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Abstract 
Compound availability is a critical property for design prioritization across the drug discovery 

pipeline. Historically, and despite its multiple limitations, compound-oriented synthetic accessibility 

scores have been used as proxies for this problem. However, the size of the catalogues of 

commercially available molecules has dramatically increased over the last decade, redefining the 

problem of compound accessibility as a matter of budget. In this paper we show that if compound 

prices are an alternative proxy for compound availability, then synthetic accessibility scores are not 

effective strategies for assessing availability. Instead, we learn how to predict prices directly from 

the catalogues. Our approached, CopriNet, is a retrosynthesis-free deep learning model trained on 

pairs of compound/prices extracted from the Mcule catalogue. CoPriNet is able to provide price 

predictions that exhibit far better correlation with actual compound prices than any synthetic 

accessibility measurement. Moreover, unlike standard retrosynthesis methods, CoPriNet is rapid, 

comparable in execution time to popular synthetic accessibility metrics and thus is suitable for high-

throughput experiments including virtual screening and de novo compound generation. 

Introduction 
The drug design process can be thought of as a multi-objective optimization problem in which 

potential drug compounds need to satisfy a wide set of properties from binding affinity and toxicity 

to selectivity and solubility (Nicolaou and Brown, 2013). One property that is key when developing 

potential drug molecules is their availability, since no matter how promising a design might be, if it is 

not available, it is doomed to fail. 

In order to estimate compound availability, several computationally calculated synthetic accessibility 

(SA) scores have been developed. These approaches can be roughly classified as retrosynthesis-

based predictions (Coley et al., 2019; Genheden et al., 2020; Gillet et al., 1995; Huang et al., 2011; 

Ihlenfeldt and Gasteiger, 1996), binary classifiers (Podolyan et al., 2010; Amol Thakkar et al., 2021; 

mailto:ruben.sanchez-garcia@stats.ox.ac.uk
mailto:frank.vondelft@cmd.ox.ac.uk
mailto:deane@stats.ox.ac.uk


Voršilák et al., 2020), and complexity-based estimations (Ertl and Schuffenhauer, 2009; Coley et al., 

2018; Allu and Oprea, 2005; Barone and Chanon, 2001). 

Retrosynthesis-based approaches aim to identify suitable synthetic routes for a given molecule using 

distinct types of search algorithms over databases of building blocks and chemical transformations. 

State-of-the-art methods (Coley et al., 2019; Genheden et al., 2020; Schwaller et al., 2019a; Dai et 

al., 2020), which are based on deep learning, are able to integrate information from millions of 

reactions and building blocks, suggesting feasible synthetic routes for the majority of the 

benchmarked compounds in a matter of seconds to minutes (Genheden et al., 2020). However, their 

outputs strongly depend on the employed databases (Voršilák and Svozil, 2017) and they tend to 

suggest multiple solutions which are difficult to rank (Yiming Mo et al., 2021) and more importantly, 

even the fastest are computationally demanding and therefore ill-suited for high-throughput 

computational pipelines (Amol Thakkar et al., 2021). 

Binary classifiers are machine learning algorithms trained to distinguish between compounds that 

are easy or difficult to make. Although the available approaches may differ in terms of learning 

algorithms (support vector machine, neural network, etc) and compound featurization (descriptors, 

fingerprints, etc.), it is the definition of the training set, consisting of compounds labelled as easy or 

difficult to make, that most impacts the behaviour of the methods. Some strategies for compiling 

training datasets include retrosynthesis (Podolyan et al., 2010; Amol Thakkar et al., 2021), presence 

in commercial catalogues or virtually edited compounds (Voršilák et al., 2020). Although binary 

classifiers tend to be much faster than retrosynthesis-based methods, they are also less accurate 

(Voršilák et al., 2020) and their performance is highly dependent on the training dataset 

(Amol Thakkar et al., 2021). Binary classifiers also by definition cannot distinguish between different 

levels of difficulty (Voršilák et al., 2020; Amol Thakkar et al., 2021). 

Complexity-based methods try to define an empirical metric under the assumption that complex 

molecules are more difficult to synthesize (Boda et al., 2007; Hendrickson et al., 1987; Barone and 

Chanon, 2001). Most methods define complexity as a function of the presence of features deemed 

to be complex or infrequent such as chiral centres, uncommon moieties, or unusual molecular 

fragments. One of the most popular measures of SA (Omolabi et al., 2021; Basu et al., 2020; Lu and 

Li, 2021; Imrie et al., 2021a; Humbeck et al., 2018), SAscore (Ertl and Schuffenhauer, 2009) is a 

complexity-based method that uses the rarity of fragments found in PubChem (Kim et al., 2016) and 

a set of predefined properties such as the ring complexity or the number of stereo centres to 

calculate its score. Another commonly used SA score, SCScore (Coley et al., 2018) employs an 

indirect estimation of complexity assuming that the complexity of the reactants is never larger than 

the complexity of the products. Such estimation is obtained using a neural network trained on pairs 

of products/reactants and is able to capture some changes in complexity that reactions cause.  

Due primarily to their simplicity and speed, SAscore and SCScore have been used extensively across 

drug development pipelines including for compound screening (e.g., Omolabi et al., 2021; Basu et 

al., 2020; Lu and Li, 2021; Huang et al., 2019), dataset preparation (e.g., Imrie et al., 2021b; 

Humbeck et al., 2018) and molecule generation/optimization (e.g., Leguy et al., 2020; Zhou et al., 

2019; Khemchandani et al., 2020a; Green et al., 2020). SAScore is one of the most popular metrics 

for biasing or discarding potentially infeasible compounds in methods for computational generation 

of de novo molecules (e.g., Yassine et al., 2021; Imrie et al., 2020; Prykhodko et al., 2019; Leguy et 

al., 2020; Khemchandani et al., 2020b). However, as described above, SAscore and SCscore are 

simple approximations for SA and as such, present several limitations. For instance, it is well known 

that these scores tend to underestimate the SA of difficult compounds that can be synthesized from 

complex commercially available building blocks (Gao and Coley, 2020; Makara et al., 2021). It has 



also been shown that structurally similar compounds, which also tend to have similar complexity-

based scores, can require synthetic strategies of different difficulty levels (Gao and Coley, 2020), 

leading to incorrect SA estimations. 

Independent of their nature, the aim of all the methods described above is to computationally filter 

compounds, ruling out those difficult to make or purchase. This suggest that many users of SA 

metrics would benefit from a direct estimation of an alternative metric strongly related to 

compound availability and purchasability: the price of the compounds. The price is a metric of 

undeniable importance, influencing many of the decisions taken during the drug discovery pipeline, 

particularly in the early stages, where the cost of the compounds to be experimentally tested is 

often of central importance. 

Current SA measurements exhibit poor correlation with prices, Fukunishi et al. (Fukunishi et al., 

2014) found that the Pearson correlation coefficient (PCC) between their SA measurement and the 

logarithmic sales prices of the compound, in $/mmol, was ~0.3. We have expanded on this work and 

found that none of four evaluated SA metrics correlates with price. This is perhaps not surprising, 

since SA scores were never intended to capture price information. However, most methods for 

automatic compound design try to optimize their molecules against a SA metric, which will lead to 

the method suggesting many potentially feasible yet prohibitively expensive compounds. While for 

the hundreds of millions of compounds that are available in the commercial catalogues, price 

estimation translates to a database search problem, in the age of machine learning molecular 

generation techniques, many novel drug-like compounds that are not in catalogues can and will be 

proposed. Consequently, estimating the price of non-catalogue compounds is a problem that will 

arise. 

Compound cost prediction has previously been addressed using retrosynthesis-based methods 

(Badowski et al., 2019). In their approach, Badowski et al. estimated the cost of a molecule as the 

cost of the least expensive synthetic route. The cost of each route is computed as the summation of 

the cost of the initial reactants and the cost of the reactions required to synthesize the molecule, 

which is defined recursively as the sum of fixed costs associated to the reaction and the cost of each 

of the reactants corrected by the yield of the reaction. While this formulation captures the different 

terms involved in the final price, it presents multiple drawbacks. First, since it is based on 

retrosynthesis, the method is slow to compute. Second, it relies on estimations of reaction yields 

and fixed costs, information that is only available for a limited number of reactions and that, in many 

cases, is not in the public domain. Lastly, the assumption that the cheapest retrosynthetic route is 

the one that determines the final cost does not necessary hold since multiple factors such as 

reaction success chances are not considered. 

With the aim of overcoming these problems, in this manuscript we present a retrosynthesis-free 

method to obtain price predictions using only the compound itself. Our method is based on a graph 

neural network (GNN) trained on a dataset of molecule/price pairs collected from the Mcule (Kiss et 

al., 2012) catalogue (https://mcule.com/). Our approach follows that of SA binary classifiers trained 

on retrosynthesis predictions: given enough data, machine learning methods should identify 

patterns in the input molecules that are relevant for the synthetic planning (or the price) without the 

need to explicitly undergo retrosynthetic decomposition. Although retrosynthesis-based 

computations tend to be more accurate, our predictions exhibit a far stronger correlation with 

catalogue prices than any SA metric, with comparable running times to popular SA estimations. 

Consequently, our approach can be employed as a complementary metric to fast SA estimations for 

high throughput assays and more importantly, for de novo molecule generation, in which the large 

number of required assessments prevents retrosynthetic-based approaches from being used. 

https://mcule.com/


Results and discussion 

Limitations of synthetic accessibility approximations 
We examined the behaviour of four current SA scores, SAscore (Ertl and Schuffenhauer, 2009), 

SCScore (Coley et al., 2018), SYBA (Voršilák et al., 2020), and RAscore (Amol Thakkar et al., 2021), on 

two set of molecules, a dataset of purchasable compounds (PC) and a dataset of non-purchasable 

natural products (NPNP) (Figure 1, a-e). As a first approximation all the PC molecules should be 

classified as synthetically feasible, and most of them as highly accessible, whereas most of the NPNP 

compounds should be considered hard to synthesize. As Figure 1 (a-d) shows, none of the methods 

perfectly separate the two compound sets. However, this is not surprising nor potentially even 

desired since not all NPNP are synthetically infeasible, nor all purchasable compounds are easy to 

make. In order to get a better estimation of the actual number of synthetically feasible NPNP 

compounds we computed ManifoldSA, a pure retrosynthesis-based score (see Methods for more 

details). This score estimates that ~24% of the NPNP are synthesizable, with 4.6% of those being 

easily synthesizable (Figure 1 e). Whereas for the PC dataset, ~6% of the compounds were regarded 

as infeasible despite being commercially available. 



Figure 1. Synthetic accessibility estimations are unable to separate purchasable compounds (PC, 

blue) from non-purchasable natural products (NPNP, orange). NPNP compounds are expected to 

exhibit lower synthetic accessibility and larger predicted price. The Matthew’s correlation coefficient 

for each score is displayed in brackets. a-e) Synthetic accessibility/feasibility score distributions 

computed with SAscore (Ertl and Schuffenhauer, 2009), SCScore (Coley et al., 2018), SYBA (Voršilák 

et al., 2020), RAscore (Amol Thakkar et al., 2021), and a retrosynthesis-based score (ManifoldSA, see 

Methods). f) Log-price predictions distribution using CoPriNet. 

However, even given this the two distributions should be relatively separable, leading us to conclude 

that RAscore and SAscore are the best performing of the methods not only because they better 

separated the two distributions with a Matthew’s correlation coefficient (MCC) of 0.86 (SAscore) and 

0.78 (RAscore), compared to 0.91 for the ManifoldSA score, but also because their predictions were 

in better agreement to the ManifoldSA score with Spearman’s rank correlation coefficients (SRCC) of 

0.79 (SAscore) and 0.77 (RAscore) (see Supplementary Figure 1 and Supplementary Table 1). Despite 

these levels of correlation only ~45% of the accessible NPNP compounds according to retrosynthesis 

prediction were detected using SAscore. Moreover, the two metrics showed additional problems 

beyond accuracy. The SAscore assigned high accessibility values to all the purchasable compounds 



(authors recommended a threshold of 6) but also to more than half of the non-purchasable ones, 

suggesting that the SAscore threshold should be carefully selected depending on the dataset. On the 

other hand, for the RAscore, due to its binary nature, most of the estimations gravitated around the 

values of 0 and 1, thus it is not able to obtain a reliable estimation of which of the synthesizable 

molecules are indeed easy to make. The other two scores performed poorly, the SYBA score 

exhibited an MCC of 0.75 and SRCC of 0.65, and the SCScore showed even poorer correlations, with 

MCC and SRCC values below 0.2. 

The performance of the different approaches can be influenced by the dataset used. So we also 

tested their behaviour on the datasets compiled by Gao and Coley (Gao and Coley, 2020) that 

include typically used catalogues of compounds as well as de novo generated molecules for which 

retrosynthesis predictions were computed (see Methods). Overall, the SAscore and the RAscore 

better reproduced the retrosynthesis results (see Supplementary Material Section 3), but the 

different data subsets offered quite different results. One case of especial interest is the dataset of 

de novo generated molecules that were optimized against several multi-property objective functions 

(see Supplementary Figures 9-10). In this case, the RAscore score performance drops when the 

properties used to optimize the molecules do not account for SA. These results are in line with what 

would be expected for a machine learning approach, since the molecules that are obtained, although 

biased to replicate catalogue properties, do not necessarily represent viable instances. 

The results for the PC and NPNP dataset and those from the Gao and Coley datasets suggest that the 

SAscore, with all its imperfections, is currently the best heuristics for retrosynthesis-based SA 

estimation. However, there are also several examples reported in which the SAscore severely 

underperforms (for visual examples see Supplementary Figure 2). Moreover, retrosynthesis-based 

methods, despite being computationally demanding, are not perfect at identifying synthetically 

accessible compounds. The high degree of variability and the fact that the agreement between the 

different estimations depends on the dataset used, suggests that all methods are imperfect (see 

Supplementary Figure 11). 

The relationship between price and synthetic accessibility 
Though synthetic accessibility is an important criterion, often early in the drug discovery pipeline 

molecules to be tested are selected based on price, effectively availability and ease of synthesis. 

Given that, we next examined the relationship between SA metrics and price. We compared the 

price in the Mcule catalogue for the compounds in the PC dataset to our set of SA scores. All SA 

metrics had only a weak correlation with price (see Figure 2), with PCC values ranging from 0.16 to 

0.35 and SRCC ranging from 0.16 to 0.41. Even a combination of all scores in the form of a linear 

regression model still performs poorly when trying to predict the price, with a PCC of 0.45. These 

numbers agree with the value of 0.3 reported by Fukunishi et al. (Fukunishi et al., 2014) and suggest 

that the synthetic difficulty of a molecule may have only a small impact on the final cost of a 

compound. 

 Although this conclusion seems counterintuitive, there are many reasons why this might be the 

case, for example, compounds that are in high demand will benefit from economies of scale, thus 

lowering their price regardless of their synthetic accessibility. For the same reasons, it is not unusual 

to find complicated building blocks at low prices in multiple catalogues, which allows the easy 

synthesis of otherwise difficult compounds. Nevertheless, while cheap compounds comprise both 

easy and difficult compounds, it is also true that expensive compounds tend to be less synthetically 

accessible than their cheaper counterparts (Figure 3). 



Figure 2. Synthetic accessibility scores correlate poorly with compound price while CoPriNet 

predictions exhibit better correlation. a) Histogram of the natural logarithm of the compound prices 

of the CoPriNet test set; b-e) Natural logarithm of the CoPriNet test set compound prices against 

four different SA scores: SAscore (Ertl and Schuffenhauer, 2009), SCScore (Coley et al., 2018), SYBA 

(Voršilák et al., 2020) and RAscore (Amol Thakkar et al., 2021); f) Natural logarithm of the CoPriNet 

test set compound prices against CoPriNet predictions for the CoPriNet test set. 

 

 



Figure 3. Expensive compounds tend to exhibit larger synthetic accessibility, but the high degree of 

variability suggests a week relationship between the two variables, making synthetic accessibility 

scores unhelpful. Distributions of different synthetic accessibility estimations (SAscore (Ertl and 

Schuffenhauer, 2009), SCScore (Coley et al., 2018), SYBA (Voršilák et al., 2020) and RAscore 

(Amol Thakkar et al., 2021)) for catalogue compounds of different price ranges. Last price range 

comprises all compounds with prices above 80$/mmol. 

Price prediction estimation using graph neural networks: CoPriNet 
In the same way that the synthetic feasibility of a compound can be predicted without explicitly 

considering the building blocks and the reaction steps involved, we built a method to predict the 

compound prices directly from the 2D structure of the compound itself using a GNN trained on pairs 

of catalogue compounds/prices. Our GNN, termed CoPriNet, is capable of producing more accurate 

price predictions on our test set than any of the considered SA measurements (Figure 2). CoPriNet 

achieves a PCC of 0.77 and SRCC of 0.80 which are higher than the best achieved by any of the other 

methods (Figure 2). 

 Although it is also true that this approach is not able to compete in terms of accuracy with 

retrosynthesis-based approaches (see Supplementary Section 5), its running time (~1000 

compounds/s on a single GPU) is up to 3 orders of magnitude better than retrosynthesis methods 

(~1-10 compounds/s). Indeed, this throughput is comparable to fast SA estimations such as RAscore 

or SYBA, thus is suitable for high-throughput experiments. 



CoPriNet generalizability 
The performance of all machine learning methods is strongly influenced by their training set, leading 

to inaccurate predictions when the studied compounds are quite different to the examples included 

in the training set (Amol Thakkar et al., 2021). CoPriNet is not an exception and such low 

generalizability problems may occur. 

Given that we can only obtain prices for a tiny fraction of the chemical space that is contained in 

catalogues and that prices for commercial catalogues are not generally in the public domain, 

studying compound price prediction generalizability is challenging. Since we only have access to the 

prices of the molecules in the Mcule catalogue, one of the experiments we can conduct is to ensure 

that results are consistent independently of the random train/validation split. To do so, we trained 

CoPriNet on three distinct train/validation partitions, measuring a mean PCC of 0.73 and mean SCC 

of 0.74 with a standard deviation of 0.04 for PCC and 0.07 for SRCC, showing high consistency. 

Next, we assumed that non-purchasable natural products (NPNP) should be more expensive than 

purchasable compounds (PC) as a way to test for generalizability to non-catalogue compounds. 

Figure 1 f shows that CoPriNet tends to predict larger prices for the NPNP compounds than for the 

compounds of the PC dataset. Since the NPNP compounds are quite different from the compounds 

in the training/validation/test sets used in this work and, on average, they are much more difficult to 

synthesize than the purchasable compounds, these results suggest generalization capability beyond 

catalogue compounds. 

Finally, we tested generalizability when the method is used on molecules substantially different from 

the ones in the training set. To do this we evaluated the performance of our method using another 

test set constructed from virtual compounds included in the Mcule catalogue. These are compounds 

that are likely to be easily synthesizable from accessible building blocks and for which prices are 

estimated by the providers according to expected synthetic routes and requirements, thus price 

distributions tend to be very different. For these compounds, the correlations between all the SA 

measurements and the price are very poor. CoPriNet predictions tend to systematically 

underestimate the price of these virtual compounds (see Supplementary Section 6), leading to a 

poor linear correlation but a reasonable SRCC of 0.56, far better than the one obtained by the best 

performing SA metric, SCScore, with an SRCC of 0.32. However, since the main purpose of CoPriNet 

is compound prioritization/optimization, predicting accurate prices is not as important as accurately 

ranking them, which is not severely affected by the underestimation bias, suggesting that CoPriNet 

may still be effective even on challenging datasets. 

Conclusions 
Availability and ease of synthesises are crucial properties that all drug-like compounds should exhibit 

to be progressed in the drug discovery pipeline. Due to its importance, several approximations for 

these properties have been developed. In this manuscript we have illustrated some of the limitations 

of current synthetic accessibility (SA) estimations for use in estimating availability, including the poor 

correlation between SA estimations and compound price. The practical implications of this lack of 

correlation are potentially far ranging since SA estimations are commonly employed for compound 

prioritization and price is an important variable when deciding which compounds should be assayed. 

More importantly, most de novo generated molecules are biased or optimized against simple SA 

measurements such as SAscore, thus they may well suggest feasible but prohibitively expensive 

designs that hardly ever will be selected for progression. 



With the aim of alleviating this problem, we propose CoPriNet, a deep learning-based method 

designed to obtain predictions for compound prices using only their molecular 2D graph. Our 

approach, evaluated on an independent test set, exhibits far better performance than existing 

alternatives and an excellent throughput, being able to process up to one thousand molecules per 

second. This speed means that CoPriNet could be employed in high-throughput settings such as 

virtual screening or de novo compound generation/optimization, for which retrosynthesis-based 

approaches are too computationally demanding. 

Methods 

Datasets 
Two main sources of compounds were employed in this work. The first is the Mcule catalogue (Kiss 

et al., 2012), that contains more than 40 million compounds and their up-to-date prices compiled 

from more than a hundred vendors. In order to avoid common errors that may arise from the 

integration of different catalogues (misdrawn and incorrect structures), the catalogue is curated 

using the Mcule Advanced Curation process (MAC) that involves a rigorous molecule registration 

system with various structural checks, and various steps of standardization, preparation and 

correction, ensuring that the information contained in the catalogue is highly reliable. From this 

catalogue we extracted the subset of in-stock compounds (~7M), that was divided into train, 

validation, and test partitions randomly. The price of each compound was extracted on March 2021 

from the Mcule database as the price for 1 g of compound. Prices were then converted from $/g to 

$/mmol because, as suggested by Fukunishi et al. (Fukunishi et al., 2014), correlations with SA 

measurements were stronger. All statistics and Figures included in this work are derived from the 

compounds in the test set except when explicitly stated. The test set is also referred to as the 

purchasable compounds dataset (PC) throughout this manuscript as it only contains purchasable 

compounds. For the generalizability study, a random subset of 100K virtual compounds was also 

extracted from the Mcule catalogue as a separate independent testing set. 

The second source of compounds was the ZINC database (Sterling and Irwin, 2015) from which we 

extracted a subset comprising only non-commercially available natural products, that we refer to as 

the NPNP (Non-Purchasable Natural products) dataset. We use this dataset as an approximate set of 

non-synthesizable compounds. 

We also employed two of the datasets compiled by Cao and Coley (Gao and Coley, 2020). 

Particularly, their dataset of molecules compiled from five different sources: MOSES (Polykovskiy et 

al., 2020), ZINC (Sterling and Irwin, 2015), ChEMBL (Gaulton et al., 2012), Sheridan et al. (Sheridan et 

al., 2014), and GBD-17 (Ruddigkeit et al., 2012); and their dataset of de novo generated molecules 

comprising of two subsets of molecules optimized against multiple properties including or not the 

SAscore. 

Synthetic accessibility calculations 
Four distinct SA metrics were employed in this work: SAscore (Ertl and Schuffenhauer, 2009), 

SCScore (Coley et al., 2018), the AstraZeneca RAscore (Amol Thakkar et al., 2021) and SYBA (Voršilák 

et al., 2020). All of them were executed using default parameters. Additionally, the retrosynthesis-

based score ManifoldSA was computed using the Postera Manifold API v1 

(https://api.postera.ai/api/v1/docs/). ManifoldSA summarizes retrosynthesis results into a number 

between 0 (easy) and 1 (difficult) that estimates the synthetic accessibility of a compound. For 

comparison ease, we used 1 – ManifoldSA instead. Discretization was carried out considering that 

compounds with ManifoldSA < 0.5 are synthesizable and compounds with ManifoldSA < 0.2 are 

https://api.postera.ai/api/v1/docs/


easily synthesizable. In summary, Manifold first performs a tree-search to compute possible 

retrosynthetic routes from the target molecule to purchasable starting materials, using Molecular 

Transformer to predict the probability of success of each step. The ManifoldSA is then computed by 

considering the feasibility and robustness of multiple routes to the molecule, taking into account 

probability of success at each step of a route. Manifold algorithm has been reported to be used in 

synthesis-driven de novo design (Morris et al., 2021). 

Retrosynthesis calculations 
Retrosynthesis prediction was carried out using the Postera Manifold API, that implements the 

molecular transformer approach (Schwaller et al., 2019b; Lee et al., 2019). We employed the v1 

retrosynthesis endpoint using a depth search of four and the Mcule catalogue as the source of 

building blocks.  

For price estimation from retrosynthesis predictions we employed a simple heuristic that only 

considers the cost of the building blocks neglecting any additional cost. Thus, taking into account 

that the retrosynthesis results obtained for each compound tend to include several pathways, 

potentially involving multiple building blocks, we employed two simple strategies. The first one 

assumes ideal route ranking, thus overestimates the performance (ignoring non-reactant costs), by 

selecting the route that better matched our price records. The second strategy just reports the 

minimum price route. Both approaches could be easily improved considering aspects such as 

reaction types involved, yield prediction, etc, but this data is not generally available in the public 

domain and the usage of predictors for such properties is outside the scope of this work. Other 

approaches such as the method proposed by Bodowski et al. (Badowski et al., 2019) could not be 

employed as they are not publicly available. 

CoPriNet Graph Neural Network 
To create our price prediction GNN we represented compounds as 2D graphs with atoms 

corresponding to nodes and bonds to edges. Nodes are encoded using five features: atomic number, 

valence, formal charge, number of neighbours, and aromaticity. Edges are represented with four 

features: bond type, aromaticity, conjugation, and ring membership. 

Our GNN first projects the node and edges features using a learnable linear transformation from 

dimension five and four to 75 and 50 respectively. After that, ten blocks consisting of a PNA layer 

(Corso et al., 2020), batch normalization (Ioffe and Szegedy, 2015) and ReLU (Nair and Hinton, 2010) 

activation are applied one after another. Then, an embedding for the graph is obtained applying a 

Set2set layer (Vinyals et al., 2015). Finally, two dense layers with batch normalization and ReLU 

activation and one last linear layer with one single unit are applied to the graph embedding. A 

schematic of our GNN architecture is depicted in Figure 4. The hyperparameters were selected by 

cross-validation over the validation dataset, exhibiting a robust behaviour. See Supplementary 

Material Section 7 for more details. 

 



Figure 4. Price prediction Graph Neural Network architecture. The graph of a molecule consisting of 

nodes (circles) and edges (dark blue and red lines) is encoded as node vectors (dimension five, pale 

blue, green and purple rectangles) and edge vectors (dimension four, dark blue and red rectangles). 

The node and edge vectors are embedded into higher dimensionality embeddings using 

independent learnable weights for the nodes (Linear-nodes) and for the edges (Linear-edges). After 

that, the node and edge embeddings are processed by ten blocks of PNA layer, batch normalization 

and ReLu activation, updating the state of the embeddings after each block. Then, the processed 

embeddings of all the nodes are combined into one single graph embedding using a Set2Set layer. 

Finally, the graph embedding is processed by two blocks of linear layer, batch normalization and 

ReLu activation from which the price prediction is obtained using a linear layer with one single unit. 

Our network was trained using the Adam optimizer (Kingma and Ba, 2014) with a batch size of 512 

graphs. Initial learning rate was set to 10−5 and decreased by a factor of 0.1 when the validation loss 

did not improve during 25 epochs. The mean squared error was used as the loss function. 

Evaluation metrics 
The correlation between continuous variables was measured using the absolute value of the Pearson 

Correlation Coefficient (PCC, Eq. 1) and the Spearman’s Rank Correlation Coefficient (SRCC, Eq. 2). 

 

𝑃𝐶𝐶 =  𝑎𝑏𝑠 (
∑(𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)

√∑(𝑋𝑖−𝑋̅)√∑(𝑌𝑖−𝑌̅)
)        Eq. 1 

 

𝑆𝑅𝐶𝐶 =  𝑎𝑏𝑠 (1 −
6 ∑(𝑅(𝑋𝑖)−𝑅(𝑌𝑖))

2

𝑛(𝑛2−1)
)          Eq. 2 

where 𝑋𝑖  and 𝑌𝑖  are the 𝑖-th observations of the variable 𝑋 and 𝑌, 𝑋̅ is the average of variable 𝑋, 

𝑅(𝑋𝑖) is the ranking of the 𝑖-th observation of the variable 𝑋 and n is the number of observations. 

Binary classification performance was evaluated using the Matthews Correlation Coefficient (MCC, 

Eq. 3) at the threshold that maximizes its value. 

𝑀𝐶𝐶 =  
𝑇𝑃 ×𝑇𝑁−𝐹𝑃 ×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
      Eq. 3 

where 𝑇𝑃 is the number of true positive predictions, 𝑇𝑁 is the number of true negative predictions, 

𝐹𝑃 is the number of false positive predictions and 𝐹𝑁 is the number of false negative predictions. 

Code and data availability 
CoPriNet source code, trained models and test dataset are available at 

https://github.com/oxpig/CoPriNet. 
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