

1

PaRoutes: a framework for benchmarking retrosynthesis route

predictions

Samuel Genheden and Esben Bjerrum

Molecular AI, Discovery Sciences, R&D, AstraZeneca Gothenburg, SE-431 83 Mölndal, Sweden

Corresponding author: samuel.genheden@astrazeneca.com

Abstract

We introduce a framework for benchmarking multi-step retrosynthesis methods, i.e. route predictions,

called PaRoutes. The framework consists of two sets of 10,000 synthetic routes extracted from the patent

literature, a list of stock compounds, and a curated set of reactions on which one-step retrosynthesis

models can be trained. PaRoutes also comes with scripts to compute route quality and route diversity

quantities that are important for comparing methods. We use the PaRoute framework to compare three

methods implemented in the AiZynthFinder software: Monte Carlo tree search (MCTS), Retro*, and a

depth-first proof-number search (DFPN) algorithm, all using a template-based one-step retrosynthesis

model. It is found that DFPN is inferior to both MCTS and Retro* and cannot be recommended in its

current implementation. MCTS and Retro* are on a par with regard to search speed and the ability to

find routes in which all starting material is in stock. However, MCTS outperforms Retro* when it comes

to route quality and route diversity. MCTS more easily recovers the reference routes and tends to find a

diverse set of solutions for a greater portion of the targets. We encourage practitioners and developers

to benchmark their algorithms using PaRoutes and we envisage that the framework will become the

community standard to compare retrosynthesis route predictions. It is available at

https://github.com/MolecularAI/PaRoutes

1. Introduction
Computer-aided synthesis planning (CASP) is a field of intense research that can provide insight and

accelerate the synthesis of novel compounds, both in early discovery and late-stage development [1, 2].

One particular area of CASP is retrosynthesis analysis in which the aim is to predict the necessary steps

to synthesize a compound, i.e. a synthetic route (see Figure 1). Such methods date back to the 60’s and

the early work of Corey [3], although the research has intensified in the last decade due to the increased

interest in machine learning and artificial intelligence. At the heart of retrosynthesis analysis is a method

that is capable of predicting disconnections on a compound and thereby producing precursors. Such

methods are typically referred to as one-step retrosynthesis or single-step retrosynthesis. The precursors

produced by the one-step retrosynthesis can then be further broken down recursively until a set of

conditions are met. Such iterative methods are typically referred to as multi-step retrosynthesis.

Typically, the stop conditions are that a precursor is found in a database of purchasable compounds, i.e.

a stock, or that a maximum number of disconnections has been applied.

2

Figure 1 – The synthetic route of 2-chloro-N-(2,6-diethylphenyl)-N-(2-oxoethyl)acetamide extracted from the

US03983174 patent. The figure also illustrates the difference between one-step and multi-step retrosynthesis.

One-step retrosynthesis methods have received the greatest amount of attention: there is a plethora of

methods described in the literature that uses a diverse range of methods to extract synthesis rules,

cheminformatic representations, neural network architectures, sampling techniques, etc. [see e.g. 4, 5,

6, 7, 8, 9, 10, 11, 12, 13, 14]. For the practitioner that wants to use a method for predictions, or for a

researcher developing a novel method, there are several comparisons for a subset of the available

methods. In fact, once a novel method is developed it is customary to benchmark it against other methods

using a common set of known reactions. The US patent office (USPTO) extracts provided by Lowe [15]

is the de-facto standard for comparing single-step retrosynthesis method, as it is one of few open-source

datasets of chemical reactions. However, there more than one curated subset of the dataset used [16, 17],

which is a complication. Furthermore, there has not been a survey published showing all one-step

methods side by side, so it is still difficult to understand the range of available methods.

Multi-step retrosynthesis methods, or route prediction methods, have received less attention. To the

practitioner, the pool of available solutions is dominated by commercial and closed-source alternatives

[2], although a few complete, open-source packages have emerged, such as the ASKCOS suite from

MIT [18] and AiZynthFinder from AstraZeneca [19]. In addition, there have been a few algorithms

described in the literature, which we will summarize in Section 4. What is lacking with regards to the

route prediction methods is comparative studies. There is a lack of consensus on how to compare route

predictions and what data one should do the comparison on. One reason for this could be that there is

no public database of synthetic routes, as there is the USPTO data for single-step reactions. Another

reason could be that there is typically no unique way to synthesize a compound and several alternative

routes could be used that are optimal for different scenarios. With regards to the data problem, there

have been a few attempts to collect a set of routes on which one can perform a comparison: Heifets and

Jurisica [20] compiled a suite of routes from organic chemistry examinations that they then used to

benchmark their approach. Unfortunately, the suite is extremely small, only 20 routes, and it is therefore

difficult to make statistical analysis of the route predictions. Chen et al. [21] extracted routes from the

USPTO dataset to train a neural network for computing the cost of synthesizing a molecule. They found

all compounds in the USPTO dataset that had a route to compounds in the eMolecules database,1 and

then performed further selections to arrive at a test set of size 189. Interestingly, they also used this to

compare four different multi-step retrosynthesis methods (and variants thereof). They focused the

comparison on computing time, the number of targets for which a route was found, and the lengths of

the routes. Finally, Mo et al. [22] extracted also routes from the USPTO dataset for training their neural

network for predicting the human-likeness of routes. Instead of extracting routes from the full reaction

network as in [21] they extracted routes within a patent. Each patent consist of one or more reactions

and a reaction network would have highly related reactions. Using a complete depth-first search of such

networks for each patent, 238K routes were extracted. This is an excellent number of routes for training

a neural network model but is probably too excessive for benchmarking route prediction methods.

However, we will build upon this methodology in Section 2 to extract routes suitable for benchmarking

1 http://downloads.emolecules.com/free/

3

multi-step retrosynthesis tools. We will then proceed to discuss and suggest metrics to compute when

comparing predictions on these routes in Section 3. Finally, we will apply this framework on an

illustrative comparison of three kinds of search algorithms implemented in the AiZynthFinder software

in Sections 4 and 5.

Figure 2 – Procedure to extract reference routes from a curated subset of the USPTO database. Details of

the procedure is outlined in Section 2.

2. A benchmark set for route predictions

2.1 Route extraction

To extract routes, we started from the subset of the USPTO dataset prepared by Thakkar et al. [23], as

this is a dataset that contains atom-mapped reactions and reaction templates, which is necessary for

training a template-based one-step retrosynthesis model. We kept only reactions for which the template

occurrence was four or more, i.e. all the reactions in the dataset are represented by a reaction template

that occurs at least four times in the dataset. This amounts to 867,620 reactions. When extracting the

routes from this dataset, we left out 99,093 reactions, three examples for each unique reaction template,

to be able to have sufficient data to train a one-step model on (see below). We will now detail how routes

were extracted from the 768,527 remaining reactions, a procedure summarized in Figure 2.

Figure 3 – Reaction network extracted from the US03983174 patent. Reactions are represented by solid

circles and connects reactants to the right with the product to the left. The molecules with a green frame

highlights a synthetic route for 2-chloro-N-(2,6-diethylphenyl)-N-(2-oxoethyl)acetamide and corresponds to the

route in Figure 1.

4

We extracted 1,046,088 routes from 80,639 patents using the method of Mo et al. [22], provided as a

script2 but with an increased timeout for finding a route from 6 to 10 s. The script puts all the reactions

from a patent in a reaction network (see an example in Figure 3), identifies molecules that only exist as

a product as the starting point for synthetic routes, and then uses a depth-first search to extract the routes.

After extracting the routes, we immediately discarded all routes with a single leaf, to avoid uninteresting

transformation sequences, resulting in 158,698 routes. The distributions of the number of molecules,

leaves, reactions, and longest linear route (LLR) are shown in Figure 4. The dataset is tilted towards

short routes with few leaves. Only 4,7% of the routes are convergent; the remainder are linear. We

believe the 150K routes are too extensive to benchmark route predictions and it is likely that many routes

from the same patent are similar. Therefore we processed the dataset further, although we acknowledge

that the 150K routes could be used for e.g. machine learning tasks.

We randomly selected n routes from each patent and then we performed an overlap check: no route

should have leaf molecules that exist in another route as intermediate precursors (non-leaves), and the

target molecule should not exist as an intermediate in another route. The motivation behind this check

will be clear below. We then discarded all routes with a depth of more than 10 reactions, to exclude a

few really long routes that will require an extensive search. For the non-overlapping routes with a depth

of at most 10 reactions, we selected the 10,000 most diverse routes: the pair-wise distance matrix was

computed using the machine learning approach previously described [24] and then a greedy search with

maxmin criteria was used to select the routes. We created two such sets of 10,000 routes one where n =

1 and one where n = 5, and we will refer to these two sets as set-n1 and set-n5, respectively. The

distributions of the number of leaves, molecules, reactions, and longest linear route (LLR) are shown in

Figure 4. For set-n1, the distributions are closer to the full set of routes: the number of molecules in the

routes are typically small and the number of longer routes is quite small. On the contrary, in set-n5, the

distributions are shifted to the right and there are more of the longer routes. There are 3.0% and 6.9% of

convergent routes in set-n1 and set-n5, respectively.

Figure 4 – The distributions of molecules, leaves, reactions and longest linear route in all routes extracted from

the USPTO dataset and the two subsets created for benchmarking route predictions. The distribution has been

capped at 10 and all four subplots have the same legend.

2 https://github.com/moyiming1/Retrosynthesis-pathway-ranking

5

2.2 Stock and reaction data

A set of routes is not sufficient to benchmark route prediction methods as there are other factors that

determine the search. One such factor is the stock, the set of purchasable compounds that serve as the

stop condition for the search. For creating the routes in [21] the eMolecule database was used as stop

criteria, and Genheden et al. [19] created a stock from the ZINC database. Both of these alternatives are

very extensive but we argue for not using such databases. Firstly, the extensiveness of the stocks could

mask subtle differences between search algorithms as a route could be found by simply resorting to the

stock rather than disconnecting molecules. Secondly, the quality and availability of the stock molecules

are sometimes unclear, making the stop criteria arbitrary. Thirdly, databases such as eMolecules and

ZINC are updated with time, making it hard to pick one representative snapshot of the database for the

benchmark. We instead propose to simply use all the leaves of the 10,000 routes as stock molecules.

Because we added an overlap check when extracting the routes, we can be sure that an exhaustive search

would be able to find the routes without prematurely stopping because of the extensiveness of the stock.

Another factor affecting the search algorithm is of course the capability of the one-step retrosynthesis

model. We have previously released a model trained on the entirety of the USPTO dataset [19, 23], but

this model was trained on reactions found in the reference routes, making it biased. Using this model in

the search, or indeed any one-step model trained on the reactions in the reference routes will be a mix

of neural network recommendations and what amounts to literature-lookup. However, we can train a

new one-step model on the data that is not found in the reference routes, and because we left out three

reactions per reaction template before extracting the routes, we have sufficient data to train a template-

based one-step model. In Section 4, we will detail the training of such a model. If someone wants to

extract another set of templates or train a template-free one-step model, one can always perform such

modeling as well on the provided data.

2.3 Framework summary

To summarize the created reference set for benchmarking:

• A subset of the USPTO database with reactions that can be used to train a one-step model

• ~150K routes extracted from the USPTO database, which can be used for machine learning

tasks

• set-n1 consisting of a diverse set of 10,000 routes which show a similar distribution in the

number of molecules and reactions as the 150K routes

• set-n5 consisting of a diverse set of 10,000 routes that are longer and enriched in convergent

routes

• stock-n1 consisting of the 13,633 leaves molecules in set-n1 and should be used as a stock

together with set-n1

• stock-n5 consisting of the 13,783 leaves molecules in set-n5 and should be used as a stock

together with set-n5

The USPTO dataset, reference routes, and stocks are available as open-source together with the scripts

used to create the reference routes.

We call the benchmarking set the PaRoutes (patent routes) framework. It is a framework for

benchmarking route predictions because we acknowledge that not all methods are built the same. For

instance, we have herein benchmarked algorithms using template-based one-step retrosynthesis

methods, but there exist a plethora of alternatives. Therefore, researchers should be able to pick the parts

of the framework that is applicable to their methods. If your one-step retrosynthesis model is based on

templates, you can re-train it using the provided USPTO subset, which includes RDChiral-derived

templates [25]. If you on the other hand want to derive templates yourself, or if you are using a template-

6

free one-step model, you can use the atom-mapped reaction SMILES. Furthermore, if you have your

own set of curated reactions that you want to train your one-step model on, you just have to make sure

to first exclude reactions that are also in the reference routes. Because many of the existing one-step

models were trained on reactions included in the reference route, we acknowledge that many of those

models need to be re-trained in order to fully exploit PaRoutes.

3. Metrics for comparing route predictions

Whenever route prediction methods have been compared in the literature the focus has been on

computational speed and the number of solved targets [19, 21, 26], i.e. the number of targets for which

at least one route is found where all the starting material is in stock. It should be noted a difference in a

few seconds of search is not practically relevant, but speed is nevertheless an essential quantity for any

computational method.

Although speed and number of solved targets are interesting metrics, they tell nothing about the quality

of the predictions. Sometimes the quality of the routes has been quantified as the length of the routes

[21, 26], the mean chemical complexity [27], or a metric based on the priors from the one-step model

[21]. Quantifying the quality of a route by simply the route length is particularly misleading as it is very

easy to envisage a shorter alternative to a route by for instance removing all protection chemistry thus

rendering the route chemically infeasible. An interesting approach taken by Shibukawa et al. [27] was

to sort the molecules in the routes by molecule weight and then compute the pairwise Tanimoto distances

of a molecular fingerprint. Naturally, the sorting of the molecules destroys the order of the reactions in

the route. We propose to use a tree edit distance (TED) method [28], which is a graph-theoretical method

that recursively applies cheminformatic similarity calculations on a pair of routes to determine the

similarity. By sorting the predicted routes and then computing the TED between the predictions and a

reference route, one can find at what position the ground truth, i.e. the reference route is found. By doing

this over all the 10,000 targets in the reference set one can compute top-n accuracies, just as is standard

when comparing one-step retrosynthesis methods. The top-n accuracies is a metric to show how well a

search method is in recovering the reference route. Naturally, other routes could be as effective or

feasible as the reference route, but the only way to determine that is to perform the synthesis in the lab,

which is not practically feasible for large numbers of routes. Because the routes are extracted from

patents they incorporate human selection of feasible disconnections and the order of those steps. Thus,

an effective search algorithm should be able to find these human-like routes.

In order to compute accuracies, we need to rank the predicted routes and we propose using the recursive

route score by Badowski et al. [29] with artificial costs of leaf molecules. For intermediate molecules in

a route, the cost is defined recursively as

𝑐𝑜𝑠𝑡(𝑚) = min𝑟∈pred(𝑚)𝑐𝑜𝑠𝑡(𝑟)

where pred(m) returns the children nodes of the molecule m, i.e. the preceding reactions. The cost of a

reaction is defined as

𝑐𝑜𝑠𝑡(𝑟) = 𝜀(𝑟) + ∑
𝑐𝑜𝑠𝑡(𝑚)

𝑦𝑖𝑒𝑙𝑑(𝑟)
𝑚∈pred(𝑟)

where ε is a fixed cost of performing the reaction. This score is effective in ranking the route predictions

based on the length and if the start material is in stock. However, the score will not differentiate by

routes with similar shapes. Therefore, we can have more than one route prediction at the same rank.

7

Finally, we propose a metric to quantify the diversity of the predictions. We argue that an algorithm

producing more routes is not necessarily better than an algorithm producing fewer routes, because the

routes can be highly similar. To compute the diversity, we compute the pairwise distance matrix of all

the predicted routes using the fast machine learning method previously described [24], and then we use

hierarchical clustering to group the routes. We optimize the number of clusters using the Silhouette

method [30] and the optimal number of clusters is viewed as a metric of diversity.

To summarize, we suggest applying the following metrics when comparing route prediction methods on

the 10,000 reference targets:

• Average search time to reach convergence in the number of solved targets

• Number of solved targets

• Top-1, top-5 and top-10 computed with the TED method

• Number of route clusters

Scripts to compute these route quality and diversity metrics are available open-source on GitHub and

are considered to be part of the PaRoutes framework. We consider the calculation of timings and if

targets are solved to be part of the software producing the routes. In order to compute the quality and

diversity metrics, the routes need to be exported in a tree-like structure (in JSON format) with minimal

features. Basically, the relationships between molecules and reactions need to be defined, molecules are

defined by their SMILES string and reactions are featureless.

Figure 5 – Two different tree structures used in the different retrosynthesis search algorithms. The tree structures

are equivalent with one target molecule (t), pre-cursor molecules (m1,m2, …, m5) and reactions (r1, r2, …, r4).

4. Example application of benchmarking framework

4.1 Route prediction methods

We can summarize the suggested multi-step retrosynthesis methods by dividing them into three

categories: proof-number search (PNS) [31], Monte Carlo tree search (MCTS) [32], and A*-like

algorithms [33]. In PNS, the retrosynthesis is carried out in a directed bipartite graph consisting of

molecule and reaction nodes, i.e. an AND/OR graph (see Figure 5). The proof-number and disproof-

8

number of each node, which is the number of children nodes necessary to prove and disprove a node,

respectively, are used to guide the search. PNS-based retrosynthesis algorithms utilize these numbers

differently and also add additional heuristics to increase the efficiency of the search [20, 26, 27]. We

implemented a depth-first PNS (DFPN) algorithm in the AiZynthFinder software that combines ideas

from two different algorithms [26, 27]. In MCTS, the retrosynthesis is carried out in a different type of

direct graph, where each node is a super-node consisting of one or more molecules that potentially can

be extended. The search is typically guided by upper-bound confidence statistics that take into account

how many times a node has been visited and a reward function for terminal nodes that can take different

forms [18, 34, 23]. We have previously described the MCTS implementation in the AiZynthFinder

software [19], where the reward function is based on the depth of the terminal node and how many of

the molecules represented by the node is in stock. Finally, several different A*-like algorithms have

been described for retrosynthesis [21, 35, 36]. The Chematica program carries out the search in a super-

node tree and scores the node based on customizable molecule and reaction cost functions [35]. In the

Retro* algorithm, the search is carried out in an AND/OR graph and the search is guided by a molecule

cost that is provided by a neural network trained on extracted routes [21]. We have implemented the

Retro* algorithm in the AiZynthFinder software.

Although the algorithms that we will use the predict routes are representative of different classes of

search algorithms, we acknowledge that our implementations are variants of the original

implementations described in the literature. As such, the benchmarks presented herein should serve as

an illustration of the PaRoutes framework and provide an insight into the capabilities of the

AiZynthFinder software.

4.2 Training a one-step model

We selected a subset of reactions from the USPTO dataset, excluding reactions used in the reference

routes, to train one-step retrosynthesis models similar to the model trained by Thakkar et al. [23]. We

trained one model that was used in the set-n1 experiments and one that was used in the set-n2

experiments, although we could have trained one model on the intersection of the two datasets with

some reduction in the number of reactions. The dataset consists of 878,079 and 871,001 reactions for

the set-n1 and set-n5 routes respectively, distributed over 46,092 unique reaction templates. The

extracted templates were one-hot encoded as output to a neural network. The input was the extended

connectivity fingerprints of the product molecules calculated by RDKit [37] using a radius of 2 and a

length of 2048. The neural network was a simple feedforward network: 512 nodes with an ELU

activation function, and L2 normalization, followed by a dropout later with a dropout rate of 0.4 and

finally an output layer with a softmax activation function. The model was trained for 100 epochs and a

batch size of 256. The Adam optimizer [38] was used with a categorical cross-entropy loss. The learning

rate was initially set to 0.001 and was halved upon a plateau of the validation loss after 5 epochs. The

dataset was split by 90%/5%/5% into training, validation, and test set, respectively.

4.3 Details of route prediction experiments

The target molecules of the reference routes were subjected to prediction by the AiZynthFinder software

[19]. As stock we used the reference stock detailed in Section 2, i.e. all the leaves of the reference routes.

We used no filter policy and the expansion policy was the one detailed above. As the search algorithm,

we use an MCTS algorithm detailed previously, an implementation of the Retro* algorithm, or a depth-

first proof-number (DFPN) search. For Retro*, we used the official repository of the Retro* algorithm

as a starting point,3 and re-implemented it in AiZynthFinder. An extension we implemented was

continuing the search after the first solutions has been found and extraction of routes using the CompRet

3 https://github.com/binghong-ml/retro_star

9

algorithm [27]. For the DFPN, we started with the algorithm suggested by Kishimoto et al. [26]. We

used a constant unity edge cost, rewrote the algorithm to be iterative rather than recursive, and

implemented logic similar to [27] to continue the search after the first solution has been found. Routes

were extracted using the CompRet algorithm [27]. Pseudo-code for all three search algorithms is

provided in the Supporting Information. In all experiments, the search consisted of 500 iterations for

MCTS and Retro*, 750 iterations for DFPN, and no time limits.

4.4 Validation metric computations

All routes found by either MCTS, Retro* or DFPN were scored by the route score of Badowski et al.

[29]: leaf molecules in stock were assigned a cost of 1, leaf molecules not in stock were assigned a cost

of 10, and all reactions were assigned a cost of ε =1. The top-1, top-5 and top-10 accuracies were

calculated with the TED algorithm implemented in the route-distance repository. Clustering of the

predicted routes was clustered using the publicly available model trained on routes for 10K ChEMBL

compounds [24].

5. Results and discussion

The benchmark metrics listed in Section 3 are listed for all route prediction experiments in Tables 1

and 2. What follows is an analysis of those results.

Table 1 – Search performance

Search
method Route set

Solved
targets

Search
timea

First solution
timea

One-step
model callsa

Template
applicationsa

MCTS
set-n1 9714 303.3 8.6 3355.6 8658.2

set-n5 9676 365.7 11.7 3615.3 8953.0

Retro*
set-n1 9726 300.7 7.0 497.4 24281.1

set-n5 9703 349.2 10.5 498.0 24322.5

DFPN
set-n1 8475 347.3 43.0 404.5 19503.2

set-n5 7382 297.9 53.2 414.5 19957.6
a Averages over all targets

5.1 Search timings

We will start with making an analysis of the overall search timings, and we will start with the predictions

on the set-n1 routes. The retrosynthesis search was performed until 500 iterations had elapsed for MCTS

and Retro*, but 750 iterations for DFPN. The reason for this is that much fewer retrosynthesis tasks, i.e.

call to one-step model and template application, are done each iteration. For MCTS, the rollout

implementation ensures that several calls to the one-step model and template applications are performed

at each iteration. For Retro*, only a single call to the one-step model is performed each iteration. But on

the other hand, one sub-tree is added to the search tree for each applicable template suggested by the

one-step model, requiring several template applications. The DFPN implementation also only calls the

one-step model once per iteration, but contrary to Retro* only a single sub-tree is added to the search

tree, the one for the most promising template. These implementation differences are reflected in the

average number of calls to the one-step model and the average number of template applications. MCTS

makes on average 7 to 8 times as many calls to the one-step model as Retro* and DFPN, respectively,

whereas Retro* and DFPN make 3 to 2 times as many template applications, respectively. However,

more importantly, the difference in the amount of work performed in each iteration is reflected in the

average search time shown in Table 1. The average search time is 303, 301, 347 s for MCTS, Retro*

10

and, DFPN, respectively. Thus while using 1.5 times as many iterations, DFPN is not much slower than

MCTS and Retro*, and the differences between the search methods are practically not important.

Because of the relatively small amount of work done in each iteration, DFPN also requires more

iterations to find solutions and the convergence in the number of solved targets is slower, as shown in

Figure 6. For MCTS and Retro*, the fraction of solved target is converged at 100 iterations, and

thereafter the fraction increases only very slowly. However, for DFPN it is unclear if the fraction of

solved targets has converged to the same degree even after 750 iterations.

Because of the different amounts of one-step calls and template applications performed at each iteration,

it is hard to benchmark the search methods based on the search time. However, when focusing on the

time it takes to find a solution, DFPN is clearly outperformed by MCTS and Retro*. This can also be

seen in the average time to find the first solution in Table 1, where one can observe that DFPN is

approximately 6 times slower than MCTS and Retro* in finding the first solution. Analyzing the

predictions on the set-n5 routes, we find that for these targets, the algorithms are generally slower finding

the first solutions than searches on the set-n1, indicating that these compounds are more complex.

With respect to the comparison of MCTS and Retro*, there are some implementation details to consider.

In the paper introducing Retro*, it was argued that Retro* was advantageous over MCTS because it

made fewer calls to the one-step model [21]. However, in our implementation of MCTS, the template

application is deferred until it is necessary, heavily reducing the number of template applications. Thus

for the template-based one-step models used herein, we observe that MCTS and Retro* are

approximately equally fast to reach convergence in the number of solved routes. However, it is

becoming more and more popular with template-free one-step retrosynthesis models, e.g. transformer-

like architectures. Such machine learning (ML) models are much slower than the simple feed-forward

architecture used in the template-based model. Therefore, using a more expensive ML model or

template-free methods that do not need to apply a template would tip the speed advantage to the favor

of Retro*.

Figure 6. The fraction of solved set-n1 targets as a function of the number of elapsed iterations.

5.2 Number of solved routes

The goal of any retrosynthesis algorithm is to find routes where all the starting material is known, i.e.,

solved routes. In Table 1, we list the number of targets for which at least one solution has been found.

For the set-n1 routes, both MCTS and Retro* find solutions to about 97% of the targets, and the small

difference is probably not statistically significant. However, DFPN only manages to find solutions for

11

85% of the targets, a significant decrease in performance. It is unclear how many iterations are necessary

to reach the performance of MCTS and Retro*, but the extra search time is most likely not warranted.

As discussed in Section 2, the distributions of the route shapes for the set-n1 follow closely the

distributions for the full set of routes extracted from the patent data. However, we also extracted a set of

routes that are enriched in longer and convergent routes, which presumable should be a greater challenge

to the search algorithms. For all three search algorithms, we indeed observe a decrease in the number of

solved targets when comparing the predictions made on the set-n1 routes and the set-n5 routes (see

Table 1). Encouragingly, the decrease is typically rather small, between a fraction of percentage and a

few percentages, for MCTS and Retro*. This shows that even though these algorithms require some

more time to find a solution, they are capable of breaking down the compounds to starting material in

stock. However, for DFPN, the decrease in the number of solved routes is on the order of 10%, a

significant amount. This shows that DFPN not only is inferior to MCTS and Retro* in finding solutions

but that its capabilities worsen with compound complexity.

In SI, Table S1, we make a cross-comparison of the different search methods on the set-n1 routes to

find if they are complementary or not. We find that MCTS and Retro* find solutions to the same targets,

and there is a practically negligible fraction of targets for which Retro* only finds a solution.

Furthermore, DFPN solves no unique targets but both MCTS and Retro* find solutions to target for

which DFPN finds no solution.

Table 2 – Route quality and diversity

Search
method

Route
set

Accuracy Shorter
routea

Leaves
overlapb

Routes
extractedc

Number of
clustersc top-1 top-5 top-10

MCTS
set-n1 0.20 0.55 0.61 0.44 0.68 273 68

set-n5 0.09 0.34 0.42 0.59 0.62 272 77

Retro*
set-n1 0.17 0.48 0.54 0.44 0.68 264 68

set-n5 0.08 0.30 0.38 0.61 0.63 149 39

DFPN
set-n1 0.19 0.33 0.33 0.45 0.63 6 2

set-n5 0.08 0.14 0.14 0.65 0.55 6 2
a The average number of targets for which a shorter route than the reference route is found in top-1 b The average leaves

overlap in top-1. The leaves overlap is the maximum overlap between the leaves in a predicted route and the leaves in the

reference route c Medians over all targets

5.3 Route quality

As argued in Section 3, finding routes is not a complete quality metric to assess different search methods.

To be useful to a chemist, the predicted routes should be feasible, i.e. each step in the route should yield

the predicted product under some reasonable conditions. We suggest computing top-n accuracies,

similarly to what is typically done with a one-step model, using a tree edit distance (TED) method to

compute the similarity between the predicted routes and a reference route. In Table 2, we list the top-1,

top-5, and top-10 accuracies. Computing higher top-n accuracies are not particularly useful as there are

very few lower-ranked routes because the route score used to rank the routes is rather indiscriminatory.

Using MCTS on the set-n1, we arrive at a top-1 accuracy of 0.20, which means that for roughly 1/5 of

targets, we find the reference ranked first. Top-10 accuracy is 0.61, implying just for a little bit more

than half of the targets, the search finds the reference ranked in the top-10. Using Retro*, we consistently

achieve lower accuracies on the set-n1 routes, with top-1 and top-10 of 0.17 and 0.54, respectively, a

significant drop in accuracy. DFPN is on a par with MCTS on top-1 accuracies but is worse than both

12

MCTS and Retro* on top-5 and top-10 accuracies. Furthermore, for DFPN there is no difference

between top-5 and top-10 accuracies, highlighting again the convergence issue with DFPN.

Table 3 – Cross comparison on ability to find the set-n1 reference routes

 Found by

Method 1 Method 2 Both Method 1 Method 2 Neither

MCTS Retro* 0.48 0.15 0.09 0.29

MCTS DFPN 0.33 0.30 0.01 0.37

Retro* DFPN 0.27 0.30 0.07 0.37

To compare the different search algorithms further, we performed a cross-comparison: given a pair of

experiments: we calculated the percentage of targets for which the reference route was identified by

both methods, by just one method or by neither of the method (see Table 3). Comparing MCTS and

Retro*, we see that both find the reference for 48% of the targets, and for 29% of the targets, neither

method is able to find the reference route. Interestingly, the methods are not entirely complementary

because only MCTS finds the reference routes for 15% of the targets, whereas only Retro* finds the

reference routes for 9% of the targets. Similar observations can be made when comparing the other pair

of search methods: both MCTS and Retro* outperform DFPN in uniquely finding reference routes to

varying degrees. In Figure 7, we present the routes for a target for which the reference route is found

by MCTS but not Retro*, and in SI we present a few similar analyses. In the routes presented in Figure

7, we can see that the top-1 routes for both MCTS and Retro* start similar and share the first three steps.

However, in the reference route, the final steps are a sulfonylation followed by an SNAr reaction. This

is also among the extracted predictions from MCTS but not for Retro*. Instead, an alternative route is

predicted with the SNAr first and the sulfonylation second, and this is the only top-1 route predicted by

Retro*. This is a route also produced by MCTS, showing that this algorithm is able to extract both

solutions. It is not clear why Retro* did not recover the reference route because the template

corresponding to the SNAr was suggested by the one-step model as evident from the MCTS algorithm.

However, something in the prioritization of nodes to expand deemed that path unpromising, continuing

with the path following from the sulfonylation template.

13

Figure 7 - Example top-ranked routes for a target where MCTS found the reference route but

Retro* was unable to. A) Route to synthesize Compound A as extracted from patent

US20160060273A1, which was recovered by both MCTS and Retro*. B) Route to synthesize the

target from Compound A as extracted from the same patent, which was recovered by MCTS but not

Retro*. C) Alternative route to synthesize the target from compound from Compound A predicted by

both MCTS and Retro*.

To further investigate the rather low accuracies, we did two additional analyses that are included in

Table 2. First, we calculated the fraction of targets for which a shorter route than the reference route is

found in top-1. For all three methods this fraction is around 0.45, showing that all methods were able to

find alternative routes that are shorter for close to half of the targets. Second, we calculated the maximum

leaves overlap between the leaves of the top-1 ranked routes and the leaves of the reference route. An

overlap of 1.0 would imply that the predicted routes have exactly the same leaves as the reference route

but the reactions are not necessarily in the same order. We observe that the average leaves overlap is

between 0.63 and 0.68 for the different experiments, indicating a high overlap. In fact, the leaves overlap

is one for approximately 1/3 of the targets in all experiments, which is significantly higher than the top-

1 accuracies. This shows that the different search methods were able to identify routes similar to the

reference routes, but with some of the steps interchanged.

The accuracies for the predictions on the set-n5 routes are significantly lower, with the best-observed

top-1 around 0.10 and the best top-10 around 0.42 (see Table 2). This shows more than the fraction of

solved routes that set-n5 is a challenging set for any route prediction method. MCTS slightly

outperforms Retro*, but it is unclear if the differences are practically relevant. There is a trend that the

fraction of targets for which a shorter route than the reference route was found in top-1 is greater than

for the set-n1 routes. And it is also clear that the leaves overlap in top-1 is decreased compared to the

set-n1 routes. What this analysis show is that all of the methods are in need of improvements when it

comes to finding long and convergent routes. All of the three search methods can predict shorter routes,

which in Table 1 is shown as a high fraction of solved targets, but they struggle to recover the human-

like reference routes.

14

a) b)

Figure 8 – the distribution of a) the number of extracted routes and b) the optimal number of clusters

for each target when using the USPTO-full model on the set-n1 routes.

5.4 Route diversity

In Table 2, we list the median number of extracted routes and the medium number of clusters they make.

For the analysis, we extracted all predicted routes that are solved, but if a target is not solved, we extract

at most 25 routes. We can observe that MCTS and Retro* produce roughly equal amounts of routes, the

median number of produced routes are between 149 and 273. On the other hand, DFPN produces very

few routes, the median is only 6 routes. Considering that it does find solutions for close to 85% of the

targets, it seems the problem with DFPN lies in its ability to find alternative solutions. This is also

reflected in the lower top-5 and top-10 accuracies discussed above. The CompRet implementation of a

DFPN algorithm was able to find a considerably large amount of routes for a rather small set of

compounds [27], so it is possible that our implementation is inferior to CompRet in this regard. Finally,

it should be noted that the distribution of the number of produced routes is heavily skewed for Retro*

and DFPN, see Figure 8, whereas it is comparatively uniform for MCTS.

As argued in Section 3, it is not only the number of found routes that is important but rather the diversity

of routes. To measure this, we find the optimal number of clusters formed by the predicted routes. MCTS

seems to fare well in this comparison with a median of 68 for the set-n1 and 77 for the set-n5. Retro* is

as successful in finding a diverse set of routes for set-n1, with a median of 68. However, for the set-n2

the diversity is lower with a median number of clusters of 39. Because DFPN gives a low number of

routes it is not surprising to see that the median number of clusters is two for both sets of routes. As seen

in Figure 8 the distribution of the optimal number of clusters is also skewed. First, there is a sizable

portion of the targets for which a relatively small number of clusters (< 10) are found and this is true for

all three search methods. Then there is a roughly equal portion of targets for which the number of clusters

is more than 10 for MCTS and Retro*. Finally, for Retro* we find a few targets with more than 500

clusters.

6. Conclusion and outlook

We have presented a framework for benchmarking multi-step retrosynthesis, i.e. route prediction,

methods, and we call this framework PaRoutes (patent routes). PaRoutes consists of two sets of synthetic

routes extracted from patent literature and corresponding compound stocks to be used as stop criteria

for the retrosynthesis. Furthermore, it provides a curated set of reactions that can be used to train one-

step retrosynthesis models. Finally, PaRoutes provides scripts to compute quality metrics: top-n

15

accuracies and route diversity. The entire framework is provided open-source with detailed instructions

on how to use it. The framework is available at https://github.com/MolecularAI/paroutes

To illustrate the usage of PaRoutes, we have carried out route prediction experiments in order to

benchmark three different search algorithms implemented in the AiZynthFinder software. We can draw

some conclusions from these experiments: our implementation of DFPN is clearly inferior to MCTS and

Retro*. DFPN finds fewer routes, solves fewer targets, and recovers to a lesser degree the reference

routes. Further investigations are necessary to find the root cause of this, but it is clear in its current

implementation, DFPN is not recommended. It should be mentioned that there are several

implementations of proof-number search suggested in the literature, but all except one was designed to

find a solution and then stop. The comparison of MCTS and Retro* is less clear-cut: both search

algorithms solve roughly the same number of targets in roughly the same time. With respect to route

quality, MCTS slightly outperforms Retro* especially for the set-n1 routes. Because both algorithms

find approximately the same number of targets this shows that Retro* finds different solutions compared

to MCTS. Which route would be the most chemically feasible is impossible to determine with certainty

without doing experiments. However, we argue that any route significantly different from the reference

route is likely inferior because the reference routes are extracted from patents, which naturally

incorporate human thinking in the selected disconnections and in what order they are performed. It is

worth emphasizing that all methods struggled with the set-n5 routes. Therefore, identifying and

exploring human-like routes for complex targets that require longer synthetic routes seems to be an

outstanding problem to solve.

PaRoute was developed and released open-source with the vision to create a community standard for

benchmarking route predictions. One-step retrosynthesis is chiefly benchmarked using patent data, and

we envisage that PaRoutes will become the analog for multi-step methods. We believe that the lack of

comparative studies of route predictions hampers the development and is detrimental to the transparency

and reproducibility of published research. Furthermore, we hope that PaRoutes can evolve with

community contributions; for instance, we envisage that other quality metrics will be included in the

framework when such methods are developed. By benchmarking our search algorithms we can as a

community truly understand the limits of the current state-of-the-art of computer-aided retrosynthesis

planning and pave the way for novel developments that have the potential to impact molecular design

campaigns.

Data availability
The AiZynthFinder software is available from https://github.com/MolecularAI/aizynthfinder, and the

version of the code employed for this study is 3.3.0. The PaRoutes package is available from

https://github.com/MolecularAI/PaRoutes, and the version of the code employed for this study is

1.0.0. Data for the PaRoutes framework can be found at Zenodo:

https://www.doi.org/10.5281/zenodo.6275421.

Acknowledgements
Jason Shields is acknowledged with proof-reading and coming with valuable suggestions on the

manuscript. Alexey Voronov is acknowledged with proof-reading the manuscript.

References

1 Coley CW, Green WH, Jensen KF (2018) Machine Learning in Computer-Aided Synthesis Planning. Acc Chem
Res 51:1281–1289. https://doi.org/10.1021/acs.accounts.8b00087

https://github.com/MolecularAI/aizynthfinder
https://github.com/MolecularAI/PaRoutes
https://www.doi.org/10.5281/zenodo.6275421

16

2 Johansson S, Thakkar A, Kogej T, et al (2020) AI-assisted synthesis prediction. Drug Discov. Today Technol.
32:65-72 https://doi.org/10.1016/j.ddtec.2020.06.002
3 Corey EJ, Todd Wipke W (1969) Computer-assisted design of complex organic syntheses. Science 166:178–
192. https://doi.org/10.1126/science.166.3902.178
4 Segler MHS, Waller MP (2017) Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction.
Chem - A Eur J 23:5966–5971. https://doi.org/10.1002/chem.201605499
5 Coley CW, Rogers L, Green WH, Jensen KF (2017) Computer-Assisted Retrosynthesis Based on Molecular
Similarity. ACS Cent Sci 3:1237–1245.
https://doi.org/10.1021/ACSCENTSCI.7B00355/SUPPL_FILE/OC7B00355_SI_001.PDF
6 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic Reaction Prediction Using Neural Sequence-to-
Sequence Models. ACS Cent Sci 3:1103–1113. https://doi.org/10.1021/acscentsci.7b00303
7 Ishida S, Terayama K, Kojima R, et al (2019) Prediction and Interpretable Visualization of Retrosynthetic
Reactions Using Graph Convolutional Networks. J Chem Inf Model 59:5026–5033.
https://doi.org/10.1021/ACS.JCIM.9B00538/SUPPL_FILE/CI9B00538_SI_002.ZIP
8 Dai H, Li C, Coley CW, et al (2019) Retrosynthesis prediction with conditional graph logic network. Adv. Neural
Inf. Process. Syst. 32:8872–8882
9 Karpov P, Godin G, Tetko I V. (2019) A Transformer Model for Retrosynthesis. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Springer, Cham, pp 817–830
10 Sun R, Dai H, Li L, et al (2020) Energy-based View of Retrosynthesis arXiv:2007.13437
11 Fortunato ME, Coley CW, Barnes BC, Jensen KF (2020) Data Augmentation and Pretraining for Template-
Based Retrosynthetic Prediction in Computer-Aided Synthesis Planning. J Chem Inf Model 60:3398–3407.
https://doi.org/10.1021/acs.jcim.0c00403
12 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: 37th
International Conference on Machine Learning, ICML 2020. pp 8777–8786
13 Sacha M, Błaż M, Byrski P, et al (2021) Molecule Edit Graph Attention Network: Modeling Chemical
Reactions as Sequences of Graph Edits. J Chem Inf Model 61:3273–3284.
https://doi.org/10.1021/acs.jcim.1c00537
14 Seidl P, Renz P, Dyubankova N, et al (2021) Modern Hopfield Networks for Few-and Zero-Shot Reaction
Prediction. arXiv:2104.03279
15 D. Lowe, Chemical reactions from US patents, 1976–Sep 2016, https://figshare.com/articles/
Chemical_reactions_from_US_patents_1976-Sep2016_/ 5104873
16 Schneider N, Stiefl N, Landrum GA (2016) What’s What: The (Nearly) Definitive Guide to Reaction Role
Assignment. J Chem Inf Model 56:2336–2346.
https://doi.org/10.1021/ACS.JCIM.6B00564/SUPPL_FILE/CI6B00564_SI_001.PDF
17 Jin W, Coley CW, Barzilay R, Jaakkola T (2017) Predicting organic reaction outcomes with Weisfeiler-Lehman
network. In: Advances in Neural Information Processing Systems. pp 2608–2617
18 Coley CW, Thomas DA, Lummiss JAM, et al (2019) A robotic platform for flow synthesis of organic
compounds informed by AI planning. Science 365:eaax1566 https://doi.org/10.1126/science.aax1566
19 Genheden S, Thakkar A, Chadimová V, et al (2020) AiZynthFinder: a fast, robust and flexible open-source
software for retrosynthetic planning. J Cheminform 12:70. https://doi.org/10.1186/s13321-020-00472-1
20 Heifets A, Jurisica I (2012) Construction of New Medicines via Game Proof Search In: Twenty-Sixth AAAI
Conference on Artificial Intelligence
21 Chen B, Li C, Dai H, Song L (2020) Retro*: Learning retrosynthetic planning with neural guided A* search. In:
37th International Conference on Machine Learning, ICML 2020. pp 1586–1594
22 Mo Y, Guan Y, Verma P, et al (2021) Evaluating and clustering retrosynthesis pathways with learned
strategy. Chem Sci 12:1469–1478. https://doi.org/10.1039/d0sc05078d
23 Thakkar A, Kogej T, Reymond JL, et al (2020) Datasets and their influence on the development of computer
assisted synthesis planning tools in the pharmaceutical domain. Chem Sci 11:154–168.
24 Genheden S, Engkvist O, Bjerrum EJ (2021) Fast Prediction of Distances Between Synthetic Routes with Deep
Learning. ChemRxiv. https://doi.org/10.26434/CHEMRXIV.14778150.V1
25 Coley CW, Green WH, Jensen KF (2019) RDChiral: An RDKit Wrapper for Handling Stereochemistry in
Retrosynthetic Template Extraction and Application. J Chem Inf Model 59:2529–2537.
https://doi.org/10.1021/acs.jcim.9b00286
26 Kishimoto A, Buesser B, Chen B, Botea Eaton A (2019) Depth-First Proof-Number Search with Heuristic Edge
Cost and Application to Chemical Synthesis Planning

17

27 Shibukawa R, Ishida S, Yoshizoe K, et al (2020) CompRet: A comprehensive recommendation framework for
chemical synthesis planning with algorithmic enumeration. J Cheminform 12:52.
https://doi.org/10.1186/s13321-020-00452-5
28 Genheden S, Engkvist O, Bjerrum E (2021) Clustering of Synthetic Routes Using Tree Edit Distance. J Chem
Inf Model 61:3899–3907. https://doi.org/10.1021/
29 Badowski T, Molga K, Grzybowski BA (2019) Selection of cost-effective yet chemically diverse pathways from
the networks of computer-generated retrosynthetic plans. Chem Sci 10:4640–4651.
https://doi.org/10.1039/c8sc05611k
30 Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J
Comput Appl Math 20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7
31 Allis LV, van der Meulen M, van den Herik HJ (1994) Proof-number search. Artif Intell 66:91–124.
https://doi.org/10.1016/0004-3702(94)90004-3
32 Browne C, Powley E, Whitehouse D, et al (2012) A Survey of Monte Carlo Tree Search Methods. IEEE Trans
Comput Intell AI GAMES 4:1-43. https://doi.org/10.1109/TCIAIG.2012.2186810
33 Hart PE, Nilsson NJ, Raphael B (1968) A Formal Basis for the Heuristic Determination of Minimum Cost Paths.
IEEE Trans Syst Sci Cybern 4:100–107. https://doi.org/10.1109/TSSC.1968.300136
34 Segler MHS, Preuss M, Waller MP (2018) Planning chemical syntheses with deep neural networks and
symbolic AI. Nature 555:604–610. https://doi.org/10.1038/nature25978
35 Klucznik T, Mikulak-Klucznik B, McCormack MP, et al (2018) Efficient Syntheses of Diverse, Medicinally
Relevant Targets Planned by Computer and Executed in the Laboratory. Chem 4:522–532.
https://doi.org/10.1016/j.chempr.2018.02.002
36 Jeong J, Lee N, Shin Y, Shin D (2021) Intelligent generation of optimal synthetic pathways based on
knowledge graph inference and retrosynthetic predictions using reaction big data. J Taiwan Inst Chem Eng In
press. https://doi.org/10.1016/j.jtice.2021.07.015
37 RDKit: Open-source cheminformatics, http://www.rdkit.org.
38 Kingma DP, Ba JL (2015) Adam: A method for stochastic optimization. In: 3rd International Conference on
Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning
Representations, ICLR

18

Supporting Information

PaRoutes: a framework for benchmarking retrosynthesis route

predictions

Samuel Genheden and Esben Bjerrum

Molecular AI, Discovery Sciences, R&D, AstraZeneca Gothenburg, SE-431 83 Mölndal, Sweden

.

Table S1 – Cross comparison on ability to find a solution for the set-n1 routes

 Found by

Method 1 Method 2 Both Method 1 Method 2 Neither

MCTS Retro* 0.96 0.01 0.01 0.02

MCTS DFPN 0.85 0.13 0.00 0.03

Retro* DFPN 0.85 0.13 0.00 0.03

19

Figure S1 – Example of top-ranked route for a target where Retro* and DFPN found the reference

route but MCTS was unable to. A) Route to synthesize the target as extracted from the

US20070232591A1 patent, which was recovered by Retro* and DFPN. B) Alternative route to

synthesize the target predicted by both MCTS. The one-step model probability and rank of the template

applied on the target in route A) was ~3-3 and 18, respectively whereas the probability and rank of the

template applied on the target in route B) was ~2-2 and 7, respectively. Thus Retro* and DFPN were

able to utilize a template with much lower rank and could recover the reference route, whereas MCTS

deemed this template to be too unlikely to continue exploring.

20

Figure S2 – Example of reference and top-ranked routes for a target where no algorithm could

recover the reference route. A) The reference route extracted from patent US20030013720A1, B) top-

ranked route from MCTS, C) top-ranked route from Retro*. Both MCTS and Retro* were able to find

a shorter route to the target, but both routes will have selectivity issues. In B) there is a selectivity issue

with the second step and in C) there is a selectivity issue with the first step.

21

Table S2 – Overview of the search algorithms tested in this work. The boxes describe the main statements in one iteration of each of the algorithms. For

clarity many of the extra checks of node states and details of various calls has been omitted.

MCTS

Retro*

DFPN

Select leaf

leaf <- root

while leaf is expanded and leaf is not

terminal

 select child with best UCB score

 leaf <- child

Expand leaf with one-step model, add

children nodes

Rollout

while leaf is not terminal

 select child with best UCB score

 expand child with one-step model

 leaf <- child

backpropagate reward of leaf

Select leaf with minimum estimated cost from

all expandable leaf-nodes

Expand leaf with one-step model, add AND/OR

sub-trees

Update the cost of all ancestor nodes of the

selected leaf given the cost of the added

molecules

if first iteration

 frontier <- root

Select new frontier

while frontier is not expandable

 update proof and disproof numbers of frontier

 if frontier cannot be searched

 frontier <- parent of frontier

 else

 find child with minimum proof number

 frontier <- child

Expanding molecule node

expand frontier, adding reaction nodes

update proof and disproof numbers of frontier

find child with minimum proof number

frontier <- child

Expanding reaction node

expand frontier adding molecule nodes

update proof and disproof numbers of frontier

find child with minimum proof number

frontier <- child

22

