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Abstract 

We introduce a framework for benchmarking multi-step retrosynthesis methods, i.e. route predictions, 

called PaRoutes. The framework consists of two sets of 10,000 synthetic routes extracted from the patent 

literature, a list of stock compounds, and a curated set of reactions on which one-step retrosynthesis 

models can be trained. PaRoutes also comes with scripts to compute route quality and route diversity 

quantities that are important for comparing methods. We use the PaRoute framework to compare three 

methods implemented in the AiZynthFinder software: Monte Carlo tree search (MCTS), Retro*, and a 

depth-first proof-number search (DFPN) algorithm, all using a template-based one-step retrosynthesis 

model. It is found that DFPN is inferior to both MCTS and Retro* and cannot be recommended in its 

current implementation. MCTS and Retro* are on a par with regard to search speed and the ability to 

find routes in which all starting material is in stock. However, MCTS outperforms Retro* when it comes 

to route quality and route diversity. MCTS more easily recovers the reference routes and tends to find a 

diverse set of solutions for a greater portion of the targets. We encourage practitioners and developers 

to benchmark their algorithms using PaRoutes and we envisage that the framework will become the 

community standard to compare retrosynthesis route predictions. It is available at 

https://github.com/MolecularAI/PaRoutes 

 

 

1. Introduction 
Computer-aided synthesis planning (CASP) is a field of intense research that can provide insight and 

accelerate the synthesis of novel compounds, both in early discovery and late-stage development [1, 2]. 

One particular area of CASP is retrosynthesis analysis in which the aim is to predict the necessary steps 

to synthesize a compound, i.e. a synthetic route (see Figure 1). Such methods date back to the 60’s and 

the early work of Corey [3], although the research has intensified in the last decade due to the increased 

interest in machine learning and artificial intelligence. At the heart of retrosynthesis analysis is a method 

that is capable of predicting disconnections on a compound and thereby producing precursors. Such 

methods are typically referred to as one-step retrosynthesis or single-step retrosynthesis. The precursors 

produced by the one-step retrosynthesis can then be further broken down recursively until a set of 

conditions are met. Such iterative methods are typically referred to as multi-step retrosynthesis. 

Typically, the stop conditions are that a precursor is found in a database of purchasable compounds, i.e. 

a stock, or that a maximum number of disconnections has been applied. 
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Figure 1 – The synthetic route of 2-chloro-N-(2,6-diethylphenyl)-N-(2-oxoethyl)acetamide extracted from the 

US03983174 patent. The figure also illustrates the difference between one-step and multi-step retrosynthesis. 

One-step retrosynthesis methods have received the greatest amount of attention: there is a plethora of 

methods described in the literature that uses a diverse range of methods to extract synthesis rules, 

cheminformatic representations, neural network architectures, sampling techniques, etc. [see e.g. 4, 5, 

6, 7, 8, 9, 10, 11, 12, 13, 14]. For the practitioner that wants to use a method for predictions, or for a 

researcher developing a novel method, there are several comparisons for a subset of the available 

methods. In fact, once a novel method is developed it is customary to benchmark it against other methods 

using a common set of known reactions. The US patent office (USPTO) extracts provided by Lowe [15] 

is the de-facto standard for comparing single-step retrosynthesis method, as it is one of few open-source 

datasets of chemical reactions. However, there more than one curated subset of the dataset used [16, 17], 

which is a complication. Furthermore, there has not been a survey published showing all one-step 

methods side by side, so it is still difficult to understand the range of available methods. 

Multi-step retrosynthesis methods, or route prediction methods, have received less attention. To the 

practitioner, the pool of available solutions is dominated by commercial and closed-source alternatives 

[2], although a few complete, open-source packages have emerged, such as the ASKCOS suite from 

MIT [18] and AiZynthFinder from AstraZeneca [19]. In addition, there have been a few algorithms 

described in the literature, which we will summarize in Section 4. What is lacking with regards to the 

route prediction methods is comparative studies. There is a lack of consensus on how to compare route 

predictions and what data one should do the comparison on. One reason for this could be that there is 

no public database of synthetic routes, as there is the USPTO data for single-step reactions. Another 

reason could be that there is typically no unique way to synthesize a compound and several alternative 

routes could be used that are optimal for different scenarios. With regards to the data problem, there 

have been a few attempts to collect a set of routes on which one can perform a comparison: Heifets and 

Jurisica [20] compiled a suite of routes from organic chemistry examinations that they then used to 

benchmark their approach. Unfortunately, the suite is extremely small, only 20 routes, and it is therefore 

difficult to make statistical analysis of the route predictions. Chen et al. [21] extracted routes from the 

USPTO dataset to train a neural network for computing the cost of synthesizing a molecule. They found 

all compounds in the USPTO dataset that had a route to compounds in the eMolecules database,1 and 

then performed further selections to arrive at a test set of size 189. Interestingly, they also used this to 

compare four different multi-step retrosynthesis methods (and variants thereof). They focused the 

comparison on computing time, the number of targets for which a route was found, and the lengths of 

the routes. Finally, Mo et al. [22] extracted also routes from the USPTO dataset for training their neural 

network for predicting the human-likeness of routes. Instead of extracting routes from the full reaction 

network as in [21] they extracted routes within a patent. Each patent consist of one or more reactions 

and a reaction network would have highly related reactions. Using a complete depth-first search of such 

networks for each patent, 238K routes were extracted. This is an excellent number of routes for training 

a neural network model but is probably too excessive for benchmarking route prediction methods. 

However, we will build upon this methodology in Section 2 to extract routes suitable for benchmarking 

 
1 http://downloads.emolecules.com/free/ 
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multi-step retrosynthesis tools. We will then proceed to discuss and suggest metrics to compute when 

comparing predictions on these routes in Section 3. Finally, we will apply this framework on an 

illustrative comparison of three kinds of search algorithms implemented in the AiZynthFinder software 

in Sections 4 and 5. 

 

 

Figure 2 – Procedure to extract reference routes from a curated subset of the USPTO database. Details of 

the procedure is outlined in Section 2. 

2. A benchmark set for route predictions 
 

2.1 Route extraction 

To extract routes, we started from the subset of the USPTO dataset prepared by Thakkar et al. [23], as 

this is a dataset that contains atom-mapped reactions and reaction templates, which is necessary for 

training a template-based one-step retrosynthesis model. We kept only reactions for which the template 

occurrence was four or more, i.e. all the reactions in the dataset are represented by a reaction template 

that occurs at least four times in the dataset. This amounts to 867,620 reactions. When extracting the 

routes from this dataset, we left out 99,093 reactions, three examples for each unique reaction template, 

to be able to have sufficient data to train a one-step model on (see below). We will now detail how routes 

were extracted from the 768,527 remaining reactions, a procedure summarized in Figure 2. 

 

Figure 3 – Reaction network extracted from the US03983174 patent. Reactions are represented by solid 

circles and connects reactants to the right with the product to the left. The molecules with a green frame 

highlights a synthetic route for 2-chloro-N-(2,6-diethylphenyl)-N-(2-oxoethyl)acetamide and corresponds to the 

route in Figure 1. 
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We extracted 1,046,088 routes from 80,639 patents using the method of Mo et al. [22], provided as a 

script2 but with an increased timeout for finding a route from 6 to 10 s. The script puts all the reactions 

from a patent in a reaction network (see an example in Figure 3), identifies molecules that only exist as 

a product as the starting point for synthetic routes, and then uses a depth-first search to extract the routes. 

After extracting the routes, we immediately discarded all routes with a single leaf, to avoid uninteresting 

transformation sequences, resulting in 158,698 routes. The distributions of the number of molecules, 

leaves, reactions, and longest linear route (LLR) are shown in Figure 4. The dataset is tilted towards 

short routes with few leaves. Only 4,7% of the routes are convergent; the remainder are linear. We 

believe the 150K routes are too extensive to benchmark route predictions and it is likely that many routes 

from the same patent are similar. Therefore we processed the dataset further, although we acknowledge 

that the 150K routes could be used for e.g. machine learning tasks.  

We randomly selected n routes from each patent and then we performed an overlap check: no route 

should have leaf molecules that exist in another route as intermediate precursors (non-leaves), and the 

target molecule should not exist as an intermediate in another route. The motivation behind this check 

will be clear below. We then discarded all routes with a depth of more than 10 reactions, to exclude a 

few really long routes that will require an extensive search. For the non-overlapping routes with a depth 

of at most 10 reactions, we selected the 10,000 most diverse routes: the pair-wise distance matrix was 

computed using the machine learning approach previously described [24] and then a greedy search with 

maxmin criteria was used to select the routes. We created two such sets of 10,000 routes one where n = 

1 and one where n = 5, and we will refer to these two sets as set-n1 and set-n5, respectively. The 

distributions of the number of leaves, molecules, reactions, and longest linear route (LLR) are shown in 

Figure 4. For set-n1, the distributions are closer to the full set of routes: the number of molecules in the 

routes are typically small and the number of longer routes is quite small. On the contrary, in set-n5, the 

distributions are shifted to the right and there are more of the longer routes. There are 3.0% and 6.9% of 

convergent routes in set-n1 and set-n5, respectively. 

 

Figure 4 – The distributions of molecules, leaves, reactions and longest linear route in all routes extracted from 

the USPTO dataset and the two subsets created for benchmarking route predictions. The distribution has been 

capped at 10 and all four subplots have the same legend. 

 
2 https://github.com/moyiming1/Retrosynthesis-pathway-ranking 
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2.2 Stock and reaction data 

A set of routes is not sufficient to benchmark route prediction methods as there are other factors that 

determine the search. One such factor is the stock, the set of purchasable compounds that serve as the 

stop condition for the search. For creating the routes in [21] the eMolecule database was used as stop 

criteria, and Genheden et al. [19] created a stock from the ZINC database. Both of these alternatives are 

very extensive but we argue for not using such databases. Firstly, the extensiveness of the stocks could 

mask subtle differences between search algorithms as a route could be found by simply resorting to the 

stock rather than disconnecting molecules. Secondly, the quality and availability of the stock molecules 

are sometimes unclear, making the stop criteria arbitrary. Thirdly, databases such as eMolecules and 

ZINC are updated with time, making it hard to pick one representative snapshot of the database for the 

benchmark. We instead propose to simply use all the leaves of the 10,000 routes as stock molecules. 

Because we added an overlap check when extracting the routes, we can be sure that an exhaustive search 

would be able to find the routes without prematurely stopping because of the extensiveness of the stock. 

Another factor affecting the search algorithm is of course the capability of the one-step retrosynthesis 

model. We have previously released a model trained on the entirety of the USPTO dataset [19, 23], but 

this model was trained on reactions found in the reference routes, making it biased. Using this model in 

the search, or indeed any one-step model trained on the reactions in the reference routes will be a mix 

of neural network recommendations and what amounts to literature-lookup. However, we can train a 

new one-step model on the data that is not found in the reference routes, and because we left out three 

reactions per reaction template before extracting the routes, we have sufficient data to train a template-

based one-step model. In Section 4, we will detail the training of such a model. If someone wants to 

extract another set of templates or train a template-free one-step model, one can always perform such 

modeling as well on the provided data.  

2.3 Framework summary 

To summarize the created reference set for benchmarking: 

• A subset of the USPTO database with reactions that can be used to train a one-step model 

• ~150K routes extracted from the USPTO database, which can be used for machine learning 

tasks 

• set-n1 consisting of a diverse set of 10,000 routes which show a similar distribution in the 

number of molecules and reactions as the 150K routes 

• set-n5 consisting of a diverse set of 10,000 routes that are longer and enriched in convergent 

routes 

• stock-n1 consisting of the 13,633 leaves molecules in set-n1 and should be used as a stock 

together with set-n1 

• stock-n5 consisting of the 13,783 leaves molecules in set-n5 and should be used as a stock 

together with set-n5 

 

The USPTO dataset, reference routes, and stocks are available as open-source together with the scripts 

used to create the reference routes. 

We call the benchmarking set the PaRoutes (patent routes) framework. It is a framework for 

benchmarking route predictions because we acknowledge that not all methods are built the same. For 

instance, we have herein benchmarked algorithms using template-based one-step retrosynthesis 

methods, but there exist a plethora of alternatives. Therefore, researchers should be able to pick the parts 

of the framework that is applicable to their methods. If your one-step retrosynthesis model is based on 

templates, you can re-train it using the provided USPTO subset, which includes RDChiral-derived 

templates [25]. If you on the other hand want to derive templates yourself, or if you are using a template-
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free one-step model, you can use the atom-mapped reaction SMILES. Furthermore, if you have your 

own set of curated reactions that you want to train your one-step model on, you just have to make sure 

to first exclude reactions that are also in the reference routes. Because many of the existing one-step 

models were trained on reactions included in the reference route, we acknowledge that many of those 

models need to be re-trained in order to fully exploit PaRoutes. 

 

3. Metrics for comparing route predictions 
 

Whenever route prediction methods have been compared in the literature the focus has been on 

computational speed and the number of solved targets [19, 21, 26], i.e. the number of targets for which 

at least one route is found where all the starting material is in stock. It should be noted a difference in a 

few seconds of search is not practically relevant, but speed is nevertheless an essential quantity for any 

computational method. 

Although speed and number of solved targets are interesting metrics, they tell nothing about the quality 

of the predictions. Sometimes the quality of the routes has been quantified as the length of the routes 

[21, 26], the mean chemical complexity [27], or a metric based on the priors from the one-step model 

[21]. Quantifying the quality of a route by simply the route length is particularly misleading as it is very 

easy to envisage a shorter alternative to a route by for instance removing all protection chemistry thus 

rendering the route chemically infeasible. An interesting approach taken by Shibukawa et al. [27] was 

to sort the molecules in the routes by molecule weight and then compute the pairwise Tanimoto distances 

of a molecular fingerprint. Naturally, the sorting of the molecules destroys the order of the reactions in 

the route. We propose to use a tree edit distance (TED) method [28], which is a graph-theoretical method 

that recursively applies cheminformatic similarity calculations on a pair of routes to determine the 

similarity. By sorting the predicted routes and then computing the TED between the predictions and a 

reference route, one can find at what position the ground truth, i.e. the reference route is found. By doing 

this over all the 10,000 targets in the reference set one can compute top-n accuracies, just as is standard 

when comparing one-step retrosynthesis methods. The top-n accuracies is a metric to show how well a 

search method is in recovering the reference route. Naturally, other routes could be as effective or 

feasible as the reference route, but the only way to determine that is to perform the synthesis in the lab, 

which is not practically feasible for large numbers of routes. Because the routes are extracted from 

patents they incorporate human selection of feasible disconnections and the order of those steps. Thus, 

an effective search algorithm should be able to find these human-like routes. 

In order to compute accuracies, we need to rank the predicted routes and we propose using the recursive 

route score by Badowski et al. [29] with artificial costs of leaf molecules. For intermediate molecules in 

a route, the cost is defined recursively as 

𝑐𝑜𝑠𝑡(𝑚) = min𝑟∈pred(𝑚)𝑐𝑜𝑠𝑡(𝑟) 

where pred(m) returns the children nodes of the molecule m, i.e. the preceding reactions. The cost of a 

reaction is defined as 

𝑐𝑜𝑠𝑡(𝑟) = 𝜀(𝑟) + ∑
𝑐𝑜𝑠𝑡(𝑚)

𝑦𝑖𝑒𝑙𝑑(𝑟)
𝑚∈pred(𝑟)

 

where ε is a fixed cost of performing the reaction. This score is effective in ranking the route predictions 

based on the length and if the start material is in stock. However, the score will not differentiate by 

routes with similar shapes. Therefore, we can have more than one route prediction at the same rank. 
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Finally, we propose a metric to quantify the diversity of the predictions. We argue that an algorithm 

producing more routes is not necessarily better than an algorithm producing fewer routes, because the 

routes can be highly similar. To compute the diversity, we compute the pairwise distance matrix of all 

the predicted routes using the fast machine learning method previously described [24], and then we use 

hierarchical clustering to group the routes. We optimize the number of clusters using the Silhouette 

method [30] and the optimal number of clusters is viewed as a metric of diversity. 

To summarize, we suggest applying the following metrics when comparing route prediction methods on 

the 10,000 reference targets: 

• Average search time to reach convergence in the number of solved targets 

• Number of solved targets 

• Top-1, top-5 and top-10 computed with the TED method 

• Number of route clusters 

Scripts to compute these route quality and diversity metrics are available open-source on GitHub and 

are considered to be part of the PaRoutes framework. We consider the calculation of timings and if 

targets are solved to be part of the software producing the routes. In order to compute the quality and 

diversity metrics, the routes need to be exported in a tree-like structure (in JSON format) with minimal 

features. Basically, the relationships between molecules and reactions need to be defined, molecules are 

defined by their SMILES string and reactions are featureless. 

 

 

 

Figure 5 – Two different tree structures used in the different retrosynthesis search algorithms. The tree structures 

are equivalent with one target molecule (t), pre-cursor molecules (m1,m2, …, m5) and reactions (r1, r2, …, r4). 

 

4. Example application of benchmarking framework 
 

4.1 Route prediction methods 

We can summarize the suggested multi-step retrosynthesis methods by dividing them into three 

categories: proof-number search (PNS) [31], Monte Carlo tree search (MCTS) [32], and A*-like 

algorithms [33]. In PNS, the retrosynthesis is carried out in a directed bipartite graph consisting of 

molecule and reaction nodes, i.e. an AND/OR graph (see Figure 5). The proof-number and disproof-
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number of each node, which is the number of children nodes necessary to prove and disprove a node, 

respectively, are used to guide the search. PNS-based retrosynthesis algorithms utilize these numbers 

differently and also add additional heuristics to increase the efficiency of the search [20, 26, 27]. We 

implemented a depth-first PNS (DFPN) algorithm in the AiZynthFinder software that combines ideas 

from two different algorithms [26, 27]. In MCTS, the retrosynthesis is carried out in a different type of 

direct graph, where each node is a super-node consisting of one or more molecules that potentially can 

be extended. The search is typically guided by upper-bound confidence statistics that take into account 

how many times a node has been visited and a reward function for terminal nodes that can take different 

forms [18, 34, 23]. We have previously described the MCTS implementation in the AiZynthFinder 

software [19], where the reward function is based on the depth of the terminal node and how many of 

the molecules represented by the node is in stock. Finally, several different A*-like algorithms have 

been described for retrosynthesis [21, 35, 36]. The Chematica program carries out the search in a super-

node tree and scores the node based on customizable molecule and reaction cost functions [35]. In the 

Retro* algorithm, the search is carried out in an AND/OR graph and the search is guided by a molecule 

cost that is provided by a neural network trained on extracted routes [21]. We have implemented the 

Retro* algorithm in the AiZynthFinder software. 

Although the algorithms that we will use the predict routes are representative of different classes of 

search algorithms, we acknowledge that our implementations are variants of the original 

implementations described in the literature. As such, the benchmarks presented herein should serve as 

an illustration of the PaRoutes framework and provide an insight into the capabilities of the 

AiZynthFinder software. 

 

4.2 Training a one-step model 

We selected a subset of reactions from the USPTO dataset, excluding reactions used in the reference 

routes, to train one-step retrosynthesis models similar to the model trained by Thakkar et al. [23]. We 

trained one model that was used in the set-n1 experiments and one that was used in the set-n2 

experiments, although we could have trained one model on the intersection of the two datasets with 

some reduction in the number of reactions. The dataset consists of 878,079 and 871,001 reactions for 

the set-n1 and set-n5 routes respectively, distributed over 46,092 unique reaction templates. The 

extracted templates were one-hot encoded as output to a neural network. The input was the extended 

connectivity fingerprints of the product molecules calculated by RDKit [37] using a radius of 2 and a 

length of 2048. The neural network was a simple feedforward network: 512 nodes with an ELU 

activation function, and L2 normalization, followed by a dropout later with a dropout rate of 0.4 and 

finally an output layer with a softmax activation function. The model was trained for 100 epochs and a 

batch size of 256. The Adam optimizer [38] was used with a categorical cross-entropy loss. The learning 

rate was initially set to 0.001 and was halved upon a plateau of the validation loss after 5 epochs. The 

dataset was split by 90%/5%/5% into training, validation, and test set, respectively. 

4.3 Details of route prediction experiments 

The target molecules of the reference routes were subjected to prediction by the AiZynthFinder software 

[19]. As stock we used the reference stock detailed in Section 2, i.e. all the leaves of the reference routes. 

We used no filter policy and the expansion policy was the one detailed above. As the search algorithm, 

we use an MCTS algorithm detailed previously, an implementation of the Retro* algorithm, or a depth-

first proof-number (DFPN) search. For Retro*, we used the official repository of the Retro* algorithm 

as a starting point,3 and re-implemented it in AiZynthFinder. An extension we implemented was 

continuing the search after the first solutions has been found and extraction of routes using the CompRet 

 
3 https://github.com/binghong-ml/retro_star 
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algorithm [27]. For the DFPN, we started with the algorithm suggested by Kishimoto et al. [26]. We 

used a constant unity edge cost, rewrote the algorithm to be iterative rather than recursive, and 

implemented logic similar to [27] to continue the search after the first solution has been found. Routes 

were extracted using the CompRet algorithm [27]. Pseudo-code for all three search algorithms is 

provided in the Supporting Information. In all experiments, the search consisted of 500 iterations for 

MCTS and Retro*, 750 iterations for DFPN, and no time limits. 

4.4 Validation metric computations 

All routes found by either MCTS, Retro* or DFPN were scored by the route score of Badowski et al. 

[29]: leaf molecules in stock were assigned a cost of 1, leaf molecules not in stock were assigned a cost 

of 10, and all reactions were assigned a cost of ε =1. The top-1, top-5 and top-10 accuracies were 

calculated with the TED algorithm implemented in the route-distance repository. Clustering of the 

predicted routes was clustered using the publicly available model trained on routes for 10K ChEMBL 

compounds [24]. 

 

5. Results and discussion 
 

The benchmark metrics listed in Section 3 are listed for all route prediction experiments in Tables 1 

and 2. What follows is an analysis of those results. 

Table 1 – Search performance 

Search 
method  Route set 

Solved 
targets 

Search 
timea 

First solution 
timea 

One-step 
model callsa 

Template  
applicationsa 

MCTS 
set-n1 9714 303.3 8.6 3355.6 8658.2 

set-n5 9676 365.7 11.7 3615.3 8953.0 

Retro* 
set-n1 9726 300.7 7.0 497.4 24281.1 

set-n5 9703 349.2 10.5 498.0 24322.5 

DFPN 
set-n1 8475 347.3 43.0 404.5 19503.2 

set-n5 7382 297.9 53.2 414.5 19957.6 
a Averages over all targets 

 

5.1 Search timings 

We will start with making an analysis of the overall search timings, and we will start with the predictions 

on the set-n1 routes. The retrosynthesis search was performed until 500 iterations had elapsed for MCTS 

and Retro*, but 750 iterations for DFPN. The reason for this is that much fewer retrosynthesis tasks, i.e. 

call to one-step model and template application, are done each iteration. For MCTS, the rollout 

implementation ensures that several calls to the one-step model and template applications are performed 

at each iteration. For Retro*, only a single call to the one-step model is performed each iteration. But on 

the other hand, one sub-tree is added to the search tree for each applicable template suggested by the 

one-step model, requiring several template applications. The DFPN implementation also only calls the 

one-step model once per iteration, but contrary to Retro* only a single sub-tree is added to the search 

tree, the one for the most promising template. These implementation differences are reflected in the 

average number of calls to the one-step model and the average number of template applications. MCTS 

makes on average 7 to 8 times as many calls to the one-step model as Retro* and DFPN, respectively, 

whereas Retro* and DFPN make 3 to 2 times as many template applications, respectively. However, 

more importantly, the difference in the amount of work performed in each iteration is reflected in the 

average search time shown in Table 1. The average search time is 303, 301, 347 s for MCTS, Retro* 
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and, DFPN, respectively. Thus while using 1.5 times as many iterations, DFPN is not much slower than 

MCTS and Retro*, and the differences between the search methods are practically not important. 

Because of the relatively small amount of work done in each iteration, DFPN also requires more 

iterations to find solutions and the convergence in the number of solved targets is slower, as shown in 

Figure 6. For MCTS and Retro*, the fraction of solved target is converged at 100 iterations, and 

thereafter the fraction increases only very slowly. However, for DFPN it is unclear if the fraction of 

solved targets has converged to the same degree even after 750 iterations.  

Because of the different amounts of one-step calls and template applications performed at each iteration, 

it is hard to benchmark the search methods based on the search time. However, when focusing on the 

time it takes to find a solution, DFPN is clearly outperformed by MCTS and Retro*. This can also be 

seen in the average time to find the first solution in Table 1, where one can observe that DFPN is 

approximately 6 times slower than MCTS and Retro* in finding the first solution. Analyzing the 

predictions on the set-n5 routes, we find that for these targets, the algorithms are generally slower finding 

the first solutions than searches on the set-n1, indicating that these compounds are more complex. 

With respect to the comparison of MCTS and Retro*, there are some implementation details to consider. 

In the paper introducing Retro*, it was argued that Retro* was advantageous over MCTS because it 

made fewer calls to the one-step model [21]. However, in our implementation of MCTS, the template 

application is deferred until it is necessary, heavily reducing the number of template applications. Thus 

for the template-based one-step models used herein, we observe that MCTS and Retro* are 

approximately equally fast to reach convergence in the number of solved routes. However, it is 

becoming more and more popular with template-free one-step retrosynthesis models, e.g. transformer-

like architectures. Such machine learning (ML) models are much slower than the simple feed-forward 

architecture used in the template-based model. Therefore, using a more expensive ML model or 

template-free methods that do not need to apply a template would tip the speed advantage to the favor 

of Retro*. 

 

 

Figure 6. The fraction of solved set-n1 targets as a function of the number of elapsed iterations. 

 

5.2 Number of solved routes 

The goal of any retrosynthesis algorithm is to find routes where all the starting material is known, i.e., 

solved routes. In Table 1, we list the number of targets for which at least one solution has been found. 

For the set-n1 routes, both MCTS and Retro* find solutions to about 97% of the targets, and the small 

difference is probably not statistically significant. However, DFPN only manages to find solutions for 
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85% of the targets, a significant decrease in performance. It is unclear how many iterations are necessary 

to reach the performance of MCTS and Retro*, but the extra search time is most likely not warranted. 

As discussed in Section 2, the distributions of the route shapes for the set-n1 follow closely the 

distributions for the full set of routes extracted from the patent data. However, we also extracted a set of 

routes that are enriched in longer and convergent routes, which presumable should be a greater challenge 

to the search algorithms. For all three search algorithms, we indeed observe a decrease in the number of 

solved targets when comparing the predictions made on the set-n1 routes and the set-n5 routes (see 

Table 1). Encouragingly, the decrease is typically rather small, between a fraction of percentage and a 

few percentages, for MCTS and Retro*. This shows that even though these algorithms require some 

more time to find a solution, they are capable of breaking down the compounds to starting material in 

stock. However, for DFPN, the decrease in the number of solved routes is on the order of 10%, a 

significant amount. This shows that DFPN not only is inferior to MCTS and Retro* in finding solutions 

but that its capabilities worsen with compound complexity. 

In SI, Table S1, we make a cross-comparison of the different search methods on the set-n1 routes to 

find if they are complementary or not. We find that MCTS and Retro* find solutions to the same targets, 

and there is a practically negligible fraction of targets for which Retro* only finds a solution. 

Furthermore, DFPN solves no unique targets but both MCTS and Retro* find solutions to target for 

which DFPN finds no solution. 

 

Table 2 – Route quality and diversity 

Search 
method  

Route 
set 

Accuracy Shorter 
routea 

Leaves 
overlapb 

Routes 
extractedc 

Number of 
clustersc top-1 top-5 top-10 

MCTS 
set-n1 0.20 0.55 0.61 0.44 0.68 273 68 

set-n5 0.09 0.34 0.42 0.59 0.62 272 77 

Retro* 
set-n1 0.17 0.48 0.54 0.44 0.68 264 68 

set-n5 0.08 0.30 0.38 0.61 0.63 149 39 

DFPN 
set-n1 0.19 0.33 0.33 0.45 0.63 6 2 

set-n5 0.08 0.14 0.14 0.65 0.55 6 2 
a The average number of targets for which a shorter route than the reference route is found in top-1 b The average leaves 

overlap in top-1. The leaves overlap is the maximum overlap between the leaves in a predicted route and the leaves in the 

reference route c Medians over all targets 

 

5.3 Route quality 

As argued in Section 3, finding routes is not a complete quality metric to assess different search methods. 

To be useful to a chemist, the predicted routes should be feasible, i.e. each step in the route should yield 

the predicted product under some reasonable conditions. We suggest computing top-n accuracies, 

similarly to what is typically done with a one-step model, using a tree edit distance (TED) method to 

compute the similarity between the predicted routes and a reference route. In Table 2, we list the top-1, 

top-5, and top-10 accuracies. Computing higher top-n accuracies are not particularly useful as there are 

very few lower-ranked routes because the route score used to rank the routes is rather indiscriminatory. 

Using MCTS on the set-n1, we arrive at a top-1 accuracy of 0.20, which means that for roughly 1/5 of 

targets, we find the reference ranked first. Top-10 accuracy is 0.61, implying just for a little bit more 

than half of the targets, the search finds the reference ranked in the top-10. Using Retro*, we consistently 

achieve lower accuracies on the set-n1 routes, with top-1 and top-10 of 0.17 and 0.54, respectively, a 

significant drop in accuracy. DFPN is on a par with MCTS on top-1 accuracies but is worse than both 
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MCTS and Retro* on top-5 and top-10 accuracies. Furthermore, for DFPN there is no difference 

between top-5 and top-10 accuracies, highlighting again the convergence issue with DFPN.  

Table 3 – Cross comparison on ability to find the set-n1 reference routes 

  Found by 

Method 1 Method 2 Both Method 1 Method 2 Neither 

MCTS Retro* 0.48 0.15 0.09 0.29 

MCTS DFPN 0.33 0.30 0.01 0.37 

Retro* DFPN 0.27 0.30 0.07 0.37 

 

To compare the different search algorithms further, we performed a cross-comparison: given a pair of 

experiments: we calculated the percentage of targets for which the reference route was identified by 

both methods, by just one method or by neither of the method (see Table 3). Comparing MCTS and 

Retro*, we see that both find the reference for 48% of the targets, and for 29% of the targets, neither 

method is able to find the reference route. Interestingly, the methods are not entirely complementary 

because only MCTS finds the reference routes for 15% of the targets, whereas only Retro* finds the 

reference routes for 9% of the targets. Similar observations can be made when comparing the other pair 

of search methods: both MCTS and Retro* outperform DFPN in uniquely finding reference routes to 

varying degrees. In Figure 7, we present the routes for a target for which the reference route is found 

by MCTS but not Retro*, and in SI we present a few similar analyses. In the routes presented in Figure 

7, we can see that the top-1 routes for both MCTS and Retro* start similar and share the first three steps. 

However, in the reference route, the final steps are a sulfonylation followed by an SNAr reaction. This 

is also among the extracted predictions from MCTS but not for Retro*. Instead, an alternative route is 

predicted with the SNAr first and the sulfonylation second, and this is the only top-1 route predicted by 

Retro*. This is a route also produced by MCTS, showing that this algorithm is able to extract both 

solutions. It is not clear why Retro* did not recover the reference route because the template 

corresponding to the SNAr was suggested by the one-step model as evident from the MCTS algorithm. 

However, something in the prioritization of nodes to expand deemed that path unpromising, continuing 

with the path following from the sulfonylation template. 
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Figure 7 - Example top-ranked routes for a target where MCTS found the reference route but 

Retro* was unable to. A) Route to synthesize Compound A as extracted from patent 

US20160060273A1, which was recovered by both MCTS and Retro*. B) Route to synthesize the 

target from Compound A as extracted from the same patent, which was recovered by MCTS but not 

Retro*. C) Alternative route to synthesize the target from compound from Compound A predicted by 

both MCTS and Retro*. 

To further investigate the rather low accuracies, we did two additional analyses that are included in 

Table 2. First, we calculated the fraction of targets for which a shorter route than the reference route is 

found in top-1. For all three methods this fraction is around 0.45, showing that all methods were able to 

find alternative routes that are shorter for close to half of the targets. Second, we calculated the maximum 

leaves overlap between the leaves of the top-1 ranked routes and the leaves of the reference route. An 

overlap of 1.0 would imply that the predicted routes have exactly the same leaves as the reference route 

but the reactions are not necessarily in the same order. We observe that the average leaves overlap is 

between 0.63 and 0.68 for the different experiments, indicating a high overlap. In fact, the leaves overlap 

is one for approximately 1/3 of the targets in all experiments, which is significantly higher than the top-

1 accuracies. This shows that the different search methods were able to identify routes similar to the 

reference routes, but with some of the steps interchanged. 

The accuracies for the predictions on the set-n5 routes are significantly lower, with the best-observed 

top-1 around 0.10 and the best top-10 around 0.42 (see Table 2). This shows more than the fraction of 

solved routes that set-n5 is a challenging set for any route prediction method. MCTS slightly 

outperforms Retro*, but it is unclear if the differences are practically relevant. There is a trend that the 

fraction of targets for which a shorter route than the reference route was found in top-1 is greater than 

for the set-n1 routes. And it is also clear that the leaves overlap in top-1 is decreased compared to the 

set-n1 routes. What this analysis show is that all of the methods are in need of improvements when it 

comes to finding long and convergent routes. All of the three search methods can predict shorter routes, 

which in Table 1 is shown as a high fraction of solved targets, but they struggle to recover the human-

like reference routes. 
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a) b) 

  

Figure 8 – the distribution of a) the number of extracted routes and b) the optimal number of clusters 

for each target when using the USPTO-full model on the set-n1 routes. 

 

5.4 Route diversity 

In Table 2, we list the median number of extracted routes and the medium number of clusters they make. 

For the analysis, we extracted all predicted routes that are solved, but if a target is not solved, we extract 

at most 25 routes. We can observe that MCTS and Retro* produce roughly equal amounts of routes, the 

median number of produced routes are between 149 and 273. On the other hand, DFPN produces very 

few routes, the median is only 6 routes. Considering that it does find solutions for close to 85% of the 

targets, it seems the problem with DFPN lies in its ability to find alternative solutions. This is also 

reflected in the lower top-5 and top-10 accuracies discussed above. The CompRet implementation of a 

DFPN algorithm was able to find a considerably large amount of routes for a rather small set of 

compounds [27], so it is possible that our implementation is inferior to CompRet in this regard. Finally, 

it should be noted that the distribution of the number of produced routes is heavily skewed for Retro* 

and DFPN, see Figure 8, whereas it is comparatively uniform for MCTS. 

As argued in Section 3, it is not only the number of found routes that is important but rather the diversity 

of routes. To measure this, we find the optimal number of clusters formed by the predicted routes. MCTS 

seems to fare well in this comparison with a median of 68 for the set-n1 and 77 for the set-n5. Retro* is 

as successful in finding a diverse set of routes for set-n1, with a median of 68. However, for the set-n2 

the diversity is lower with a median number of clusters of 39. Because DFPN gives a low number of 

routes it is not surprising to see that the median number of clusters is two for both sets of routes. As seen 

in Figure 8 the distribution of the optimal number of clusters is also skewed. First, there is a sizable 

portion of the targets for which a relatively small number of clusters (< 10) are found and this is true for 

all three search methods. Then there is a roughly equal portion of targets for which the number of clusters 

is more than 10 for MCTS and Retro*. Finally, for Retro* we find a few targets with more than 500 

clusters. 

 

6. Conclusion and outlook 
 

We have presented a framework for benchmarking multi-step retrosynthesis, i.e. route prediction, 

methods, and we call this framework PaRoutes (patent routes). PaRoutes consists of two sets of synthetic 

routes extracted from patent literature and corresponding compound stocks to be used as stop criteria 

for the retrosynthesis. Furthermore, it provides a curated set of reactions that can be used to train one-

step retrosynthesis models. Finally, PaRoutes provides scripts to compute quality metrics: top-n 
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accuracies and route diversity. The entire framework is provided open-source with detailed instructions 

on how to use it. The framework is available at https://github.com/MolecularAI/paroutes 

To illustrate the usage of PaRoutes, we have carried out route prediction experiments in order to 

benchmark three different search algorithms implemented in the AiZynthFinder software. We can draw 

some conclusions from these experiments: our implementation of DFPN is clearly inferior to MCTS and 

Retro*. DFPN finds fewer routes, solves fewer targets, and recovers to a lesser degree the reference 

routes. Further investigations are necessary to find the root cause of this, but it is clear in its current 

implementation, DFPN is not recommended. It should be mentioned that there are several 

implementations of proof-number search suggested in the literature, but all except one was designed to 

find a solution and then stop. The comparison of MCTS and Retro* is less clear-cut: both search 

algorithms solve roughly the same number of targets in roughly the same time. With respect to route 

quality, MCTS slightly outperforms Retro* especially for the set-n1 routes. Because both algorithms 

find approximately the same number of targets this shows that Retro* finds different solutions compared 

to MCTS. Which route would be the most chemically feasible is impossible to determine with certainty 

without doing experiments. However, we argue that any route significantly different from the reference 

route is likely inferior because the reference routes are extracted from patents, which naturally 

incorporate human thinking in the selected disconnections and in what order they are performed. It is 

worth emphasizing that all methods struggled with the set-n5 routes. Therefore, identifying and 

exploring human-like routes for complex targets that require longer synthetic routes seems to be an 

outstanding problem to solve. 

PaRoute was developed and released open-source with the vision to create a community standard for 

benchmarking route predictions. One-step retrosynthesis is chiefly benchmarked using patent data, and 

we envisage that PaRoutes will become the analog for multi-step methods.  We believe that the lack of 

comparative studies of route predictions hampers the development and is detrimental to the transparency 

and reproducibility of published research. Furthermore, we hope that PaRoutes can evolve with 

community contributions; for instance, we envisage that other quality metrics will be included in the 

framework when such methods are developed. By benchmarking our search algorithms we can as a 

community truly understand the limits of the current state-of-the-art of computer-aided retrosynthesis 

planning and pave the way for novel developments that have the potential to impact molecular design 

campaigns. 

 

Data availability 
The AiZynthFinder software is available from https://github.com/MolecularAI/aizynthfinder, and the 

version of the code employed for this study is 3.3.0. The PaRoutes package is available from 

https://github.com/MolecularAI/PaRoutes, and the version of the code employed for this study is 

1.0.0. Data for the PaRoutes framework can be found at Zenodo: 

https://www.doi.org/10.5281/zenodo.6275421.  
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Table S1 – Cross comparison on ability to find a solution for the set-n1 routes 

  Found by 

Method 1 Method 2 Both Method 1 Method 2 Neither 

MCTS Retro* 0.96 0.01 0.01 0.02 

MCTS DFPN 0.85 0.13 0.00 0.03 

Retro* DFPN 0.85 0.13 0.00 0.03 
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Figure S1 – Example of top-ranked route for a target where Retro* and DFPN found the reference 

route but MCTS was unable to. A) Route to synthesize the target as extracted from the 

US20070232591A1 patent, which was recovered by Retro* and DFPN. B) Alternative route to 

synthesize the target predicted by both MCTS. The one-step model probability and rank of the template 

applied on the target in route A) was ~3-3 and 18, respectively whereas the probability and rank of the 

template applied on the target in route B) was ~2-2 and 7, respectively. Thus Retro* and DFPN were 

able to utilize a template with much lower rank and could recover the reference route, whereas MCTS 

deemed this template to be too unlikely to continue exploring. 
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Figure S2 – Example of reference and top-ranked routes for a target where no algorithm could 

recover the reference route. A) The reference route extracted from patent US20030013720A1, B) top-

ranked route from MCTS, C) top-ranked route from Retro*. Both MCTS and Retro* were able to find 

a shorter route to the target, but both routes will have selectivity issues. In B) there is a selectivity issue 

with the second step and in C) there is a selectivity issue with the first step. 
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Table S2 – Overview of the search algorithms tested in this work. The boxes describe the main statements in one iteration of each of the algorithms. For 

clarity many of the extra checks of node states and details of various calls has been omitted. 

MCTS 

 

 

Retro* 

 

DFPN 

 

# Select leaf 

leaf <- root 

while leaf is expanded and leaf is not 

terminal 

  select child with best UCB score 

  leaf <- child 

 

 

Expand leaf with one-step model, add 

children nodes 

 

# Rollout 

while leaf is not terminal 

  select child with best UCB score 

  expand child with one-step model 

  leaf <- child 

 

backpropagate reward of leaf 

Select leaf with minimum estimated cost from 

all expandable leaf-nodes 

 

Expand leaf with one-step model, add AND/OR 

sub-trees 

 

Update the cost of all ancestor nodes of the 

selected leaf given the cost of the added 

molecules 

if first iteration 

  frontier <- root 

  

# Select new frontier 

while frontier is not expandable 

  update proof and disproof numbers of frontier 

  if frontier cannot be searched 

    frontier <- parent of frontier 

  else 

    find child with minimum proof number 

    frontier <- child 

 

# Expanding molecule node 

expand frontier, adding reaction nodes 

update proof and disproof numbers of frontier 

find child with minimum proof number 

frontier <- child 

 

# Expanding reaction node 

expand frontier adding molecule nodes 

update proof and disproof numbers of frontier 

find child with minimum proof number 

frontier <- child 
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