LabInform: A Modular Laboratory Information System
Built From Open Source Components

Till Biskup" [
Institut fiir Physikalische Chemie, Albert-Ludwigs-Universitit Freiburg, Albertstr. 21, 79104 Freiburg, Germany

A framework for reproducible data analysis is only half the battle if it comes to reproducible
research. Additional essential requirements are a way to safely store both, raw data and metadata
and a method to uniquely refer to a dataset or any piece of information. Such unique identifier is
fully independent of the actual place the information referred to is stored and does not change over
time. Additionally, numeric IDs for samples and alike come in quite handy. A knowledge base and
an electronic lab notebook, both based on wiki software and thus easily accessible requiring only
a web browser and connection to the intranet, complete the system. Overarching design rules are
simplicity, robustness and sustainability, focussing on small-scale deployment of the system retaining
compatibility with future developments and community efforts. Key aspects in setting up the system
are its use of well-proven open-source tools combined with maximal modularity, resulting in a low
entry threshold and allowing to implement and develop it along the way of focussing on actual

research.

I. INTRODUCTION

The time scale of science and research exceeds by far
the average time a scientist spends in academia. On the
other hand, science is deeply rooted in both, the promise
to rely on a ground as solid as possible and the confidence
in the scientists acquiring scientific knowledge to perform
their research in a reliable and reproducible way [1]. To
be relevant for generating scientific knowledge that lasts
or at least forms a solid ground for those building on top
of it, researchers are therefore responsible to take any ef-
fort necessary to ensure reproducible research [2][3]. This
requires to establish and use an infrastructure allowing to
collect and reassess previous results even long after those
originally participating in their generation have left the
field [, [5].

Now one might say that exactly this is the realm of
scientific publications. However, with the advent of com-
puters and the possibility to perform ever more com-
plex experiments and generate unprecedented amounts
of data that no single person can ever oversee, this
seems no longer adequate. Additionally, software used
for analysing the data underlying the conclusions pre-
sented in scientific publications are rarely published along
with the results [0, [7]. As a matter of fact, an average
spectroscopist can nowadays acquire more data within a
year than she or he can properly analyse within the next
decade. Two aspects normally limit the analysis of the
data collected: Lack of appropriate software and strate-
gies capable of coping with the inherent complexity of the
task [8HIT], and missing access to the data and accom-
panying metadata, i.e., information about the (numeric)
data in a structured and useful way.

Many scientific disciplines have realised these problems
and have developed strategies to cope with them. A good
example are widely recognised and adopted systems for

* E-mail: research@till-biskup.de

data deposition, a prime example being the Protein Data
Bank (PDB) for crystal structures of proteins [12] [13]
dating back to the 1970s [14]. On the other hand, many
national and transnational research agencies nowadays
routinely require their applicants to outline data man-
agement plans together with their research proposals [5].
The other side of the coin seems to be the personal ex-
perience of the author. There is no generally recognised
system to store data in his particular field of research
(magnetic resonance and in particular electron paramag-
netic resonance spectroscopy) he would be aware of. Tt
seems rather that it is in the realm of every single sci-
entist to come up with a solution how to store data in a
sustainable and accessible way for periods well exceeding
the presence of an average PhD student who originally
recorded them. Admittedly, the task is in no way simple,
requiring time to develop ideas for solutions and appro-
priate skills, mostly in software engineering and I'T man-
agement, not regularly found in a scientific academic con-
text with small groups and mostly individual researchers.
Nevertheless, neither the problem nor strategies how to
tackle it are in any way new. All that is missing might
be a broader recognition of the problem and its conse-
quences for reproducible research as well as simple yet
powerful systems every scientist with average training in
using computer systems and software development can
implement and extend in context of the own research.
We present here strategies for a laboratory informa-
tion system, termed LabInform, taking care of the press-
ing need for reliable and reproducible research, namely
long-term archiving of research data and accompanying
metadata in a safe, secure and accessible way. Combined
with a framework for data analysis that ensures a gap-
less history of each data processing step to be written,
this will pave the way towards more reliable and repro-
ducible research with a rather minimal effort. A data
analysis framework might be based on ideas implemented
in the ASpecD framework [I5] developed by the author.
The focus of the concepts and strategies presented here is
on a highly modular system built from well-proven open


mailto:research@till-biskup.de

source components. To possibly be successful, such a sys-
tem needs to be user-friendly, robust, easy to incorporate
into existing infrastructure and workflows and without
need for any central facilities or increased administrative
effort.

II. INTENDED TARGET AUDIENCE
AND PREREQUISITES

As mentioned, different scientific communities not only
have different needs, but as well a different level of or-
ganisation and availability of widely adopted systems for
long-term archival of data in an accessible way. The ideas
presented here are mainly targeted at spectroscopists
that lack the established infrastructure, but are inter-
ested in setting up a local system on their own in their
research group. The promise is simple: Having a small-
scale system is better than no system, and if eventually
a larger solution emerges, converting between formats
should be straightforward, as long as both, source and
target are open-source and well documented.

Given the generally rather limited access to funds in
science, many researchers will not be willing to spend
money on systems they cannot rate in terms of longevity,
availability and fitness for the intended purpose. Hence, a
system built from well-proven open source software com-
ponents provides a big advantage. Next comes the need
to be platform-independent, given the largely heteroge-
neous hardware and operating system landscape in sci-
ence. Again connected to the available funding and man
power, a laboratory information system should not im-
pose the need for a centrally managed infrastructure and
require only minimal effort for administration during rou-
tine operations. This all boils down to a highly modular
system composed of independent modules that integrate
well with each other. To quote a phrase from the world
of agile software development: ‘Think big, start small,
scale fast’.

III. DESIGN STRATEGIES

The development of LabInform followed three simple
yet powerful design strategies that are shortly detailed.
Understanding these strategies and why they are essen-
tial is key to both, using and extending the system.

A. Simple

Science in itself is an utterly complex undertaking,
hence the scientist should focus as much as possible on
the inherent scientific tasks and not be busy with keeping
alive a system for reproducible research. To quote Al-
fred North Whitehead: ‘Civilization advances by extend-
ing the number of important operations we can perform
without thinking.” [16] LabInform consists of a small set

of simple rules or best practices that are easy to grasp
and easy to implement. Simplicity, however, does not
imply minor impact. On the contrary, as simple things
are often easier to implement, it helps the system to get
employed in real-world tasks.

B. Robust

All the information contained in the system should be
accessible without having to use any of the rules imposed
by the system or any particular piece of software, except
of the very basic tools of the underlying operating sys-
tem. A simple example: All information should be stored
in text files within the file system, in a sensible hierarchy
of directories with well-chosen and easily comprehensible
names. The only exception to using text files is numeric
data that may be stored as IEEE 754 binaries [17]. And
of course, original raw data, in whatever proprietary ven-
dor format they may appear, should be archived as well,
together with an export to a more accessible format.

The reason for these rules is simple: Nobody can fore-
see how long a certain software will exist, be maintained,
or even only be executable. The time frame of scientific
research is but far longer than the average life time of
a computer program or system. What we can basically
rely on is access to even ancient file systems, and copying
files byte-wise from one storage medium to another can
(and should) be done entirely automatic. The success of
the Unix operating system and its descendants relies to
a good part on those simple yet powerful decisions [I§].

Databases and other tools greatly facilitating day-by-
day handing of both, the system and the information
contained, shall and will be implemented and used. How-
ever, the system is not allowed to rely on them, nor
even to be aware of this additional outer layer of com-
plexity [19]. This is similar to using an integrated de-
velopment environment (IDE) for software development.
While extremely powerful and greatly enhancing devel-
opment speed if used wisely, every sensible programmer
should both, know about the underlying processes that
are masked by a shiny user interface, and know how to
do every of these tasks entirely by hand [20].

C. Sustainable

As mentioned in the last section, the time frame of
science and software development are largely divergent.
Software is usually quite short-lived, whereas ideas tran-
scendent a concrete implementation and tend to be very
longstanding. None of the ideas presented here is partic-
ularly new, nor is their application in a research context
[21]. Nevertheless, own experience shows that many sci-
entists reinvent the wheel over and over again, the author
being no exception.

The LabInform system is designed with the single re-
searcher or the small group in mind, while retaining the



l
Data safe
raw data, ... Lab Object Identifier
unique ID similar to a DOI

W

Knowledge base
samples, batches, ...

Laboratory

Information ﬂ
System
Metadata

processes, ...
Numeric IDs
samples, batches, ...

4

Version control system
manuscripts, code, projects, ...

&

Electronic lab notebook
documentation

Figure 1. Components of the LabInform modular laboratory
information system. A framework for reproducible data anal-
ysis is only half the battle if it comes to reproducible research.
Additional essential requirements are a way to safely store
both, raw data and metadata (data safe) and a method to
uniquely refer to a dataset or any piece of information (Lab
Object Identifier). Additionally, numeric IDs for samples and
alike come in quite handy. A knowledge base and an elec-
tronic lab notebook, both based on wiki software and thus
easily accessible requiring only a web browser and connection
to the intranet, complete the system. Key aspects in setting
up the system are its use of well-proven open-source tools
combined with a maximum in modularity.

scalability to larger groups and collaborations between
different groups. Besides that, the underlying premise
is that information once entered into the system can be
converted and fed into other systems and not be lost. To
achieve this goal, the system needs to be both, simple
and robust, relying on nothing than a small set of best
practices and easy to grasp rules in addition to storing in-
formation in the most portable and long-lasting formats
available.

IV. BASIC CONCEPTS AND COMPONENTS

Before describing the actual components of the system,
we would like to state that none of the concepts presented
here rely on a particular piece of software. Nevertheless,
it seems sensible to name concrete software products that
can be and have been used in the given context. If read-
ers take some of the ideas and implement their own sys-
tems, the author would be happy to get feedback and
hear about the experience. More important, however, is
to share the software and ideas with the larger scientific
community [22H24].

Fig. [1| provides a first graphical overview of the dif-
ferent components LabInform consists of. Essential con-
cepts contain the data safe as central storage unit for data
and metadata (‘datasets’ in terms of the ASpecD frame-
work [15]), a generalised use of metadata not restricted to
information accompanying data acquisition and process-

Listing 1. Example of a metadata file containing all infor-
mation necessary to create a plot spanning several datasets.
The file format used here is YAML, mainly because it can be
easily read and written by humans.

format:
type: ASpecD data analysis
version: 0.1.0

datasets:
- loi:xxx
- loi:yyy

preprocessing:
- pretrigger_offset_compensation

display:
- plot_1d

display_parameters:
xlim: [0 10]
ylim: [-.05 2]
xlabel: foo
ylabel: bar
aspect_ratio: [4 3]

persistence:
filename: foobar
file_format: pdf

ing, and unique and stable identifiers for both, samples
and alike (numeric IDs) as well as in a much more general
fashion all types of ‘objects’ that can be possibly referred
to in a digital context (Lab Object Identifier, LOI). This
is complemented by an electronic lab notebook as well
as a more general knowledge base for storing information
related to the research in a flexible, though structured
and easily accessible way. Last but not least, a version
control system (VCS) takes care of manuscripts, code,
project documents, and alike. Each of these components
will be described in more detail hereafter.

A. DMetadata

Metadata may occur clearly connected to data, such
as in a dataset (as a unit of numerical data and accom-
panying metadata) or in a lab journal [4]. However, they
may as well be used to store arbitrary pieces of informa-
tion in a structured way. Typical use cases could be the
information necessary to create a graphical representa-
tion containing data from more than one dataset. Here,
a metadata file may contain a list of datasets, a list of
preprocessing steps to be performed on the data of each
dataset in turn, information on the type of plot to create
as well as axes ranges and labels, and eventually details
of how and where to store the result. An example of such
a file is presented in Listing

Many other possible scenarios immediately come to
mind, including a metadata-driven data processing work-



flow as has been implemented independently [25]. The
history of each processing step performed on the data of
a dataset is stored or can at least be exported to such a
metadata file. This ends up with generally two types of
metadata files for a given process: One describes what
should be done, the other describes what has been done.
The only difference between both: the latter includes in-
formation on the versions of the software used as well
as on the system, time and operator. Depending on
the actual context, a metadata file may be stored in the
datasafe and thus be accessible using a unique identifier
(LOI, see below).

B. Data safe

The data safe is the central storage unit for both, data
and metadata (of any kind). Long-term data storage has
two aspects: data safety, preventing losses and assur-
ing data integrity, and data security, restricting access
to authorised persons. Generally, data in the data safe
are stored on the file sytem in a hierarchy of sensibly
named directories. To ensure data safety, a network at-
tached storage (NAS) system with redundant hardware
is perfectly suited, besides that such system can easily
be scaled. Data integrity can be achieved using crypto-
graphic hashes that get stored in files next to the actual
data and metadata. Here, at least two different hash val-
ues should be stored, one containing only the numeric
data, the other spanning both, data and metadata. The
reason is that experience shows metadata to change over
time, mostly due to inadvertently wrong information that
gets corrected upon spotting errors. The numeric data
as such should never change. As a by-product of using
hashes, datasets can easily be checked for duplicates.

Whereas all metadata should always be stored in text
files next to the numeric data, the data safe may use
a database for accelerated access and advanced searcha-
bility. However, the contents of the database should be
automatically created from the information contained in
the data safe. The data safe itself will never rely on nor
be aware of information stored in a database.

Strategies for handling (temporarily) detached (local)
instances of an otherwise central data safe need to be
developed, as it will be a regular use case to take the data
somewhere away from the lab. Possible solutions range
from a read-only instance to mostly automatic merging
similar to what version control systems like git provide.
Somehow in between these two ranges a solution based
on file system synchronisation tools like the well-proven
rsync from the Unix world.

C. Numeric IDs

A very simple yet powerful strategy every synthetic
chemist, e.g., will be familiar with, is to simply con-
secutively number certain entities such as samples and

batches. Together with a central storage for the infor-
mation as well as the mapping to the respective number,
this allows to easily trace the fate of a sample or batch
of substance and alike. In the author’s lab, samples and
batches are numbered and the information is stored in a
wiki forming part of the knowlegde base discussed fur-
ther below. Eventually, the information is again stored
in simple text files with names reflecting the numeric ID.
This allows to refer to a sample within the metadata file
written during data acquisition simply by its respective
number, although still mostly accompanied by a short de-
scription. If combined with an electronic lab notebook,
this allows to automatically list all measurements per-
formed on a single sample. Furthermore, together with
some basic information regarding the respective sample,
its storage place and fate can easily be filed.

Another, quite different field from the author’s own ex-
perience where numeric IDs come in quite handy are DFT
calculations. Numbering molecules, geometries, and cal-
culations and connecting each in turn with the others can
help to keep the overview of an ever growing amount of
computed data.

D. Lab Object Identifier (LOI)

A key aspect of reproducible research is not only to
store the full history of processing steps and the software
used [15], but to be able to uniquely refer to data and re-
sults, fully independent on where exactly they physically
reside. Actually, from the point of view of a metadata
file similar to the one presented in Listing |1} the actual
way the dataset is stored is an unimportant detail, as
long as there is a unique identifier allowing to access the
information requested. This is similar to the digital ob-
ject identifiers (DOIs) used to uniquely address electronic
documents in the world-wide web (WWW), or more ex-
actly to the Handle system [26] the DOI system itself
is based on. This led to the development of a Lab Ob-
ject Identifier (LOI) as an independent unique identifying
system resembling the DOI. Listing [2] shows the general
scheme of a LOI together with a more practical example.

An identifier for the publisher is a key aspect of the
DOI system that is used for the LOI scheme as well. Ev-
erything in a LOI after the publisher ID is fully up to the
discretion of the issuer. On the other hand, the system
‘knows’ how to identify the publisher and can therefore
deduce whom to ask for resolving the respective LOI.
Such resolvers can be deployed locally on a single com-
puter, in an internal network, and as a globally accessible
web service, depending on the respective needs.

A few further comments may help getting more of an
idea what could potentially be done with the LOI system.
The directory hierarchy of the data safe can be mapped
in a one-to-one manner, allowing for a transparent access
of datasets. Similarly, entries in the electronic lab note-
book as well as numeric IDs for samples and alike can be
coded within a LOI. The key aspect of the system is to



Listing 2. General scheme of a lab object identifier (LOI) and
a more concrete example. The 42 at the beginning is a rather
arbitrary number to distinguish an LOI from other entities
of the Handle system, e.g., a DOIL. The publisher is coded as
four-digit number, followed by a slash. The ID is entirely up
to the discretion of the respective publisher. In the concrete
example from the author’s lab, the LOI refers to a dataset
originating from the second TREPR measurement of sample
with ID 1.

loi:42.<publisher>/<ID>

loi:42.1001/ds/sa/1/trepr/2

disconnect the unique identifier from the actual (physi-
cal) storage of the corresponding information. Usually,
the latter will be stored as file within the file system of a
given storage device. Everybody who ever hard-coded a
path to a data file in a script or routine for data analysis
and afterwards reorganised or simply moved either data
or program will immediately see the beauty and power
of this approach.

All that is needed is an instance of a resolver holding
some sort of a mapping table connecting the LOI with
the physical path to the file. Some details of the imple-
mentation will be discussed further below.

E. Electronic lab notebook (ELN)

Data are only useful if they are accompanied by addi-
tional information, hence metadata. Whereas the meta-
data accompanying the numeric data should always be
stored next to the latter, it is often very useful to have a
place to store a ‘protocol’ of what has been done. This
is what the old-fashioned hardcover lab journal that still
survived partly today is intended for. The electronic lab
notebook (ELN) is an alternative or at least complement
offering all the advantages of digital data storage such as
easy searchability.

From own experience, an ELN needs to be accessible
from every experimental setup used to obtain data. For-
tunately, nowadays nearly every setup records data using
a computer that is mostly connected at least to the in-
tranet, if not the global internet, and provides a web
browser. Hence, using a web-based approach turned out
to be very useful. Using some kind of a wiki [27, 28]
comes with further advantages. The simple markup lan-
guage allows for structured and well-formatted entries,
besides that every page can be edited just from within a
web browser.

Further aspects that can be regarded as ‘best prac-
tice’ from long-term experience are as follows: Create
one page for each measurement, even if the sample is
measured consecutively, use a web form for creating new
pages of the electronic lab notebook, include basic in-
formation about the sample, measurement and purpose

in a structured way on top of each page, followed by a
protocol including the time for each step, and eventually
add (automatically generated) graphical representations
of the (processed) data. The latter aspect greatly facili-
tates browsing through the ELN and getting an overview
of the outcome of the measurements.

F. Version control system (VCS)

Software for data processing and analysis is often
written by scientists themselves and changes over time.
While change is perfectly natural for software, repro-
ducibility requires to be able to retrieve the exact ver-
sion of the software used for a particular processing.
Hence, reproducibility requires using a system for keep-
ing track of those changes, i.e. a version control system
(VCS). Such systems have originally been developed for
text-based documentation and are an essential require-
ment for any kind of professional software development
[3, [7, [IT, 29]. Different free implementations are avail-
able, and distributed VCS such as Git [30] fit best to
the academic context. Besides providing a unique link
between a distinct version of the software used for an
analysis, VCS can be applied in a much broader way,
e.g. for manuscripts and project documentations.

G. Knowledge base

A last component of the LabInform system closely con-
nected to the electronic lab notebook is a knowledge
base containing all information relevant for both, daily
work in the lab as well as administrative aspects such
as planning publications, grant applications, and com-
mented and well-structured lists of the relevant litera-
ture. Furthermore, this is the place for generating and
storing numeric IDs for samples and alike as well as the
accompanying information. Similarly to the pages for
the electronic lab notebook, numeric IDs will be gener-
ated using a web form ensuring unique (and consecutive)
numbers. Ideally, the knowledge base should be inte-
grated with the electronic lab notebook. At least, the
same type of underlying software can and should be used
for both.

V. IMPLEMENTATION DETAILS

Whereas the concepts laid out in the previous section
are implementation agnostic, the LabInform system is
not only an abstract concept, but a reality implemented
and actively developed in the author’s lab. Hence, a few
details of this implementation and the reasons for choos-
ing particular pieces of software will be given below, with-
out loss of generality.



A. DMetadata

Metadata need to be stored in a text format that can
be simply read by a computer, while retaining human
readability as well. For all metadata that shall be easily
readable by users, YAML [31I] turns out to be the best
choice, as it comes with the least amount of formatting.
Exchanging data between programs may well be done
using other formats as well, be it JSON or even XML.
Automatic conversion between these files is straightfor-
ward and implemented in many programming languages
including Python. For a thorough discussion of file for-
mats, the reader is referred to [18].

B. Data safe

Generally, the data safe is not much more than a hi-
erarchy of directories containing all datasets and stored
on a NAS that may additionally be frequently backed
up. Creating and storing cryptographic hash values for
each dataset can be and has been automated using bash
scripts, assuming a unixoid operating system being used.
User access control can be implemented on the operating
system level, but will eventually be best solved using a
web interface and an underlying web service for accessing
the data safe using either a web browser or programmat-
ically from within routines for data processing.

C. Lab Object Identifier System

The scheme for the actual IDs is entirely up to the
discretion of the respective publisher. Hence, no further
details will be presented here. For the time being, there
will be no organisation issuing and managing publisher
identifiers. Still, the system is intended to be used within
the setting of a group, or perhaps even within a network
of collaborators, but not on a global scale. Needless to
say that in case such global system once emerges, map-
ping (local) LOIs to the newly created unique IDs should
be straightforward.

The entity responsible for mapping a LOI to the actual
path to the file containing the information, hence the re-
solver, can be set up as a very simple system to begin
with. The most primitive implementation regarding ac-
cess to the data stored in the data safe using LOIs would
be to simply reflect the data safe directory hierarchy in
the LOI. Thus, any externally maintained mapping ta-
ble becomes fully obsolete, rendering the system rather
robust. Single files as a mapping table may easily get
lost. An entire directory structure, however, crafted from
well-chosen names, is much more unlikely to accidentially
vanish. In a broader and more complex environment,
some kind of automatically generated lookup table and
a Docker container running the web server nginx serving
both, a very simple web form for entering the LOI as well

as a web service accessible from within programs for data
analysis and processing [I5] are fully sufficient.

D. Electronic lab notebook and knowledge base

Important criteria for choosing a wiki software for
both, electronic lab notebook and knowledge base, are
portability as well as a small footprint, together with free
availability as open-source software under a liberal license
and being built using well-established programming lan-
guages having a large and vivid user basis. Dokuwiki
[32] turned out to be an excellent choice in this respect.
Pages are simple text files stored in the file system, no
database is necessary, and a dokuwiki instance can even
be run from a memory stick. Even without a running
dokuwiki process, the information can easily be obtained
provided access to the underlying file system can be en-
sured.

From the wealth of plugins available, a combination of
bureaucracy and structured data plugin has been proven
very useful for creating entries and pages both, for the
electronic lab notebook and entities with numeric IDs
such as samples and alike, using simple web forms. Here,
using the structured data plugin is preferred over its more
powerful successor, as the latter stores some information
exclusively in a data base, jeopardising both, portability
as well as long-term access. Several plugins for handling
literature databases stored in BibTEX files are available
as well greatly facilitating the maintenance of commented
and structured lists of relevant literature.

E. Version control system (VCS)

A distributed VCS fits best to the context of aca-
demic research in the individual laboratory scale. We
strongly recommend using Git [30] due to its widespread
use and well-developed tool chain and integration in dif-
ferent other programs and workflows. As a graphical,
web-based frontend, Gitea [33] comes in quite handy due
to a very small footprint. Gitea as a frontent can be
deployed readily using official Docker images. The rea-
son for installing a local VCS instance rather than rely-
ing on cloud-based solutions such as GitHub and GitLab
is twofold: independence of external infrastructure and
(even more important) control over the own data and
their access.

F. Containerisation using Docker

Modularising all the components described so far in
a platform-independent way remains the last aspect to
be mentioned. All the different components can be put
into Docker containers [34]. This greatly enhances mod-
ularity and platform independence while minimising the
administrative effort necessary during routine operations.



Whereas this approach has been adopted in the profes-
sional software development particulary for web services,
it has been proposed for computational reproducibility as
well [35]. Besides the explicit components of LabInform,
this extends as well to the programs used for data anal-
ysis and processing, e.g., systems based on the ASpecD
framework [I5]. Modular and step-wise introduction of
the LabInform system to an existing infrastructure and
workflow thus become possible, as do scalability and fur-
ther development parallel to productive use without im-
pairing each other.

VI. CONCLUSIONS

Taken together, we have outlined general strategies for
a modular laboratory information system built from open
source components that can be implemented in a typical
scientific setting from a single researcher to a larger group
‘on the go’. Furthermore, we have presented concrete
solutions for each of these components that are readily
available. In summary, the system presented here, Labln-
form, helps researchers to enhance the reproducibility of
their research with a minimum of necessary additional
effort regarding hard- and software as well as manpower,
and ensuring scalability, robustness and sustainability.

ACKNOWLEDGEMENTS

The ideas presented have evolved over more than a
decade, and many people have helped shape the ideas

and implemented parts of programs eventually resulting
in the larger infrastructure described here. To name just
the most important persons in chronological order: B.
Paulus, D. Meyer, J. Popp, M. Schréder. Thanks to all
colleagues and friends who readily discussed these aspects
and for their patience with the author, and R. Kaal in
particular. A lecture that grew out of the author’s pre-
occupation with the ideas presented here turned out to
be an ideal test bed. Thanks to all students actively
attending it. The German Research Foundation (DFG,
Grant BI-1249/3-1) is gratefully acknowledged for finan-
cial support.

SOFTWARE AVAILABILITY

The third-party components the Lablnform frame-
work is largely built upon are all available open-source
and free of charge. Those components specifically de-
veloped are equally available open-source and free of
charge under a BSD license. Details will be published
on the respective website https://www.labinform.de/
together with a detailed documentation and links to
the other resources required. A demo instance of
both, ELN and knowledge base can be found under
https://demo.wiki.labinform.de/. Additionally, Docker
containers including each of the components will be pro-
vided.

[1] Chalmers, A. F. What is this thing called Science?, third
edition ed.; Open University Press: Berkshire, UK, 1999.

[2] Mesirov, J. P. Accessible reproducible research. Science
2010, 327, 415-416.

[3] Sandve, G. K.; Nekrutenko, A.; Taylor, J.; Hovig, E.
Ten simple rules for reproducible computational research.
PLoS Comput. Biol. 2013, 9, e1003285.

[4] Goodman, A.; Pepe, A.; Blocker, A. W.; Borgman, C. L.;
Cranmer, K.; Crosas, M.; Di Stefano, R.; Gil, Y.;
Groth, P.; Hedstrom, M.; Hogg, D. W.; Kashyap, V.;
Mahabal, A.; Siemiginowska, A.; Slavkovic, A. Ten sim-
ple rules for the care and feeding of scientific data. PLoS
Comput. Biol. 2014, 10, e1003542.

[5] Michener, W. Ten simple rules for creating a good
data management plan. PLoS Comput. Biol. 2015, 11,
€1004525.

[6] Peng, R. D. Reproducible research in computational sci-
ence. Science 2011, 334, 1226-1227.

[7] Osborne, J. M. et al. Ten simple rules for effective
computational research. PLoS Comput. Biol. 2014, 10,
€1003506.

[8] Merali, Z. ...why scientific programming does not com-
pute. Nature 2010, 467, T75-777.

[9] Goble, C. Better software, better research. IEEE Internet
Comput. 2014, 18, 4-8.

[10] De Roure, D.; Goble, C. Software design for empowering
scientists. IEEE Softw. 2009, 26, 88-95.

[11] Wilson, G.; Aruliah, D. A.; Brown, C. T.; Hong, N.
P. C.; Davis, M.; Guy, R. T.; Haddock, S. H. D
Huff, K. D.; Mitchell, I. M.; Plumbley, M. D.; Waugh, B.;
White, E. P.; Wilson, P. Best practices for scientific com-
puting. PLoS Biol. 2014, 12, €e1001745.

[12] Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.;
Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E.
The Protein Data Bank. Nucleic Acids Res. 2000, 28,
235-242.

[13] Berman, H.; Henrick, K.; Nakamura, H. Announcing the
worldwide Protein Data Bank. Nat. Struct. Biol. 2003,
10, 980.

[14] Bernstein, F. C.; Koetzle, T. F.; Williams, G. J;
Meyer, E. F., Jr.; D.Brice, M.; Rodgers, J. R.; Ken-
nard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data
Bank: a computer-based archival file for macromolecular
structures. J. Mol. Biol. 1977, 112, 535-542.

[15] Biskup, T.; Popp, J. ASpecD: A modular framework for
the analysis of spectroscopic data focussing on repro-
ducibility and good scientific practice. to be submitted.


https://www.labinform.de/
https://demo.wiki.labinform.de/

[16] Whitehead, A. N. An Introduction to Mathematics;
Dover Publications: Mineola, 2017.

[17] Goldberg, D. What every computer scientist should know
about floating-point arithmetic. ACM Comput. Surv.
1991, 23, 5-48.

[18] Raymond, E. S. The Art of UNIX Programming; Addison
Wesley: Boston, 2004.

[19] Martin, R. C. Clean Architecture. A Craftman’s Guide to
Software Structure and Design; Prentice Hall: Boston,
2018.

[20] Hunt, A.; Thomas, D. The Pragmatic Programmer;
Addison-Wesley: Boston, 1999.

[21] Schwab, M.; Karrenbach, M.; Claerbout, J. Making scien-
tific computations reproducible. Comput. Sci. Eng. 2000,
2, 61-67.

[22] Barnes, N. Publish your computer code:
enough. Nature 2010, 467, 753.

[23] Ince, D. C.; Hatton, L.; Graham-Cumming, J. The case
for open computer programs. Nature 2012, 482, 485-488.

[24] Prli¢, A.; Procter, J. B. Ten simple rules for the open
development of scientific software. PLoS Comput. Biol.
2012, 8, e1002802.

it is good

[25] Freire, J.; Silva, C. T. Making computations and publi-
cations reproducible with VisTrails. Comput. Sci. Eng.
2012, 1/, 18-25.

[26] Sun, S.; Lannom, L.; Boesch, B. Handle System
Overview; RFC 3650, 2003.

[27] Leuf, B.; Cunningham, W. The Wiki Way. Quick Col-
laboration on the Web; Addison-Wesley: Upper Saddle
River, NJ, 2001.

[28] Mader, S. Wikipatterns; Wiley Publishing, Inc.: Indi-
anapolis, IN, 2008.

[29] Taschuk, M.; Wilson, G. Ten simple rules for making re-
search software more robust. PLoS Comput. Biol. 2017,
13, €1005412.

[30] Chacon, S.; Straub, B. Pro Git, 2nd ed.; Apress: New
York, NY, 2014.

[31] https://yaml.org/.

[32] https://wuw.dokuwiki.org/|

[33] https://gitea.io/.

[34] https://www.docker.com/|

[35] Piccolo, S. R.; Frampton, M. B. Tools and techniques for
computational reproducibility. GigaScience 2016, 5, 30.


https://yaml.org/
https://www.dokuwiki.org/
https://gitea.io/
https://www.docker.com/

	LabInform: A Modular Laboratory Information System Built From Open Source Components
	Abstract
	Introduction
	Intended target audience and prerequisites
	Design strategies
	Simple
	Robust
	Sustainable

	Basic concepts and components
	Metadata
	Data safe
	Numeric IDs
	Lab Object Identifier (LOI)
	Electronic lab notebook (ELN)
	Version control system (VCS)
	Knowledge base

	Implementation details
	Metadata
	Data safe
	Lab Object Identifier System
	Electronic lab notebook and knowledge base
	Version control system (VCS)
	Containerisation using Docker

	Conclusions
	Acknowledgements
	Software availability
	References


