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ABSTRACT: A total synthesis of 3-epi-hypatulin B, a 
highly oxygenated and densely functionalized bicyclic 
scaffold, is reported. The carbon skeleton was prepared 
by functionalization of a cyclopentanone core and an 
intramolecular Mukaiyama aldol reaction. The synthe-
sis features a late-stage photo-oxidation of a methoxy-
allene intermediate for the installation of an ester func-
tionality. Problems encountered during the batch pro-
cess were solved by translation of the transformation 
into a flow protocol. Our synthesis highlights the value 
of flow chemistry to enable challenging steps in natural 
product synthesis . 

Polycyclic polyprenylated acylphloroglucinols (PPAPs) 
are a family of meroterpenoids with fascinating and 
complex chemical structures.1 Due to a wide range of 
intriguing biological activities, PPAPs represent poten-
tial lead structures for neuroscience, infectious disease, 
and oncology drug discovery programs.2 Thus, several 
synthetic approaches, some of which culminated in el-

egant total syntheses, have been devised.3 The most 
prominent congener, the neuroactive hyperforin (1), 
is one of the main bioactive compounds in Hyperi-
cum perforatum (St. John’s wort) (Scheme 1).4 While 
many of the isolated PPAPs retain the six-membered 

ring of their acylphloroglucinol progenitors, subse-
quent rearrangements and oxidative cleavages can re-
sult in ring expansions, contractions, or ring openings.5  

In 2016, Tanaka, Kashiwada, and co-workers reported 
the isolation of two novel meroterpenoids with a con-
tracted acylphloroglucinol- and a seco-acylphloroglu-
cinol-derived motif, respectively, from the leaves of hy-
pericum patalum.6 Whereas hypatulin A (2) has a highly 
oxygenated tricyclic octahydro-1,5-methanopentalene 
core, hypatulin B (3) possesses a bicyclo[3.2.1]octane 
motif. Both natural products have a densely substituted 
cyclopentane core bearing four stereocenters, three of 
them being quaternary (Scheme 1). 

Hypatulin A (2) and B (3) were evaluated for their an-
timicrobacterial activity on strains of Staphylococcus 
aureus, Bacillus subtilis, and Escherichia coli. Hypatulin 
A exhibited activity against Bacillus subtilis.  

According to Tanaka, Kashiwada, and co-workers hy-
patulin B (3) could be produced by oxidative cleavage 
and methylation through a biogenetic pathway from 
hypatulin A (2). The structural assignment of C-3 was 
supported by chemical conversion of hypatulin A (2) 
into hypatulin B (3) by a retro-Dieckmann-type cleavage 
using N,N-dimethylaminopyridine (DMAP) in MeOH. 

We speculated that the easier accessible hypatulin B 
(3) could be transformed into hypatulin A (2) via cycliza-
tion. Simplification of hypatulin B (3) by 
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methoxycarbonylation and subsequent metathesis 
would lead to triketone 4. Construction of the bicyclic 
scaffold was envisaged by a Dieckmann-type cyclization 
and installation of the substituents was intended by ste-
reoselective functionalizations of ketone 5 (Scheme 1). 
 

Scheme 1. Different PPAPs and Retrosynthetic Analy-
sis of Hypatulin A (2) and Hypatulin B (3) 

 

The synthesis commenced with cyclopentanone 5, 
which was prepared in 97% enantiomeric excess in 
analogy to a procedure by Taber and co-workers in four 
steps starting from 2-cyclopentenone.7 Enolization un-
der thermodynamic control afforded silyl enol ether 6 
in 94% yield and in a 93:7 ratio of constitutional isomers 
(Scheme 2).8 Subsequent Mukaiyama aldol addition 
with aldehyde 7 proceeded in 91% yield and generated 
the first of three quarternary stereocenters of the cy-
clopentane core. A 3:2-mixture of two diastereomers 
was obtained, providing, after separation, one diastere-
omer as a crystalline solid. X-ray crystal structure anal-
ysis revealed (10R)-8 to possess the desired cis-relation-
ship between methyl and allyl substituent. Both dia-
stereomers were subjected to a tandem deacetaliza-
tion/elimination affording enone 9. As both diastere-
omers 8 converge into enone 9, it can be deduced that 
they are diastereomers at C-10, thus rendering the low 
diastereoselectivity inconsequential for the further syn-
thesis (Scheme 2). With enone 9 in hand, construction 
of the second quarternary center bearing a methyl es-
ter and an allyl group was pursued. Initial attempts to 
install the ester first, followed by an allylation resulted 
in the exclusive formation of the undesired diastere-
omer. Thus, the order of the electrophile additions was 

reversed. Interestingly, allylation of the corresponding 
enolate with allyl iodide in the presence of N,N’-dime-
thylpropyleneurea (DMPU) at –78 °C gave a mixture of 
unreacted starting material, mono-, and bisallylated 
products. However, by decreasing the reaction temper-
ature to –100 °C monoallylation was achieved exclu-
sively. Subsequent methoxycarbonylation was per-
formed by deprotonation with NaHMDS and treatment 
with methyl cyanoformate providing the desired iso-
mer 10 in 59% over two steps (Scheme 3). 

 
Scheme 2. Synthesis of Enone 9 (Thermal Ellipsoids at 
50% Probability) 

 

Attempts to telescope both reactions into an one-pot 
protocol9 revealed that the allylation step requires 
DMPU as solvent, while methoxycarbonylation in the 
presence of DMPU resulted in degradation (Scheme 3). 

An attempted conjugate addition of an allyl cuprate 
to the enone 10 failed and provided exclusively the cor-
responding 1,2-addition product. Therefore, a Hosomi-
Sakurai reaction with allyltrimethylsilane was investi-
gated.10 A screening of various Lewis acids, including ti-
tanium tetrachloride,10 boron trifluoride diethyl 
etherate, iron(III) chloride,11 iodine,12 and indium,13 re-
vealed indium(III) chloride14 in the presence of trime-
thylsilyl chloride to be the best system. Under these 
conditions, the 1,4-addition product 11 was isolated in 
58% yield as a mixture of two diastereomers (dr 1:2.4) 
(Scheme 3). During the reaction, partial trapping of the 
enolate with trimethylsilyl chloride was observed. 
When triethylamine was added after completion of the 
conjugate addition, silyl enol ether 12 was obtained ex-
clusively in 63% yield as a mixture of two diastereomers 
(dr 1:2) (Scheme 3). The configuration was determined 
three steps later by X-ray crystallographic analysis of in-
termediate 4. Unfortunately, the desired product 
turned out to be the minor diastereomer. Attempts to 
reverse the stereoselectivity were unsuccessful.  

Next, we aimed to construct bicyclic triketone 4 in a 
Dieckmann-type cyclization of the highly substituted 
cy-
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Scheme 3. Synthesis of Key Intermediate Triketone 4 (Thermal Ellipsoids at 50% Probability; Disorder Was Obmitted 
for Clarity)16 

 
 

clopentanone 11.15 Unfortunately, a variety of different 
conditions resulted in the formation of 13 (Scheme 3). 
To suppress decarboxylation, reduction of the ester to 
the corresponding aldehyde and subsequent aldol cy-
clization was attempted. When ester 12 was treated 
with DIBAL-H at –78 °C, overreduction to the primary 
alcohol was a major side reaction. By lowering the tem-
perature to –100 °C, the corresponding aldehyde could 
be isolated in 70% yield. The subsequent intramolecu-
lar Mukaiyama aldol reaction with boron trifluoride 

etherate afforded a mixture of epimeric β-hydroxy ke-
tones.17 Oxidation of the crude mixture of both epimers 
with Dess-Martin periodinane (DMP)18 eventually gave 
triketone 4 in 62% yield over three steps (Scheme 3).  

With the bicyclic carbon framework assembled, the 
introduction of the remaining carbonyl functionality 
was addressed. Different d1-reagents either as acyl an-
ion equivalents or masked carbonyl equivalents were 
considered.19 While bulky reagents such as lithiated di-
thianes20 gave no conversion, smaller nucleophiles such 
as methoxyallenyllithium21 or cyanide were added suc-
cessfully to the ketone (Scheme 4). In all cases, the 1,3-
diketone was ‘disarmed’ by in situ deprotonation with 
NaHMDS. Unfortunately, X-ray and NMR analysis re-
vealed that addition of all nucelophiles proceeded with 
the undesired facial selectivity. As all our attempts to 
obtain the epimeric tertiary alcohol were unsuccessful, 
we redirected our synthetic efforts towards 3-epi-hy-
patulin B (17). 

Attempted conversion of cyanohydrine 14 to the cor-
responding ester 16 resulted in the desilylation and cy-
anide elimination leading to ketone 4. In contrast, the 
addition of methoxyallenyllithium is irreversible and 
methoxyallene 15 was isolated in 72% yield (Scheme 4). 

Next, we attempted the oxidative cleavage of the al-
lenyl moiety to the corresponding ester 16.22 Although 
examples for ozonolysis of enol ethers in the presence 
of less electron-rich olefins have been reported, con-
trolled addition of a solution of ozone, even at –115 °C, 
resulted in complete degradation of the starting mate-
rial.23 Alternatively, enol ethers can be reacted with sin-
glet oxygen leading to dioxetanes, which decompose to 
the corresponding esters.24 Singlet oxygen exhibits high 
chemo- and regioselectivity depending on substitution 
patterns, conformations and stereoelectronic effects of 
the substrates.25 Gratifyingly, when methoxyallene 15 
was treated with singlet oxygen generated with tetra-
phenylporphyrin (TPP) as photocatalyst in a test reac-
tion the product could be isolated. As we experienced 
scale-up problems on a scale larger than 10 mg, we con-
templated the application of flow-chemistry.26 Re-
cently, we developed a modular, and argon-driven flow 
platform especially designed for the robustification of 
late-stage transformations in natural product synthe-
sis.27 In particular, gas reactions and photoreactions can 
be significantly accelerated and upscaled in flow.28 
Therefore, we translated the oxidative cleavage of 
methoxyallene 15 to ester 16 into a flow process. After 
optimizing reaction parameters, the desired ester 16 
was obtained in a slightly higher yield of 64% and a re-
markably shorter reaction time of 60 minutes com-
pared with 26 hours in batch (Scheme 4). Most im-
portantly, in flow, this transformation could be con-
ducted on a 56 mg scale providing sufficient material 
for the final step of the synthesis. 

cyclopentenone. The synthetic key challenge was to 
construct the unique bicyclic core motif in an efficient 
way, 
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Scheme 4. Methoxycarbonylation via Late-Stage Oxidation in Flow and Alkene Metathesis for the Formation of 3-epi-
Hypatulin (17) (Thermal Ellipsoids at 50% Probability)16 

Ester 16 was then subjected to cross metathesis con-
ditions.29 Initial reactions using 2-methyl-2-butene as a 
dimethylvinylcarbene source resulted in a mixture of 
products with dimethylated and monomethylated allyl 
groups. Therefore, the metathesis reaction was  

performed with gaseous 2-methylpropene in a pres-
sure tube providing 3-epi-hypatulin B (17) in 94% yield 
(Scheme 4).30 

In conclusion we completed a synthesis of 3-epi-hy-
patulin B (17) in 16 steps starting from 2-which was 
achieved by introducing all required substituents to a 
cyclopentane core, followed by a Mukaiyama aldol cy-
clization. The introduction of the last carbonyl fragment 
lead to the undesired epimer of the tertiary alcohol. 
However, synthesis of 3-epi-hypatulin B could be 
achieved utilizing an oxidative cleavage of an enol ether 
species in presence of competing alkene functionali-
ties. This reaction could be performed in flow allowing 
larger scale, shorter reaction time and a slightly higher 
yield. Our synthesis demonstrates the value of combin-
ing an efficient approach to a highly functionalized ring 
system with the virtue of flow chemistry for the robus-
tification of late-stage transformations in natural prod-
uct synthesis. 
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