attached
to the bulk structure with a rotatable bond. This overestima-
tion could be a result of the 3D structure generation, since
only limited conformer analysis is conducted and potentially
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the lowest energy conformer was not achieved. To clarify the
effect of this versus an inherent inaccuracy in the excited state
energy calculation of xTB-sTDA, a more intensive conformer
search could be an avenue of future work. Further substruc-
ture analysis of each error category, including most common
scaffolds and most common fragments based on RDKit,73 is
provided in SI Section VIII.

Overall, these predictions can be used as guides for the ac-
curacy of xTB-sTDA in calculating excited state energies.

4. CC2 calibration of xTB-sTDA

Finally, to show the generalizability of the methodology
presented here, we choose a different reference technique be-
yond TD-DFT, namely CC2.74 CC2 is known to better predict
excitation energies than TD-DFT, but its computational cost
is often prohibitively expensive.31 We use the CC2 S1 values
compiled in QM8,24,75 randomly sampling 10k molecules as
the training set and using the other 11.5k as the test set. xTB-
sTDA values were generated using the same methodology as
before. For ML model ensemble generation, because of the
smaller dataset, we use 20-fold cross-validation with 95%/5%
train/validation splits. This helps ensure all of the data is used
in training. As a Class 2 model, both SMILES and sTDA
energy are given as input. The new model is termed xTB-CC-
ML to distinguish it from the previously generated xTB-ML
models.

Figure 13(a) shows the results of the comparison, with mea-
surements of accuracy for both methods presented in the in-
laid box. As seen, adding the ML calibration to xTB-sTDA
results vastly improves results, reducing the MAE by 66%.
For comparison, Figure 13(b) shows the results of TD-DFT
calculations using PBE076 and CAM-B3LYP on the same test
set of molecules. As seen, xTB-CC-ML has higher accuracy
than TD-DFT calculations for the 11.5k test set, using either
R2 or MAE as the metric.

Note that this figure also justifies the main calibration
methodology presented in this section, of calibrating xTB-
sTDA against TD-DFT. While xTB-sTDA was initially pa-
rameterized against mostly CC2 calculations, its accuracy is
lower than TD-DFT with hybrid functionals such as PBE0,
when compared to CC2. Because TD-DFT values are close in
accuracy to CC2 values, calibrating xTB-sTDA to TD-DFT is
a useful exercise. The functional B3LYP was chosen in this
work due to the large amount of excited state data available
using this functional, because it is less computationally inten-
sive than range-separated hybrid functionals such as CAM-
B3LYP. Calibrating against more accurate functionals or CC2
could be an avenue of future work.

To test the impact of training size on accuracy, 8 different
ML models were generated with training sizes ranging from
100 to 15,000. The models were then predicted on the re-
maining molecules in QM8 not used in the training set. The
MAE of the test set (against CC2 values) was compared to the
MAE of PBE0/def2-TZVP and CAM-B3LYP/def2-TZVP, as
shown in Figure 13(c). As seen, a training size of less than
500 molecules allows xTB-sTDA to achieve similar accuracy
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Figure 13. (a) Plot of xTB calibration against CC2 using a Class
2 ML model with 10k training set and 11.5k test set (shown). Red
dots indicate original xTB calculations while green dots indicate cal-
ibrated xTB data. (b) Plot of TD-DFT calculated values against CC2
values, for accuracy comparison. Black dashed line in both plots
indicates x = y line. (c) Plot of xTB calibration accuracy as a func-
tion of training size, tested on the remaining molecules in the 21.5k
dataset. MAE of the test set is calculated with CC2 values as refer-
ence. The 8 red dots correspond to the 8 ML models generated for
xTB-sTDA to CC2 calibration.

to PBE0. It is more difficult to match CAM-B3LYP, but this is
achieved at a training size of around 1500. At the largest train-
ing size considered (15k), xTB-CC-ML vastly outperforms
both TD-DFT techniques, with a 62% lower MAE compared
to PBE0 and 47% lower MAE compared to CAM-B3LYP.

These are promising results; however, the xTB-CC-ML
model may not be as generalizable as xTB-ML, due to the
smaller (10k), less diverse (only small molecules with up to
8 heavy atoms) training set. To further explore generalizabil-
ity, two additional ML approaches were considered. First we
calibrate xTB-sTDA against CC2 with transfer learning. The
learning rate analysis above showed a 10k training set size
gives high accuracy while leaving enough molecules in the
test set for a reasonable error measurement. Therefore, we
train a ML model on 10k randomly sampled molecules from
QM8 to predict CC2 values given SMILES and xTB-sTDA
energy as input, using the Class 2 xTB-ML-300k model as
a starting point, with the first MPNN and first FFNN layers
frozen. We use the largest, most detailed ML model consid-
ered in this work as a starting point so any adjustments made
to this model using the smaller QM8 set should propagate
to the larger model. The results of this analysis on the 11k
test molecules are shown in Figure 14(a). We call this type of
model xTB-CC-TL.
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Figure 14. (a) Plot of xTB calibration against CC2 using trans-
fer learning with Class 2 xTB-ML-300k model as pre-training. First
layer of both MPNN and FNN are frozen with xTB-ML-300k model
values. (b) Plot of xTB calibration against CC2 using B3LYP calibra-
tion as an intermediary, i.e. calibrating xTB to B3LYP using xTB-
ML-300k and then calibrating the predicted B3LYP values against
CC2 using B3LYP-CC2-ML. ML models are generated with a 10k
training set and, and the 11.5k test sets are shown. Red dots indicate
original xTB calculations while green dots indicate calibrated xTB
data.

Our second approach was to calibrate xTB-sTDA against
B3LYP, then calibrate B3LYP against CC2. We first gener-
ate an ML model that calibrates B3LYP against CC2. We
ran B3LYP independently on QM8 using the same settings
as outlined in the work. Using these values, we train an
ML model on 10k molecules in QM8 that takes in SMILES
and B3LYP energy as input and predicts CC2 energy, called
B3LYP-CC2-ML. We then apply the Class 2 xTB-ML-300k
model generated in this work to predict B3LYP energies. We
finally use these predictions as an input to the B3LYP-CC2-
ML model to get CC2 energies. We therefore calibrate xTB-
sTDA to B3LYP first, and then to CC2. This overall approach
is called xTB-B3LYP-CC-ML. The results of this calibration
are shown in Figure 14(b).

As seen, both xTB-CC-TL and xTB-B3LYP-CC-ML have
similar performance on the test set, and perform slightly worse
than xTB-CC-ML. It is difficult to tell a priori which of these
models would generalize better, although both would certainly
generalize better than the simple xTB-CC-ML model, which
does not consider external data at all. For ease of compari-
son in the future, we have applied all 3 models to the exist-
ing datasets. While it would be ideal to have CC2 energies
for these datasets, unfortunately this would be prohibitively
expensive to generate for the large number of molecules re-
quired to obtain a meaningful error value. We have therefore
left this analysis for a future work, but have uploaded the ML
CC2-calibrated values of all datasets to Github.77

Overall, xTB-CC-ML serves as a interesting proof of con-
cept that can be expanded further in the future, perhaps with
additional CC2 calculations on more diverse molecules.

IV. CONCLUSIONS

We have presented a methodology for calibrating a high-
throughput computational chemistry technique (xTB-sTDA)
against a high-accuracy one (TD-DFT) using machine learn-
ing. We first decided on Chemprop’s directed message pass-
ing neural network (MPNN) as the ML architecture of choice,
then generated a training set using literature scraping of rele-
vant molecules from abstracts (SCOP-PCQC) and an existing
excited state database (QM-symex-10k). We also generated
an expanded training set using active learning. We built two
models based on these training sets (xTB-ML-20k and xTB-
ML-300k).

We then generated blind test sets from: a study on linear
calibration of xTB-sTDA results (MOPSSAM),16 a study on
singlet fission materials (INDT),7 a database of molecules rel-
evant to green chemistry (VerdeDB),39 and a dataset to test
the broad applicability of the model (PCQC-AL).38 On these
external datasets, the ML calibration models outperformed
both raw xTB-sTDA and linear calibration, oftentimes signif-
icantly. Averaging the best MAE over all external test sets
(both S1 and T1) excluding PCQC-AL gave an MAE of 0.14
eV, compared to 0.38 eV for xTB-sTDA. Including PCQC-
AL gave an average MAE of 0.57 eV, compared to 0.83 eV
for xTB-sTDA. If xTB-ML is used as the first step in a high-
throughput screening process instead of raw xTB-sTDA out-
puts, its low error can help ensure that all relevant molecules
are selected, and vice versa.

After evaluating the performance of xTB-ML, we then used
the model for four applications. First was comparing the
xTB-ML model against directly predicted energies with ML,
showing the xTB-ML model had better accuracy (0.11 eV vs.
0.21 eV MAE). Second was rapidly screening 250k molecules
for suitability as sensitizers and emitters for spectral conver-
sion applications. Third was mapping inaccuracies of xTB-
sTDA in chemical space, using the ML model to predict er-
rors. This was used to see which regions of chemical space
xTB-sTDA has high errors in. S1 errors were small, with
most molecules being within 0.5 eV. There were clear regions
where xTB-sTDA overpredicted S1, but only a few for un-
derprediction. T1 energies were generally overpredicted, with
most molecules being between 0 and 1 eV below TD-DFT val-
ues. Global chemical space mapping provides another method
of predicting xTB-sTDA error, by calculating which cluster a
molecule belongs to and referencing the MAE of that cluster.
Properties of low-error molecules were also evaluated, finding
non-aromatic molecules are likely to have higher error. The fi-
nal application was generalizing the methodology to calibrate
xTB-sTDA against coupled cluster theory, and generating a
new xTB-CC-ML model. The calibrated xTB-CC-ML val-
ues had high accuracy (0.10 eV MAE), out-performing TD-
DFT values calculated with PBE0 (0.26 eV MAE) and CAM-
B3LYP (0.19 eV MAE). We also generated more general cal-
ibration models with transfer learning and using B3LYP as an
intermediary.

There are several avenues for future work. First is improv-
ing the ML model architecture. While Chemprop’s MPNN
outperformed other ML models, primarily due to its advanced
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featurization, only the 2D molecular structure and xTB-sTDA
energy were provided as input. Since the 3D structure is
known, including this information would likely improve per-
formance. Another improvement to the ML workflow would
be to conduct a more intensive conformer search. While
OpenBabel’s gen3D function includes a search for 200 con-
formers, these may not include the lowest energy conformer,
thus reducing the accuracy of the xTB portion of the workflow.
Using a conformer searching tool such as CREST78 would be
more comprehensive, although the computation time added
may detract from the high-throughput nature of the xTB-ML
process. The ML model could also be expanded to calibrate
several singlet states instead of just the first, similar to that in
Kang et al.79

Beyond higher level first-principles data, the calibration
models could be further extended to experimental data. How-
ever, this would be time-consuming due to the requirement
of real-world measurements. There have been a few pre-
vious studies in calibrating TD-DFT against experimental
values,28,29 but these used only small experimental datasets.
There is a potential here to apply techniques such as text min-
ing to extract experimental excited state data from published
papers, though the differences in reporting may make this dif-
ficult.

The models can also be extended to other applications. For
example, the graph-based genetic algorithm (GB-GA) devel-
oped by Jensen currently uses uncalibrated xTB-sTDA for
excitation energies.80 xTB-ML models could increase accu-
racy, and if calculations are sufficiently parallelized, this pro-
cess could result in thousands of high-quality candidates being
rapidly generated.

Lastly, although xTB-ML is significantly faster than first-
principles methods, it is still too slow to screen millions of
molecules. As stated previously, with our setup xTB-ML can
calculate excited states of approximately 1500 molecules per
hour (parallelized over 4 computer nodes), for molecules with
< 50 heavy atoms such as those in PCQC. Therefore it would
take over 3 months to calculate all 3.5M molecules in PCQC.
While a definite improvement over TD-DFT (over 3 years),
this is still slow. Expanding to larger databases with bigger
molecules would increase runtime even further. Therefore, as
a final direction, an optimized workflow using active learning
could be implemented, intentionally searching for molecules
with certain desired properties.

V. SUPPLEMENTARY MATERIAL

See the supplementary material for extended analysis of
model training, testing and validation.

VI. DATA AVAILABILITY

The raw data and code to reproduce the figures presented
in this paper are available in a repository on GitHub.77

Trained ML models and prediction data are also available on
GitHub.77

The code for the calibration workflow presented here is
available in a repository on GitHub.81 The scripts for running
TD-DFT, running xTB-sTDA, training the ML model, and us-
ing it for predictions are available.
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