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Abstract 
 The prediction of chemical reaction outcomes using machine learning (ML) has emerged as a 
powerful tool for advancing materials synthesis. However, this approach requires large and diverse datasets 
which are extremely limited in the field of nanomaterials synthesis, due to inconsistent and non-
standardized reporting in the literature, and a lack of understanding of synthetic mechanisms. In this study, 
we extracted parameters of InP quantum dot (QD) syntheses as our inputs, and resultant properties 
(absorption, emission, diameter) as our outputs from 72 publications. We “filled in” missing outputs using 
a data imputation method to prepare a complete dataset containing 216 entries for training and testing 
predictive ML models. We defined the descriptor space in two ways (condensed and extended) based on 
the chemical identity or role of reagents to explore the best approach for categorizing input features. We 
achieved mean absolute errors (MAEs) as low as 20.29, 11.46, and 0.33 nm for absorption, emission, and 
diameter respectively with our best ML model. We used these models to deploy an accessible and 
interactive webapp for designing syntheses of InP (https://share.streamlit.io/cossairt-lab/indium-
phosphide/Hot_injection/hot_injection_prediction.py). Using this webapp, we investigated the power of 
ML to uncover chemical trends in InP syntheses, such as the effects of common additives. We also designed 
and conducted new experiments based on extensions of literature procedures and compared our 
experimentally measured properties to predictions, thus evaluating the “real-life” accuracy of our models. 
Conversely, we designed an experiment to obtain InP QDs with specific properties. Finally, we applied the 
same approach to train, test, and launch predictive models for CdSe QDs by expanding a previously 
published dataset. Altogether, our data pre-processing method and ML implementations in this study show 
the ability to design materials with targeted properties and explore underlying reaction mechanisms despite 
limited data resources. 

 

1. Introduction 



Indium phosphide quantum dots (QDs) are a promising alternative to traditional Cd- and Pb- based 
materials for lighting, displays, and optoelectronic technologies1–3. However, due to its increased 
covalency, limitations in easily accessible precursors, and inherent distinctions in precursor reactivity and 
valency, the synthesis of InP has been met by more challenges when compared to their II-VI counterparts 
in terms of extracting generalizable design principles and targeted properties4. Since the first InP QD 
synthesis in 1994 that reported the use of chloroindium oxalate combined with tris(trimethylsilyl)phosphine 
P(TMS)3 in a mixture of trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) using a heat-up 
method5, intense effort has been devoted to exploring new synthetic methodologies and new precursors 
(Figure 1). The most important synthetic developments include the hot-injection method that typically 
produces ensembles with a high degree of monodispersity6, the magic-sized cluster-mediated method that 
exploits our understanding of the non-classical growth mechanisms observed under certain reaction 
conditions7,8, and the microwave-assisted method that uses inductive heating and in situ fluoride generation 
to develop a scalable InP synthetic platform that results in luminescent InP cores directly out of the 
synthesis9. Efforts to replace the highly reactive and challenging to handle tris(trimethylsilyl)phosphine 
(P(TMS)3) precursor to better separate nucleation and growth have resulted in a variety of new phosphorus 
precursors such as aminophosphines10, tris(trimethylgermyl)phosphine11, phosphine gas12, and white 
phosphorus13. In general, synthetic development has focused on narrowing size distributions, increasing 
quantum yields, and exploring more environmentally benign reagents. Other important considerations in 
this regard are tunability and reproducibility in particle size and emission wavelength, which are governed 
by different synthetic factors including but not limited to nucleation temperature, reaction time, precursor 
conversion kinetics, additives, and post-synthetic manipulations. Often, QDs with distinct sizes and 
excitonic emission wavelengths are isolated by taking aliquots from the reaction mixture at different 
reaction times. However, maximizing material yield and achieving precise synthetic control and 
reproducibility over particle size and emission wavelengths of InP QDs still remain a challenge.  

In recent years, machine learning (ML) has emerged as a powerful tool to accelerate chemical reaction 
design and materials discovery. ML techniques are effective at inferring patterns and uncovering trends 
from complex chemical processes or mechanisms when a database of a reasonable size is available. In the 
field of nanomaterials, ML has been used to extract data14–16, discover novel materials17–19, optimize 
chemical reactions20–22, reveal underlying mechanisms23,24, and predict synthetic outcomes25. For example, 
support vector machine classification and regression models were used to synthetically control layer 
thickness of perovskite halide nanoplatelets26. In another application, Bayesian optimization was applied to 
improve monodispersity of PbS QDs, leading to the narrowest reported half-width at half-maximum of 
absorbance of this material27. In 2020, Santos and coworkers published a study wherein different ML 
algorithms were applied to identify influential synthetic parameters and to predict the final size of a variety 
of metal chalcogenide QDs, including CdSe, CdS, PbS, PbSe, and ZnSe25. The Gradient Boosting Machine 
algorithm used in that study resulted in a high R2 value and revealed that growth temperature and time are 
the most influential synthetic parameters. In addition, several groups have used automated technology with 
feedback learning mechanisms to generate their own synthesis parameter space to create nanocrystals, 
including InP28, with desired characteristics20,29. The accuracy of predictions is typically limited by the size 
of the dataset, and the completeness and quality (i.e., cover a wide distribution of parameter space). While 
there are many valuable materials databases such as the Inorganic Crystal Structure Database, NREL 
Materials Database, Materials Project, Stanford Catalysis-Hub, and PubChem, in the field of nanomaterials, 
there are a limited number of adequate datasets largely due to inconsistencies in reporting and the lack of 
an organized, centralized data repository. 

In this work, we employ different predictive ML algorithms to gain insights into reaction condition 
control over particle diameter, absorption, and emission wavelength of InP QDs. ML methods are 



appropriate to help us gain deeper understanding of InP QD synthesis because of the complexity of factors 
that affect the physical and electronic structure of the QDs. In principle, particle diameter, excitonic 
absorption, and band-edge emission should be connected, but from experimental observations, nuances 
related to surface chemistry, stoichiometry, and size and morphological heterogeneity make direct 
correlations less obvious. We demonstrate a dataset pre-processing technique to overcome the challenge of 
having limited data from the literature. Different approaches to define input descriptors and machine 
learning model types are explored to find the best strategy for reaction prediction. Finally, we deploy an 
accessible user interface for external users and apply this interface to compare the results of new 
experiments with predicted results obtained from the ML models.  

 

Figure 1. Timeline and number of publications of InP QDs synthesis. 

 

2. Methods 

2.1 Data Acquisition 

The dataset was created by manually extracting reaction conditions and resultant size and optical 
properties reported in the literature using Web of Science and Scifinder with search terms: “indium 
phosphide”, “indium phosphide quantum dots”, “InP”, and “III-V quantum dots”. We identified 179 articles 
from 1994 to June 2021 that reported syntheses of InP QDs. We then classified the articles by synthetic 
methods (e.g., heat-up, hot injection, magic-sized cluster-mediated, etc.). Since there are significant 
practical differences among the synthetic methods that can affect the accuracy of the predictions, only 
similar methods, where the reaction is done using batch-type techniques with molecular indium and 
phosphorus precursors, were used for further data extraction. We also excluded syntheses that did not 
include any size, absorption, or emission data. This process resulted in an initial dataset that included 219 
syntheses from 72 different articles, in which the hot injection method, heat-up method, reactions using 



phosphine gas, reactions using white phosphorus, and reactions using sodium phosphide make up 73%, 
19%, 5%, 2%, and 1% of the syntheses respectively. An illustration of how the data extraction was done 
can be found in Figure S1.  
 
2.2 Feature Selection: 
 

The information extracted from 219 syntheses was split into input features and output targets. With 
the purpose of predicting properties of QDs, the output targets contained particle diameter in nm measured 
directly from transmission electron microscopy (TEM), absorption wavelength in nm, and 
photoluminescence (PL) emission wavelength in nm. While defining the output set was straightforward, 
determining the input features required more consideration. In general, the performance of a predictive 
model depends on finding representative input features30,31. Furthermore, using too many input features 
may lead to overfitting. This becomes challenging, especially for predictive chemical synthesis models, 
where the outcomes of syntheses are non-trivially affected by unknown, unreported, and/or seemingly 
trivial parameters. For example, it has been shown that the final properties and quality of QDs is affected 
by purification solvents and conditions32, which are not consistently reported in the literature. Therefore, to 
evaluate the effect of feature selection on our models, we defined two sets of input features and compiled 
two datasets: an extended and a condensed dataset (Figure 2). In the extended dataset, the additives beyond 
the indium and phosphorus sources were categorized by their functional groups (e.g., acid, amine, thiol); 
while the condensed dataset grouped chemicals by their primary assumed role in the synthesis (e.g., 
ligands).  (See the full list of parameters in Table S1)     

 
 

Figure 2. Output and input feature selections. 
 
 
2.3 Data Imputation 
 

One of the biggest challenges when applying machine learning to materials chemistry is the lack 
of sufficient data. In our initial dataset, only 35 out of 219 syntheses had a complete set of output target 
values, because only a few articles reported all three targeted properties of InP QDs (Figure 3 – left). To 
“fill in” the output target values, we used the available data to train predictive machine learning algorithms 
for each output feature and imputed the missing values. Since absorption was the most frequently reported 



output in the initial dataset (205 syntheses), data augmentation was performed on absorption first, followed 
by emission, and finally diameter. Each imputative model was tuned by an exhaustive grid search to find 
the best parameters. (See details in Supporting Information S2). We then eliminated any syntheses that gave 
negative Stokes shift values, resulting in a final dataset of 216 syntheses. 
 

;

 
Figure 3. Data imputation process (left) and descriptions of the imputed dataset (right). 
 
2.4 Machine Learning Models and Metrics 
 

Prior to training machine learning models, the numerical parameters in the input set were scaled 
and the categorical parameters were transformed to numerical features using one-hot encoding and the 
scikit-learn software package (sklearn)33. Next, we compared single- and multi-output regressors for our 
three output features. Single-output models predict each feature individually, and the features do not depend 
on each other. Multi-output models predict all output features simultaneously. The output features often 
depend on each other and on the inputs features34. We tested regressors suitable for small datasets such as 
Extra Trees, Decision Tree, Random Forest, k-NN, Bagging, and Gradient Boosting using sklearn. For all 
models, the datasets were split into 85% for training and 15% for testing. Results for a 70/30 train/test 
partition are also shown in the Supporting Information. We optimized parameters using grid search. We 
used the mean absolute error (MAE) and the coefficient of determination (R2) as metrics to assess the 
performance of all models. MAE is sensitive to outliers since it is a linear score, in which all differences 
are weighted equally. R2 indicates the proportion of variance for a dependent variable determined by an 
independent variable. For each model in this study, we report the MAE and R2 of the predicted set versus 
the test set.  
 
 
2.5 Interactive User Interface 

To allow external users such as researchers with no background in machine learning to use our 
model to predict InP QDs synthesis outcomes and explore new synthetic methods, we deployed a user 
interface using an open-source Python library provided by Streamlit35. Streamlit is a framework for building 
interactive web applications with user-friendly components such as buttons, sliders, and plots.  

 



2.6 Predicting Outcomes of New InP QD Syntheses 

We conducted 8 new syntheses of InP QDs to test the prediction accuracy of our models. The 
experiments were designed based on four procedures found in the literature36–39 with minor adjustments 
such that all reaction parameters were not already included as entries in the dataset used to train the machine 
learning models. The reaction parameters were also selected such that they were not easily extrapolated 
from the parent procedures. (See synthesis details in Supplemental Information S6).    

 

3. Results and Discussion 

3.1 Dataset Description 

After the data extraction process, the dataset contained 219 syntheses of InP QDs extracted from 
72 papers, with an average of 3 syntheses per paper. However, the dataset is biased towards hot-injection 
syntheses, with 71% of entries from this method. This bias reflects the most used technique to synthesize 
InP QDs found in the literature, since the hot-injection method has been proposed to assist the formation of 
monodisperse InP QDs due to rapid nucleation at elevated temperature40. Despite this bias, we also included 
comparable methods in the dataset to maximize the size and diversity of inputs in our dataset, even though 
every synthetic parameter (e.g. temperature ramp rate) could not be captured. As can be seen, the most 
common In and P precursors were indium acetate, indium chloride, and P(TMS)3 (Figure 4). The addition 
of zinc is known to increase the photoluminescence quantum yield and the stability of the InP QDs41; around 
41% of the syntheses in the dataset include a Zn additive, with ZnCl2 being the most common. The reaction 
temperatures ranged from 130 to 310 °C, in which the lowest temperatures correspond to reactions using 
chloroindium oxalate, and the highest temperatures correspond to reactions using indium tris(N,N’-
diisopropylacetamidinato), indium trifluoroacetate, indium oxalate, indium palmitate, and indium 
myristate. Across the dataset, the reaction times were concentrated below 1 hour, which is related to the 
widespread use of the hot-injection method. In contrast, the heat-up procedure requires much longer 
reaction times, due to progressive heating and typically lower precursor reactivity, resulting in long 
supersaturation times42.  



 

Figure 4. Description of the input set. Histograms of indium, phosphorus precursors, zinc additives, 
nucleation temperature, and reaction time of the syntheses in the initial dataset. 

Complications with extracting data from the literature often arise from inconsistencies in data 
reporting. To overcome the incompleteness of our initial output set extracted from the literature, we 
performed a data imputation process. Data imputation, or imputing, is a technique used for filling in missing 
entries in the dataset, when values are not measured or reported43,44. This method is simple when only a 
small fraction of the output set is missing and when the missing values can be calculated. However, the 
problem becomes more challenging when more values are absent. In our study, since the three outputs are 
physically related to each other, i.e., optical properties in QDs are influenced by the size of the particles, 
which are in turn governed by synthetic parameters, we imputed the missing values by training a predictive 
model for each output feature, using the initial input set and the available output entries as training data. To 
avoid physically unreasonable data produced from imputation, we calculated the Stokes shift (the difference 
between peak maxima of absorption and emission spectra) for each synthesis and eliminated syntheses with 
a negative Stokes shift. The resulting imputed dataset includes 216 syntheses with a complete output set, 
where excitonic absorption maxima ranged between 397 and 729 nm, band edge PL emission ranged 
between 470 and 775 nm, and diameters ranged between 1.5 and 8.3 nm (Figure 3, right).  

3.2 Machine Learning Model Training and Performance 

 
Figure 5. Diagram of the model training process. 



The synthesis of InP QDs involves many parameters that play different roles in determining the 
properties of the final product. Therefore, defining input features for the machine learning models is a 
crucial step to achieve meaningful results. As mentioned in Section 2.2, a condensed dataset and an 
extended dataset were defined based on chemical function and chemical identity, respectively. Both datasets 
were used in a model training process (Figure 5), where two classes of machine learning models, single-
output and multi-output, were employed. For each class, 6 different algorithms that are well-suited for small 
datasets were adapted. Figure 6 shows the performance of the best model for each output in each study 
case. Extra Trees and Decision Tree algorithms gave the lowest MAE in all cases. The single-output Extra 
Trees and Decision Tree algorithms for the condensed dataset achieved the lowest MAEs for the prediction 
of absorption and diameter, respectively, while the single-output Extra Trees model that used the extended 
dataset gave the lowest MAE for emission prediction. 

Although multi-output models were expected to give better predictions due to the strong correlation 
between the three output features, single-output models showed lower MAEs for both datasets (See 
Supporting Information Section S3 for Pearson correlations). This observation indicates that the algorithms 
were unable to capture the correlation among the QD properties with the given datasets, or that there are 
synthetic variables that affect one output more significantly than others. Another possibility is that this was 
a result of our method of data imputation, where we imputed each output feature separately, and had to fill 
in emission wavelength and diameter for many syntheses. This observation may also be affected by the lack 
of important synthetic and post-synthetic parameters being reported such as injection rate45, purification 
solvents32, and specification as to whether the data are for purified or in-situ samples.  

While the models using the condensed dataset gave better predictions for absorption wavelength 
and diameter, the models using the extended dataset showed modestly better performance for emission 
wavelength. R2 values for diameter for all cases were relatively low because this outcome is the most absent 
in the initial dataset and the way that particle sizes are measured from TEM can be inaccurate and prone to 
user error46. We also observed an underfitting behavior in the Decision Tree model for diameter in the 
single-output model that used the condensed dataset (Figure 6A), which can occur when the influence of a 
few parameters is significantly higher than others.  Using the best model for our four study cases, we were 
able to identify temperature and time as the most influential synthetic parameters, an expected result 
(Figure 7). More interestingly, the models also recognized the importance of zinc additives, which aligns 
with the reported observations of spectral shifts and size changes when a zinc salt is present in the 
synthesis41,47.  



 

Figure 6. The observed vs predicted plots and the performance of single-output and multi-ouput  
models for the three outputs using the condensed and extended datasets. 

 



Figure 7. Feature importance charts of the best model for each study case.  

 
 

3.3 Models Using Datasets with Only Hot Injection Synthesis for InP 

Our next step was to improve the accuracy of the machine learning prediction by using datasets 
that contained only hot injection syntheses. Hot injection syntheses were filtered from both condensed and 
extended datasets and resulted in 157 syntheses. The results (Table 1) showed improvement in R2 values 
for all outputs and lower MAEs for emission predictions but demonstrated modest differences in MAEs for 
diameters and absorption wavelengths. Similar to the previous observation, models using the condensed 
dataset and single-output algorithms have better performance than models using the extended dataset and 
multi-output algorithms, respectively. It should be noted that single-output algorithms using the hot 
injection dataset could achieve MAEs as low as 0.13 nm for diameter and 6.39 nm for emission wavelength 
predictions. The algorithms were also able to identify temperature and time as the most influential 
parameters that affect the synthetic outcomes (Figure S13).  

Table 1. Performance of the best algorithms using the hot injection dataset (Output: Model / MAE in nm 
/ R2) 

 

3.4 Models for the Hot Injection Synthesis of CdSe 

To further evaluate the validity and show the utility of the imputing method for small datasets, we 
revised and extended the CdSe dataset from Baum et. al.25 to include absorption and emission wavelengths 
in the output set. The revised dataset contained 233 hot injection syntheses of CdSe QDs, in which 
absorption wavelength is absent in 38 syntheses (16%) and emission wavelength is absent in 77 syntheses 
(33%). The dataset preprocessing, data imputation, model tuning, model training, and user interface 
creation were done in the same manner of the InP study. For feature selection, we reduced the number of 
input features from 27 to 15 since models with fewer input variables typically give better performance30 
(details on feature selection can be found in section S9 of the Supporting Information). Compared to the 
InP models for the hot injection dataset, CdSe models showed better performance for all three output 
features, especially for diameter. This is likely a result of the original study’s focus on diameter, whose 
values were not limited to TEM measurements, but were also calculated from absorption spectra. Further, 
a much smaller portion of the dataset was missing absorption and emission entries, perhaps reflecting the 



inherent poor emissivity of InP QDs, thus reducing prediction bias. Results from the hot injection models 
also showed that single-output models outperformed multi-output models with MAEs as low as 14.67, 8.37, 
and 0.18 nm for absorption wavelength, emission wavelength, and particle diameter, respectively. R2 values 
for diameter from the Extra Trees and Decision Tree algorithms are comparable to the value from the 
reported Gradient Boosting Machine (GBM) algorithm25 (Figure 8). Examining feature importance in our 
study showed that reaction time and growth temperature are the most influential factors in the synthesis of 
CdSe. This is consistent to the GBM model from Baum et. al., however, in this study the two most important 
variables have a significantly higher influence on the synthesis than other variables (Figure 9).  

 

Figure 8. MAEs and R2 values comparison of the two models between this study and ref 24. 

 



 

Figure 9. Feature importance charts of A. Extra Trees model from this study and B. Gradient Boosting 
Machine model from ref 24. 

3.5 Interactive Web Applications and Comparison with Experimental Results 

From the best machine learning models that used datasets with all appropriate synthetic methods 
described in section 3.2, we deployed four Streamlit web apps that enabled real time reaction analysis and 
prediction. Each web app included sections where synthetic conditions can be imported to a chosen machine 
learning algorithm for predictions of InP QD optical properties (Figure 10). This allowed us to explore the 
chemical intuition of our algorithms beyond basic statistical metrics and discover synthetic trends without 
conducting actual experiments. For example, predicted outcomes from the web apps suggested that for a 
typical hot-injection synthesis where InCl3 reacts with tris(diethylamino)phosphine, the presence of TOP 
redshifts the emission and absorption maxima, while the presence of a zinc halide salt results in spectral 
blueshifts (Figure 11). These observations are consistent with the reported literature41,48.  

 

 

Figure 10. Interactive web applications by Streamlit for predicting InP QD properties from synthetic 
conditions. 



 

 

Figure 11. Predicted emission (circles) and absorption (squares) wavelengths from the Streamlit webapp 
using single-output algorithms and the condensed dataset with all methods. Reaction conditions include 0.1 
mmol of InCl3, 1 mL of oleylamine, 0.15 mmol of P(DEA)3, nucleation temperature at 180 oC, reaction 
time of 2 min, with 0.3 mmol ZnCl2 (blue outlines), or with 0.2 mL TOP (pink outlines), or without both 
ZnCl2 and TOP (black outlines). 

 
To further test the practical accuracy of the models, we conducted a series of 8 InP QD syntheses. 

The synthetic procedures were designed by varying the reaction conditions of existing syntheses of InP 
QDs found in the literature, such that they would not be entries in the initial dataset, and not easily 
extrapolated from the original reports (Section S6). We entered these synthetic conditions into our four web 
apps to obtain predicted values computed by our chosen machine learning models. These values were 
compared with our experimentally measured values of absorption and emission wavelengths, and particle 
sizes determined from TEM. MAEs on the experimental values are higher than the ones from the test sets, 
except for diameter predictions using the extended dataset (Figure 12). The large MAEs arise from the 
small size of the experimental set, which makes the impact of outliers on MAE more pronounced. However, 
some models were able to predict the synthetic outcomes with absolute differences as small as 1 nm for 
absorption, 3 nm for emission, and 0.07 nm for diameter (See Table S7-10 for more details). Since 
preliminary analysis from section 3.3 suggested that models using datasets with only hot injection reactions 
have improved accuracy, we tested their performance with our experimental results. Despite the improved 
training metrics originally observed, the performance of these models when compared to our experimental 
set showed only a modest improvement in prediction accuracy (Figure 13).  
 



 
Figure 12. Mean absolute errors (MAE) in nm of model predictions vs experimental results. Algorithms 
used datasets with all synthetic methods. Dark blue squares indicate MAEs of the models on their test set.  

 

Figure 13. Mean absolute errors (MAE) in nm of model predictions vs experimental results. Algorithms 
used the datasets with only hot injection method. Dark blue squares indicate MAEs of the models on their 
test set.  

Among all the web apps we have deployed, the one from single-output algorithms for the hot 
injection extended dataset showed the best performance and consistency across test sets and the 
experimental set, therefore, we launched this app for public users via https://share.streamlit.io/cossairt-
lab/indium-phosphide/Hot_injection/hot_injection_prediction.py. In addition, this webapp also includes 
the prediction of CdSe QD optical properties from our study in section 3.4. We hope that by sharing this 
webapp with other researchers, more chemical insights of InP synthesis from the machine learning will be 
discovered. Although the best models from this study were used, inaccurate predictions i.e., absorption 
wavelength higher than emission wavelength, can sometimes be seen from the webapp due to inconsistency 



and a low synthesis variety in the dataset. We expect the performance of the webapp to improve when a 
larger dataset becomes available. A disadvantage of the webapp is that new synthetic conditions such as 
precursors cannot be entered, so one can only examine procedures from the existing dataset.  

Finally, we targeted ~600 nm–absorbing QDs using synthetic conditions and precursors from an 
existing procedure49. Using the suggested reaction conditions obtained from the webapp, we were able to 
synthesize InP QDs with desired optical properties with high accuracy (Figure 14). For absorption and 
emission wavelengths, we also found that there was a noticeable difference between samples before and 
after purification. This observation justified our previous hypotheses that the inconsistency from reported 
values from the literature can strongly affect the accuracy of prediction, that our syntheses were a mix of 
purified and in situ data entries, and that there are many unreported factors that can also play a role in 
achieving precise optical properties.   

 

Figure 14. A: UV-Vis spectra of timed aliquots and emission spectrum of the purified product from the 
reaction using 0.40 mmol indium acetate, 1.45 mmol myristic acid, and 0.20 mmol P(SiMe3)3 injected at 
315 °C. The nucleation temperature was 310 °C. B: A TEM image of the purified particles with an average 
diameter of 5.15 nm. 

 

4. Conclusions  
We have trained and used machine learning models to predict the properties of InP QDs based on 

synthetic input features. Using an imputed dataset, the descriptor space was defined in two ways (condensed 
and extended) to study the best approach for input feature selection. While models using the condensed 
dataset had better performance in predicting absorption, models using the extended dataset gave improved 
predictions for emission wavelength and diameter. Single-output and multi-output machine learning 
algorithms were applied in this study. The single-output models showed enhanced performance over the 
multi-output models. From the model estimation errors we found that reaction temperature, time, and the 
addition of zinc salts were the most influential synthetic parameters. The same dataset pre-processing and 
machine learning training were applied to both InP and CdSe hot injection datasets. Furthermore, we 
deployed a web app that external users can access to predict InP and CdSe synthetic outcomes using our 
best algorithms. Using this web app, we were able to test our models with newly adapted InP syntheses and 
synthesize InP QDs with desired optical properties. The webapps also allowed us to investigate the 



limitations of the ML approach in this study. Because the algorithms cannot recognize new precursors, 
reaction conditions need to be closely based on existing procedures in order to obtain accurate predictions. 
Overall, this work provides a procedure to preprocess datasets, train machine learning models, and 
implement models for public users in the field of nanocrystal synthesis, especially where available datasets 
are small and incomplete.    
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