

RanDepict - Random Chemical
Structure Depiction Generator
Henning Otto Brinkhaus1, Kohulan Rajan1, Achim Zielesny2 and
Christoph Steinbeck1*

1 Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena,
Lessingstr. 8, 07743 Jena, Germany
2 Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied
Sciences, August-Schmidt-Ring 10, D-45665 Recklinghausen, Germany
*Corresponding author email: christoph.steinbeck@uni-jena.de

Abstract
The development of deep learning-based optical chemical structure recognition (OCSR)
systems has led to a need for datasets of chemical structure depictions. The diversity of the
features in the training data is an important factor for the generation of deep learning systems
that generalise well and are not overfit to a specific type of input. In the case of chemical
structure depictions, these features are defined by the depiction parameters such as bond
length, line thickness, label font style and many others.

Here we present RanDepict, a toolkit for the creation of diverse sets of chemical structure
depictions. The diversity of the image features is generated by making use of all available
depiction parameters in the depiction functionalities of the CDK, RDKit, and Indigo.
Furthermore, there is the option to enhance and augment the image with features such as
curved arrows, chemical labels around the structure, or other kinds of distortions.

Using depiction feature fingerprints, RanDepict ensures diversely picked image features.
Here, the depiction and augmentation features are summarised in binary vectors and the
MaxMin algorithm is used to pick diverse samples out of all valid options.

By making all resources described herein publicly available, we hope to contribute to the
development of deep learning-based OCSR systems.

Graphical abstract

Keywords
CDK, Chemical image depiction, Depiction generator Image augmentation, Indigo, RDKit,
OCSR

Introduction
Since 2019, there has been a lot of development in the field of deep learning-based optical
chemical structure recognition (OCSR) [1–7]. This indicates a paradigm shift as convolutional
neural networks (CNN) as encoders in combination with recurrent neural networks (RNN) or
transformers as decoders replace the rule-based systems that have previously defined the
standard in the field [8].

The rule-based systems typically apply a workflow of binarisation, vectorisation, the detection
of specific structural elements like dashed lines and wedges, optical character recognition
(OCR), graph compilation and additional post-processing steps. Every single step in these
workflows can be fine-tuned to achieve optimal results. In 2021, Clevert et al. have shown that
the openly available rule-based systems surprisingly fail on the common benchmark datasets
when slight image perturbations like rotation and shearing are introduced [3]. This lack of
robustness is a clear indication that these systems have been overfitted to the benchmark
datasets and that there is a need for more diverse benchmark data.

A machine-learning system learns to adapt its actions based on given environment
information. Consequently, the quality of the environment information is a crucial factor for the
system learning to solve a specific task [9]. Machine-learning systems are able to learn best
when the input data they receive is similar to the data they have been trained on. In the case
of most deep learning-based OCSR systems, the training data consists of images with
depictions of chemical structures which are mapped to string representations of the underlying
molecular graph. To be able to generalise well across a variety of different depiction styles, a

machine-learning model needs to be trained on these depiction styles as well. Additionally,
chemical structure depictions often contain non-structural elements like atom numbering or
mechanism arrows which need to be considered as common noise types (Figure 1). This is
particularly relevant for real-world chemical data extraction applications, since the only openly
available deep learning-based segmentation tool for chemical structures, DECIMER
Segmentation, tends to include these non-structural elements in its output segments [10].
Hence, there is a need for a tool for the generation of chemical structure depictions of various
depiction styles with additional non-structural elements.

Figure 1: Examples of structure depictions from chemical publications extracted using
DECIMER Segmentation which contain non-structural elements like atom labels (left) [11],
reaction arrows (middle) [12] and identity labels (right) [13].

We present RanDepict, a toolkit for generating diverse representations of chemical structures.
It addresses the problem of the generation of diverse training data for OCSR tools by pseudo-
randomly setting the available depiction parameters when depicting a structure with one out
of three cheminformatics toolkits (Chemistry Development Kit (CDK) [14], RDKit [15] and
Indigo [16]). Various augmentations such as image perturbations or non-structural elements
like labels and curved arrows can also be added. Instead of pseudo-randomly picking
depiction and augmentation parameters, there also is the option to generate the images based
on depiction feature fingerprints. Here, the depiction and augmentation parameters are
represented as bit arrays and RDKit’s implementation of the MaxMin algorithm [17] is used to
pick diverse samples out of all valid fingerprints.

By making it publicly accessible, we hope to contribute to the development of robust deep
learning-based OCSR systems by providing diverse training and benchmark datasets.
RanDepict's source code is publicly available on GitHub.

Implementation
RanDepict is written using Python 3 [18]. The chemical structure depictions are generated
using the CDK, RDKit and Indigo. As CDK is Java-based, its classes are accessed in Python
via JPype [19].

When a chemical structure depiction is generated, one of the three above-mentioned
cheminformatics toolkits is picked randomly. Then, the depiction functions arbitrarily define all

available parameters. Among these parameters are bond length, thickness, style, kékulisation,
font type and size of atom labels, rotation of molecules, the distance between lines and labels
and the abbreviation of chemical substructures. Here, the abbreviation of chemical
substructures means that, for example, a tertiary butyl group is abbreviated as tBu instead of
drawing the full branched chain. Additionally, atom numbering and chirality labels are included
in the depiction parameters as they are added by the cheminformatics toolkits and not by
separate functions.

Various non-structural features can be added to the structure depiction. Along with atom
numbering and chirality labels, there are also curved mechanism arrows, straight reaction
arrows, chemical identity labels, rest group labels, and reaction condition labels.
The arrow images are randomly picked from a set of available images resized, rotated, and
pasted in a position where do (curved arrows) or do not (reaction arrows) overlap with the
chemical structure depiction.
The labels are generated by arbitrarily combining a variety of available text elements. For
example, a chemical identity label is generated as a number (e.g., ‘1’), a number-letter
combination (e.g., ‘1a’), a number-number combination (e.g., ‘1-4’) or a number-letter-letter
combination (‘1a-d’). Similarly, rest group labels are generated by combining rest group
variables (e.g., ‘R’, ‘X’) with randomly picked superatom labels. The list of superatoms that is
used here was originally published along with the rule-based OCSR system OSRA [20].
Reaction condition labels are generated by combining the name of a chemical compound, a
solvent, and a time. The font size and type for the labels are randomly chosen. The available
font types include standard fonts like Arial and Times New Roman but also fewer common
fonts that contain, for example, Asian or Greek-style characters. This ensures that there are
diverse types of non-structural elements around the chemical structure that a potential deep
learning-based OCSR system can learn to ignore as noise. Furthermore, the image
augmentation library imgaug is used to add additional image perturbations. This includes a
mild rotation, shearing, salt and pepper noise, brightness and colour adjustments, JPEG
compression and pixelation.

Every image created by RanDepict with the desired shape of (m, n) is slightly distorted and
resized. Therefore, it is first generated with a shape of (mdist, ndist) where mdist and ndist are
randomly drawn from [0.9*m, 1.1*m] and [0.9*n, 1.1*n]. Then, it is resized to the desired shape
(m, n) with a randomly picked resizing method. The purpose of this procedure is the
introduction of the artefacts of different resizing methods in the image data.

Whenever a (pseudo-)random decision is made, the seed attribute of the RandomDepictor
class is used as a seed for the pseudo-random choice and then altered systematically. This
ensures that the creation of datasets with RanDepict is reproducible under the condition that
the tool is fed the same SMILES input and the same initial seed.

Since the entire depiction parameters constitute a high-dimensional feature space, random
sampling doesn't necessarily guarantee even coverage. Instead of choosing parameters
randomly, RanDepict can use depiction feature fingerprints to deal with this issue. This means
that all depiction parameters as well as the presence or absence of the different augmentation
types are summarised in bit arrays. Here, a 1 or a 0 in every position represents the presence
or absence of a certain feature (exemplary illustration in Figure 2). After computing all possible

valid fingerprints, RDKit’s implementation of the MaxMin algorithm [17] is used to pick diverse
samples. This way, diversity of depiction features is ensured.

Figure 2: Exemplary illustration of depiction feature fingerprints

The set of all possible valid fingerprints is determined as the combination of all valid fingerprint
building blocks in a given order. Here, a fingerprint building block is a valid subset of values
that are linked to certain positions in the whole fingerprint which express one depiction feature.
A valid fingerprint is a combination of values that does not lead to contradicting statements
about the underlying chemical structure depiction.

Let an exemplary chemical structure depiction be defined by the two features kékulisation and
bond width. The kékulisation is defined on position 0 of the fingerprint. The resulting building
block for this feature is (0, 1) as the first position of the fingerprint can take these two values
to refer to whether the kékulisation is being applied or not. Assuming that the bond width can
be thin, medium, or bold, these options would be described by positions 1-3 of the fingerprint.
The building blocks for the feature bond width would be (1,0,0), (0,1,0) and (0,0,1). Other
combinations for these positions would be invalid as, for example, the combination (1,0,1) on
these fingerprint positions would refer to the bond width being thin and bold at the same time.
The combination of the valid building blocks for all features in the given order defines the set
of all fingerprint combinations. In the aforementioned example, this results in (0,1,0,0),
(0,0,1,0), (0,0,0,1), (1,1,0,0), (1,0,1,0) and (1,0,0,1) as the set of valid fingerprints.

The building blocks of the fingerprints are generated automatically. A pseudo-random decision
during the depiction creation just needs to be flagged as relevant for the fingerprint. RanDepict
recognises this and automatically generates a fingerprint scheme. This way, the code for the
fingerprint generation does not need to be adapted in the case of modifications in the depiction
creation process.

During the fingerprint generation process, every binary decision (kékulisation in the example
above) is simply allocated to one position in the bit array. When categorical decisions (bond
width in the example above) are allocated to as many positions as there are categories where
every position then indicates the presence or absence of a certain category and only one of
them can have the value 1. Numerical ranges are split into three subranges which are then
treated like categories. For example, if the bond width could be described by an integer with
the possible values [1, 2, 3, 4, 5, 6], this would be allocated to three positions in the fingerprint.
These positions would be linked to the subsets [1, 2], [3, 4] and [5, 6]. This means that the

fingerprint does not always define an exact value for certain parameters but only specifies a
range. When creating a depiction from a fingerprint, the parameter is randomly drawn from
this subrange. This is necessary to reduce the number of possible fingerprints as the
combinatorial explosion complicates computing all possible fingerprint combinations
otherwise.

The three cheminformatics toolkits offer varying amounts of adjustable parameters. During the
creation of a CDK depiction, 15 parameters are set. When using RDKit and Indigo, 10 and 8
parameters are adjustable. The ranges of possible values for these parameters differ between
the tools. Hence, fingerprints for CDK, RDKit and Indigo depictions and the additional
augmentations are four separate entities. The augmentation fingerprints only describe the
presence or absence of an augmentation feature but do not comprise the specific parameters
which are set. The varying parameter numbers and ranges lead to strongly differing numbers
of valid depiction feature fingerprints: 2,799,360 for the CDK fingerprints, 18432 for RDKit
fingerprints, 864 for Indigo and 2048 for the augmentations. When generating a dataset from
the fingerprints the user can specify the desired proportions of CDK, RDKit and Indigo
depictions as well as the proportion of structures with added augmentations. They default to
55% (CDK), 30% (RDKit) and 15% (Indigo), 50% (augmented).

Results
RanDepict was designed to allow the generation of diverse chemical structure depictions using
only a few lines of code. After generating a RandomDepictor object, the method
random_depiction can be used to generate depictions of chemical structures. These
depictions are generated by using randomly picked parameters in CDK, RDKit and Indigo
without additional elements (Figure 3). The object can be called as a function to generate
chemical structure depictions with additional non-structural elements and augmentations
(Figure 4). There are various examples for the batch generation of structure depiction datasets
with and without the usage of the feature fingerprint picking functionality in the documentation.

from RanDepict import random_depictor

smiles = "CN1C=NC2=C1C(=O)N(C(=O)N2C)C"

with random_depictor() as depictor:
 # Generate chemical structure depictions
 image = depictor.random_depiction(smiles)

 # Generate augmented chemical structure depictions
 augmented_image = depictor(smiles)

Figure 3: Depictions of caffeine with various depiction styles generated with RanDepict with
feature fingerprint picking without additional augmentations

Figure 4: Depictions of caffeine with various depiction styles and additional non-structural
features and noise types generated with RanDepict using feature fingerprint picking

On a compute server with two Intel(R) Xeon(R) Silver 4114 CPUs and 64 GB of RAM, the
runtime was evaluated for the generation of 100, 200, 400, 800, 1600, 3200 and 6400
chemical structure depictions with an image size of 299x299 (Figure 5) using one CPU core.
This was done with and without the addition of augmentations and the usage of the feature
fingerprints. The linear regression results of the different runs clearly indicate that the runtime
increases linearly with a growing amount of depictions.

Figure 5: Runtime analysis of chemical structure depiction generation with RanDepict with and
without augmentations and the application of the feature fingerprint picking functionality. The
dotted lines represent linear regression results for each case.

Based on the regression analysis, the generation of one million chemical structure depictions
without the feature fingerprints takes 19 hours without augmentations and 31 hours with
augmentations. For the generation of large datasets consisting of millions of structures, it is
recommended to split the input SMILES lists and run the generation in parallel on multiple
nodes in a cluster or using a cloud service. As long as the initial seed is set differently in every
parallel instance, different sets of parameters are picked.

The same extrapolation applied to the generation of one million structures using feature
fingerprint selection results in 127 hours without augmentations and 138 hours with
augmentations. The user could split up the input SMILES lists here, too, and initialise the
MaxMin picking mechanism with different seeds on every instance in a computing cluster to
ensure different sets of parameters are picked. Nevertheless, the creation of datasets from
fingerprints is significantly slower than the generation with random parameter sampling.
Depending on the desired dataset size, the user can decide whether to use depiction feature
fingerprints. The feature fingerprint picking functionality is highly recommended for the
generation of smaller test and benchmark sets as it ensures a diverse selection of features.

Conclusion
RanDepict: a toolkit for generating chemical structure depictions. It features diverse structure
depiction elements, as well as non-structural elements and image augmentations.

If desired, the diversity of depiction features is ensured by representing the entirety of features
in bit arrays (feature fingerprints) and picking diverse sets using the MaxMin algorithm. Even
though fingerprint picking is a time-consuming process, we highly recommend using it for the
generation of smaller test sets where the random sampling of depiction features may not
necessarily lead to a dataset that represents the entire feature space.

The complete source code of RanDepict, scripts for the generation of Figure 3 and 4, the
runtime determination as well as other examples for the usage and detailed documentation of
RanDepict are openly accessible on GitHub and Read the Docs. It is possible to install
RanDepict as a package via pip. We hope that our work will contribute to the standardisation
of training and test datasets in the field of OCSR.

List of abbreviations

● CDK - Chemistry Development Kit
● CNN - Convolutional Neural Network
● JPEG - Joint Photographic Experts Group
● OCSR - Optical Chemical Structure Recognition
● OSRA - Optical Structure Recognition Application
● RNN - Recurrent Neural Network
● SMILES - Simplified Molecular Input Line Entry Specification

Availability and requirements
● Project name: RanDepict

● Project home page: https://github.com/OBrink/RanDepict,

https://pypi.org/project/RanDepict/

● Operating system(s): Linux, macOS and Windows 10

● Programming language: Python 3

● Other requirements:
○ Python packages: numpy>=1.19, imgaug, scikit-image, epam.indigo, jpype1,

ipyplot, rdkit-pypi, imagecorruptions, pillow>=8.2.0
○ Java Libraries: CDK 2.5

● License: MIT

● Any restrictions to use by non-academics: Not applicable

Declarations

Competing interests
AZ is co-founder of GNWI - Gesellschaft für naturwissenschaftliche Informatik mbH,
Dortmund, Germany.

Funding
This work was supported by the Carl-Zeiss-Foundation and by the German Research
Foundation within the framework CRC1127 ChemBioSys.

Authors' contributions
HOB developed the python software and performed the analysis, KR and HOB initiated,
designed, tested, applied, and validated the application features. CS and AZ conceived the
project and supervised the work. All authors contributed to and approved the manuscript.

References
1. Oldenhof M, Arany A, Moreau Y, Simm J (2020) ChemGrapher: Optical Graph

Recognition of Chemical Compounds by Deep Learning. J Chem Inf Model 60:4506–
4517

2. Khokhlov I, Krasnov L, Fedorov M, Sosnin S (2022) Image2SMILES: Transformer-
Based Molecular Optical Recognition Engine. Chem Methods.
https://doi.org/10.1002/cmtd.202100069

3. Clevert D-A, Le T, Winter R, Montanari F (2021) Img2Mol - accurate SMILES
recognition from molecular graphical depictions. Chem Sci 12:14174–14181

4. Rajan K, Zielesny A, Steinbeck C (2021) DECIMER 1.0: deep learning for chemical
image recognition using transformers. J Cheminform 13:61

5. Rajan K, Zielesny A, Steinbeck C (2020) DECIMER: towards deep learning for chemical
image recognition. J Cheminform 12:65

6. Weir H, Thompson K, Woodward A, Choi B, Braun A, Martínez TJ (2021) ChemPix:
automated recognition of hand-drawn hydrocarbon structures using deep learning.
Chem Sci 12:10622–10633

7. Staker J, Marshall K, Abel R, McQuaw CM (2019) Molecular Structure Extraction from

Documents Using Deep Learning. J Chem Inf Model 59:1017–1029

8. Rajan K, Brinkhaus HO, Zielesny A, Steinbeck C (2020) A review of optical chemical
structure recognition tools. J Cheminform 12:60

9. Wang H, Ma C, Zhou L (2009) A Brief Review of Machine Learning and Its Application.
2009 International Conference on Information Engineering and Computer Science.
https://doi.org/10.1109/iciecs.2009.5362936

10. Rajan K, Brinkhaus HO, Sorokina M, Zielesny A, Steinbeck C (2021) DECIMER-
Segmentation: Automated extraction of chemical structure depictions from scientific
literature. J Cheminform 13:20

11. Runeberg PA, Agustin D, Eklund PC (2020) Formation of Tetrahydrofurano-,
Aryltetralin, and Butyrolactone Norlignans through the Epoxidation of 9-Norlignans.
Molecules. https://doi.org/10.3390/molecules25051160

12. Zhang G, Li Y, Wei W, Li J, Li H, Huang Y, Guo D-A (2020) Metabolomics Combined
with Multivariate Statistical Analysis for Screening of Chemical Markers between and.
Molecules. https://doi.org/10.3390/molecules25051228

13. Luo X-W, Gao C-H, Lu H-M, Wang J-M, Su Z-Q, Tao H-M, Zhou X-F, Yang B, Liu Y-H
(2020) HPLC-DAD-Guided Isolation of Diversified Chaetoglobosins from the Coral-
Associated Fungus C2F17. Molecules. https://doi.org/10.3390/molecules25051237

14. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003) The
Chemistry Development Kit (CDK): an open-source Java library for Chemo- and
Bioinformatics. J Chem Inf Comput Sci 43:493–500

15. Landrum G, Others (2016) RDKit: Open-Source Cheminformatics Software.(2016). URL
http://www. rdkit. org/, https://github. com/rdkit/rdkit

16. Indigo Toolkit. https://lifescience.opensource.epam.com/indigo/. Accessed 25 Jun 2020

17. Ashton M, Barnard J, Casset F, Charlton M, Downs G, Gorse D, Holliday J, Lahana R,
Willett P (2002) Identification of diverse database subsets using property-based and
fragment-based molecular descriptions. Quant struct-act relatsh 21:598–604

18. Van RG, Drake F (2009) Python 3 reference manual. Scotts Valley, CA: CreateSpace

19. Nelson KE, Scherer MK, Others (2020) JPype. Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States)

20. Filippov IV, Nicklaus MC (2009) Optical structure recognition software to recover
chemical information: OSRA, an open source solution. J Chem Inf Model 49:740–743

