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Abstract

The anharmonicity of O-H stretching vibrations of water ice is characterized by use of a

periodic implementation of the vibrational self-consistent field (VSCF) and vibrational con-

figuration interaction (VCI) methods, which take phonon-phonon couplings explicitly into

account through numerical evaluation of high-order terms of the nuclear potential. The low-

temperature, proton-ordered phase of water ice (namely, ice-XI) is investigated. The net

effect of a coupled anharmonic treatment of stretching modes is not just a rigid blue-shift

of the respective harmonic spectral frequencies but rather a complex change of their relative

spectral positions, which can not be captured by simple scaling strategies based on harmonic

calculations. The adopted techniques allow for a hierarchical treatment of anharmonic terms

of the nuclear potential, which is key to an effective identification of leading factors. We show

that an anharmonic independent-mode approximation only describing the “intrinsic anhar-

monicity” of the O-H stretches is unable to capture the correct physics and that couplings

among O-H stretches must be described. Inspection of harmonic normal coordinates allows

to identify specific features of the O-H stretching motions which most likely enable strong

mode-mode couplings. Finally, by coupling O-H stretches to all other possible modes of

ice-XI (THz collective vibrations, molecular librations, bendings), we identify specific types

of motion which significantly affect O-H stretching states: in particular, molecular librations

are found to affect the stretching states more than molecular bendings.

Introduction

Vibrational dynamics represent one of the most important phenomena in the chemical sci-

ences. Vibrational spectroscopy has been used since the early 20th century as a tool for

characterizing interatomic forces and for the identification of molecular species.1 Addition-

ally, vibrational states are central to thermodynamic properties (especially for crystalline

solids) ranging from entropy and specific heat to thermal expansion.2,3 Thus, a complete
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description of vibrational dynamics at the atomic scale is important to fully-understand the

bulk properties of solid materials. There are many well-known experimental methods that

probe vibrational transitions, such as infrared (IR) and Raman spectroscopies. In addition,

many computational chemistry codes can simulate molecular vibrations within the harmonic

approximation (HA). The HA, which models vibrational potentials as a quadratic function,

is extensively used due to the ability to perform straightforward and computationally effi-

cient analyses. However, despite its popularity, the HA breaks down in situations where the

interatomic potential is far from behaving quadratically and/or when different vibrational

modes are strongly coupled. The drawbacks of the HA are even more pronounced for solids

where, at the harmonic level, there is no volume dependence of thermodynamic properties

(i.e., zero thermal expansion), and infinite phonon lifetimes and lattice thermal conductivity.

Recently, some of these challenges have been addressed through the use of quasi-harmonic

approximation (QHA) simulations, which involve the determination of harmonic vibrational

dynamics at a series of crystalline unit cell volumes, providing a holistic description of inter-

molecular anharmonicity.4–12 However, the QHA does not treat vibrational anharmonicity on

a mode-by-mode basis, as it still relies on the HA and neglects higher-order (third and above)

terms in the expansion of the vibrational potential energy surface (PES), ultimately result-

ing in the inability to model anharmonic phenomena such as phonon-phonon couplings.13,14

While there have been a number of methods proposed for the evaluation of cubic force con-

stants for application to thermal conductivity,15–20 as well as the role of mode coupling on

anharmonic vibrational states,21–30 there is a crucial need for more comprehensive studies of

these effects in molecular crystals due to the importance of anharmonic phenomena on bulk

material properties.

The focus of this study is the application of the fully-periodic VSCF and VCI methods

implemented in CRYSTAL31–35 to the O-H stretching vibrations of the low-temperature,

proton-ordered phase of water ice (ice-XI) to obtain a description of the anharmonicity due to

vibrational mode coupling. Water ice is a molecular crystal of interest for anharmonic analy-
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ses due to its complex network of intermolecular hydrogen bonds coupled with intramolecular

covalent O-H bonds that complicate the interpretation of the vibrational spectrum and mod-

eling of thermodynamic properties.36–44 First, the intrinsic anharmonicity is evaluated and

its limits are discussed. Then, mode pair couplings and mode subset couplings are evaluated

and their respective advantages are presented. Finally, three factors that can qualitatively

predict the degree of coupling in molecular crystals are suggested.

Methods

All simulations were performed with a developmental version of Crystal17.31 Initially, the

structure of ice-XI was fully-optimized (i.e. in terms of both lattice vectors and atomic

positions) without any constraints other than those imposed by the space group symme-

try of the lattice (Cmc21) with the B3LYP45,46 exchange-correlation hybrid functional of

the density functional theory (DFT) and a 6-311G(2d,2p)47,48 basis set. A tolerance on

the SCF convergence of ∆E ≤ 10−10 Hartree was used. After optimization, harmonic vi-

brational analyses were performed on the fully-relaxed geometries of ice-XI using the well-

established method involving numerical differentiation of analytical forces, with a two-sided

finite difference formula to better capture the curvature of the potential energy surface

(PES).49,50 Infrared (IR) and Raman intensities were calculated analytically through the

coupled-perturbed/Kohn–Sham approach.51,52

Anharmonic vibrational analyses were performed using a recently reported approach

implemented into a developmental version of Crystal17,32,33 where the PES is expressed

in the basis of mass-weighted normal coordinates, V (Q), and expanded in a Taylor series up
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to fourth order:
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where M is the number of independent quantum harmonic oscillators vibrating at harmonic

frequencies ωi (with i = 1, . . . ,M) and where ηijk and ηijkl are cubic and quartic force

constants, respectively:

ηijk =

(
∂3E

∂Qi∂Qj∂Qk

)
(2)

and ηijkl =

(
∂4E

∂Qi∂Qj∂Qk∂Ql

)
. (3)

All one- and two-mode terms in the PES expansion above were computed according to a

so-called 2M4T representation of the PES:

ηiii, ηiiii ∀ i ∈M

ηijj, ηiij, ηiiij, ηijjj, ηiijj ∀ i < j ∈M . (4)

An Energy-Gradient-Hessian (EGH) two-point finite difference scheme was used to compute

such high-order energy derivatives, with a displacement step of 0.9 in terms of classical

amplitude of each normal mode.33

From such anharmonic potential, anharmonic vibrational states were computed by solv-

ing the vibrational self-consistent field (VSCF) equations (where each mode interacts with

the average potential of all other modes), and the vibrational configuration interaction (VCI)

equations, which allow for a more explicit treatment of mode-mode couplings. Vibrational

modes are distinguishable so that the M -mode wavefunction of a given vibrational configu-

ration n does not need to be antisymmetrized and can be written as a Hartree product of
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one-mode functions (modals):32

Φn(Q1, Q2, · · · , QM) ≡ Φn(Q) =
M∏
i=1

φni
i (Qi) , (5)

where n = (n1, n2, · · · , ni, · · · , nM) is the vibrational configuration vector of the quantum

numbers of theM one-mode functions. For each given vibrational configuration n, the VSCF

method consists in looking for the variationally best form of the corresponding M one-mode

functions. This is achieved by requiring that the expectation value of the full Hamiltonian

is stationary:

En = 〈Φn|H|Φn〉 where H =
M∑
i=1

Ti + V (Q) , (6)

with Ti = −1/2(∂2/∂Q2
i ) being the one-mode kinetic energy operator. In the VCI method,

the wave-function of each vibrational state s is written as a linear combination of M -mode

wave-functions of different vibrational configurations in the form of Hartree products of

modals as in Eq. (5):

Ψs(Q) =

Nconf∑
n=1

An,sΦ
n(Q) , (7)

where the sum runs over Nconf configurations, each characterized by a vibrational configura-

tion vector n. The selection of the Nconf configurations determines the truncation of the VCI

expansion. For each vibrational state s, the corresponding VCI wave-function and energy are

obtained by solving the corresponding Schrödinger equation HΨs = EsΨs. The VCI method

can be expressed in matrix form as follows:32 HA = AE, where A is the squared matrix

containing, column-wise, the coefficients An,s of the eigenvectors, E is the diagonal matrix

of the eigenvalues and H is the VCI Hamiltonian matrix (of size Nconf × Nconf). The VCI

method therefore reduces to the construction and diagonalization of the VCI Hamiltonian

matrix, from which all vibrational states are simultaneously determined. VSCF solutions

are used to express the modals in the VCI method (according to the so-called VCI@VSCF

approach).
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The limiting factor of the VCI method is the construction of the VCI Hamiltonian matrix,

which can easily exceed the memory capacity of most nodes. Erba et al. developed several

strategies for truncating the VCI expansion and thus the size of the Hamiltonian matrix by

exploiting point-symmetry factorization and by limiting the number of quanta and modes

simultaneously excited.32 For fundamental transition frequencies of ice-XI, Erba et al.32

determined that the VCI@VSCF method converges when all configurations involving up to

four quanta over up to three different modes are considered, which is the set-up used here.

When the anharmonicity of a single mode is considered (i.e. by neglecting all couplings

with other modes), we refer to the intrinsic anharmonicity of the mode. In order to ratio-

nalize the impact that different mode-mode couplings have on the description of anharmonic

stretching states, we have grouped ice-XI modes into four subsets by their spectral region

and mode type: terahertz, librations, bends, and O-H stretches. Such classification allows

for a hierarchical treatment of mode-mode couplings to identify the most relevant ones.

Results and Discussion

Structural Analysis

Before lattice dynamics can be investigated, it is important to ensure that the geometry

optimization converged to a structure that is at an equilibrium point on the PES, as well

as agreeing with the experimental structure, which helps to ensure that the interatomic and

intermolecular forces are well-modeled.53,54 The structure of ice-XI was previously deter-

mined experimentally using neutron diffraction at 10 K.55 Ice-XI crystallizes in the Cmc21

orthorhombic space group with lattice parameters of 4.5026 Å, 7.7803 Å, 7.2884 Å for a, b,

and c respectively.55 The B3LYP/6-311G(2d,2p) optimization successfully reproduced the

experimental structure, with lattice parameters of 4.4859 Å, 7.7623 Å, and 7.3194 Å, repre-

senting an average relative error in the lattice vectors of -0.059 %.
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Harmonic Analysis

Figure 1: Simulated harmonic vibrational spectra of ice-XI in the O-H stretching region (IR
in the upper panel and Raman in the lower panel). Dashed vertical lines mark the positions of
the experimental peaks.56 Assignments of each peak in the spectra to the individual normal
modes are provided by the numerical labels.

Following the successful optimization, harmonic vibrational analysis was performed. The

calculated IR and Raman spectra of ice-XI in the O-H stretching region are shown in Figure

1, with black vertical dashed lines marking the positions of the experimental peaks. Indeed,

we will primarily examine the O-H stretching modes in-depth as they have been extensively

characterized both experimentally and theoretically. However, we have included all simula-

tion data in the ESI so as to make these rich datasets available. The eight stretching modes

of ice-XI were previously assigned based on symmetry by Erba et al. as follows:57

3A1 + 3B1 + A2 +B2 (8)
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Based on the theoretical analysis, almost all 33 optical modes of ice-XI are both IR and

Raman active, with the exception being mode 31, which is only IR inactive. The predicted

harmonic frequencies of modes 31, 32 and 33 are incredibly similar (3373, 3374 and 3375 cm-1,

see Table 1), thus these modes would almost certainly be indistinguishable in experimental

studies. However, we are going to show later how these three modes are split when mode-

mode couplings are taken into account beyond the independent mode approximation. It is

important to note that there are eight theoretical stretching modes (with assignments given

in Eq. 8), four bands observed in experimental IR spectra, and four bands in experimental

Raman spectra of ice-XI. Indeed, Shigenari and Abe performed an experimental analysis

of the vibrational modes above 400 cm-1 of ice-XI via IR and Raman measurements.56 In

the Raman spectrum of ice-XI, Shigenari and Abe observed four peaks at 3087 cm-1, 3210

cm-1, 3327 cm-1, and 3414 cm-1.56 Four peaks were also observed in the IR spectrum at 3136

cm-1, 3207 cm-1, 3265 cm-1, and 3398 cm-1.56 Based on the purely harmonic description,

a tentative assignment can be attempted: in the Raman spectrum, the peak at 3087 cm-1

would correspond to mode 29 (an in-phase symmetric stretching on all four water molecules;

see Figure 2), that at 3210 cm-1 to modes 32 and 33, that at 3327 cm-1 to mode 34 and the

peak at 3414 cm-1 to modes 35 and 36, which have similar harmonic frequencies and Raman

intensities of 135.53 a.u. and 51.07 a.u., respectively. In the IR spectrum, the peak at 3136

cm-1 would correspond to mode 30, that at 3207 cm-1 to modes 31, 32 and 33, that at 3265

cm-1 to mode 34 and the peak at 3398 cm-1 to modes 35 and 36, which have similar harmonic

frequencies and IR intensities of 2.37× 105 M−1cm−1 and 1.88× 106 M−1cm−1, respectively.

From the analysis above based on Figure 1, the frequencies calculated by the harmonic

approximation only allow for a tentative assignment of experimental peaks as they do not

just differ quantitatively from experimental ones in terms of absolute values (with an average

blue-shift of about 147 cm-1) but also qualitatively in terms of relative positions. We are

going to show and discuss below how an explicit anharmonic treatment taking into account

mode-mode couplings is required to get improved relative positions and assignment.
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Figure 2: Eigenvectors obtained from the normal mode analysis. The eigenvectors of each
mode are indicated by black arrows on the four water molecules in the unit cell of ice-XI.
The water molecules are labeled by capital letters (A,B,C, and D). The relative phase is
indicated by the color of the arrows.

In order to guide the interpretation of the tentative harmonic assignment just presented

as well as the mode-mode couplings that will follow, Figure 2 presents a skematic graphical

representation of the harmonic normal mode eigenvectors of the eight O-H stretching modes

in ice XI. The four water molecules in the lattice cell are labeled A, B, C and D. Stretching

motions are represented by arrows and phase of motion is indicated by color. For example,

the symmetric stretch on water molecule B in mode 30 is out of phase with the symmetric

stretch on water molecules A and D. Also, the symmetric stretch on water molecule C is

out of phase with the symmetric stretch on water molecules A and D, but is in phase with

the symmetric stretch on water molecule B since they both have the same color for the

displacement arrows.

Intrinsic Anharmonicity

The first anharmonic treatment of O-H stretching vibrations in ice-XI we performed was a

single-mode one, where the intrinsic anharmonicity of each normal mode is investigated by

accounting for cubic and quartic single-mode terms in the PES (i.e. terms ηiii and ηiiii in

Eq. 1) and by neglecting mode-mode couplings. In other words, normal modes were still

considered as independent but the non-quadraticity of their 1D potential was accounted for.
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In this limit, the VSCF and VCI methodologies formally coincide. The obtained results, in

terms of intrinsic anharmonic frequencies of fundamental transitions (ωia
i ) are reported in

Table 1.

Table 1: Fundamental O-H stretching frequencies of ice-XI as computed with
the harmonic approximation and by taking into account just the intrinsic an-
harmonicity of each vibrational mode. Labels of symmetry irreps of each mode
are also listed. The last column, ∆, represents the difference between intrinsic
anharmonic and harmonic values. Values in cm-1.

Mode # Symmetry
Label Harmonic Intrinsic

Anharmonicity ∆

29 A1 3277 3225 -52
30 B1 3302 3338 +36
31 A2 3373 3422 +59
32 A1 3374 3422 +58
33 B2 3375 3422 +57
34 B1 3461 3514 +53
35 A1 3514 3533 +19
36 B1 3525 3548 +23

From inspection of the data reported in the table, the following considerations can be

made: i) the intrinsic anharmonicity produces an increase of the fundamental vibration fre-

quency of all stretching modes but the lowest frequency one (namely mode 29: the symmetric

in-phase stretching on all four water molecules in the cell); ii) the absolute shift in frequency

is quite large (up to between 50-60 cm−1 for modes 31-34, for instance); iii) apart from mode

29, the shift in frequency of all other stretching modes due to the intrinsic anharmonicity is

such to worsen the agreement with the experimental values rather than to improve it. While

such behavior may seem counterintuitive with respect to what one is used to find in the

description of O-H stretching modes in a single water molecule (where a simple Morse-like

model would predict a lowering of the frequency upon inclusion of high-order terms of the

PES), it is fully justified by the compact 3D network of hydrogen-bonds interconnecting

water molecules in ice. In other words, while in an isolated water molecule hydrogen atoms

move towards dissociation, in ice they move towards the next oxygen atom in their stretching

vibration mode. The use of the sole intrinsic anharmonicity can still prove useful in a con-
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densed matter context, particularly so when considering low-frequency, collective vibrations

in the terahertz region of the spectrum.58–60 However, this is clearly not the case for O-H

stretching modes in ice. Therefore, we proceeded by taking into explicit account mode-mode

couplings via the VSCF and VCI methods.

Anharmonicity through Mode Pair Couplings

From the analysis above, it is obvious that an anharmonic independent-mode approximation

is unable to catch the correct behavior of O-H stretching vibrations in ice. Mode-mode

couplings need to be explicitly taken into account. In order to rationalize what couplings

are the most relevant to a correct description of the O-H stretching motions in ice, we

have devised a hierarchical treatment that starts by coupling just two modes at a time, then

couples all modes within a certain subset (e.g. librations, bends, stretchings), then all modes

belonging to selected subsets, and finally couples all modes at once.

Let us start by investigating the strength of the coupling between single pairs of modes.

We have run as many VSCF and VCI calculations as there are pairs of vibration modes in ice

XI, (Qi, Qj) with i, j = 1, . . . ,M . Each calculation takes into account the third- and fourth-

order coupling constants involving just the two respective modes, as in Eq. (4). In order to

quantify the effect of the pair coupling on the vibrational states, we analyse a vibrational

state where both modes of the pair are simultaneously singly exited (so-called “combination

bands” in vibrational spectroscopies). In other words, for each selected pair of modes, we

consider the vibrational configuration n = (n1, n2, · · · , nk, · · · , nM) with nk = δki+δkj, where

δ is Kronecker’s delta function. From the VSCF approach, we get the energy En of this state

from Eq. (6) so that its transition frequency ωpair
ij can be obtained from h̄ωpair

ij = En − E0,

where 0 is the fundamental state. From the VCI approach, we search for the vibrational

state s′ with the strongest n character - i.e. with the largest An,s coefficient in Eq. (7). The

corresponding transition frequency can thus be obtained from h̄ωpair
ij = Es′ − E0.

In order to measure the effect of the anharmonic pair mode coupling over an independent
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mode anharmonic treatment (as in the intrinsic anharmonic description discussed before),

we compare the transition frequency for this two-mode state ωpair
ij with the sum of the singly-

excited transition frequencies, ωia
i and ωia

j of the two individual modes treated at the intrinsic

anharmonic level. We define the absolute difference (AD) as:

∆ωAD
ij = ωpair

ij − (ωia
i + ωia

j ) (9)

In order to account for relatively large (or small) changes in frequency, the percent difference

(PD) was calculated relative to the sum of the singly-excited frequencies:

∆ωPD
ij =

ωpair
ij − (ωia

i + ωia
j )

(ωia
i + ωia

j )
× 100 (10)

In either case, ∆ωAD
ij and ∆ωPD

ij quantify the coupling between a given pair of modes. A

large ∆ωij means that the frequency of the doubly excited state cannot be estimated just by

summing the two frequencies of the corresponding individual modes. Figure 3 provides a

graphical representation of the analysis outlined above. Each panel of the figure shows (in a

color scale) the strength of the pair coupling for each pair of normal modes in ice XI (Qi, Qj)

as quantified by Eqs. (9) and (10) from both a VSCF (top) and VCI (bottom) approach.

The plots in Figure 3 can be interpreted as follows. If two modes do not strongly couple,

∆ωAD and ∆ωPD should be near zero, as this implies the doubly-excited state has the same

(or nearly the same) energy as the sum of each mode being singly excited independently

from the other. Conversely, when the two modes are strongly coupled, there will be a large

deviation between the doubly excited state energy and the energies of the two singly-excited

modes. Inspection of Figure 3 allows some considerations: i) the description of the pair

coupling strength from the VSCF and VCI methods appears very consistent, with both

approaches describing the same qualitative pattern with small differences in the absolute

values; ii) weak couplings are observed between stretching and THz vibrations, as well as

between bendings and THz vibrations (both cases involve mode types with very different
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Figure 3: Vibrational two-quanta excited-state pair coupling space of ice XI. For each pair
(Qi, Qj) of normal modes, ∆ωAD

ij (left) and ∆ωPD
ij (right) are reported, as defined in Eqs.

(9) and (10), respectively. Results are shown both from a VSCF (top) and VCI (bottom)
approach.

energies); iii) interestingly, weak couplings are observed among bending modes (actually, this

is the only diagonal block of the matrix showing very small values); iv) all other diagonal

blocks of the matrix show relatively large values, which implies a relatively strong coupling

among stretching modes, among librational modes and also among THz modes (this latter

case is more evident from the analysis of the PD rather than the AD, as expected because
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of the low absolute frequencies of THz vibrations); v) Among the stretching diagonal block,

mode 29 (i.e. the symmetric in-phase stretching on all four water molecules) once again

behaves differently from other modes yielding negative ∆ωij with all other stretching modes

at variance with the positive ∆ωij of all other stretching mode pairs; vi) Some off-diagonal

blocks also show large values, indicative of relatively strong couplings between modes of

different spectral subsets (this is the case of the stretching-bending block and even more

so of the libration-stretching, libration-bending and libration-THz, which highlights the key

role played by the librational motions in the anharmonic behavior of ice, with librations able

to couple with all other vibrations).

Anharmonicity through Couplings among Different Subsets of Modes

While the two-mode couplings analyzed above have allowed to identify what types of modes

are most likely to contribute more strongly to the anharmonic description of vibrational

states in ice XI, they still represent an over-simplified description of anharmonicity. Indeed, in

principle, all modes of a system could couple with each other. In order to investigate this, we

have grouped the 33 modes of ice XI into four subsets (THz collective vibrations, librations,

bends, and stretches) and progressively allowed the stretches to couple with modes of other

subsets by using the VCI approach. The results of this analysis are presented in Figure 4,

where the fundamental O-H stretching frequencies of ice XI are reported as a function of the

level of coupling in the anharmonic treatment. In particular, harmonic values are reported

on the left of the plot, followed by the corresponding “intrinsic anharmonic” values (still

obtained from an independent mode approximation), then by values obtained by letting all

stretching modes couple with each other, then by letting all stretching modes couple with

each other and with all THz modes, then by letting all stretching modes couple with each

other and with all bending modes, then by letting all stretching modes couple with each

other and with all libration modes, then by letting all stretching modes couple with each

other, with all bending and all libration modes, and finally (on the right of the plot) by
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letting all 33 modes couple with each other.

Figure 4: Effect of an incremental VCI treatment of anharmonicity on fundamental O-H
stretching frequencies of ice XI. Harmonic values are reported on the left of the plot, followed
by the corresponding “intrinsic anharmonic” values (still obtained from an independent mode
approximation), then by values obtained by letting all stretching modes couple with each
other, then by letting all stretching modes couple with each other and with all THz modes,
and so on up to the right of the plot where values obtained by letting all modes couple with
each other are reported.

The effect of the “intrinsic anharmonicity” of the O-H stretches has already been discussed

and leads to an increase of the frequencies of all modes but the lowest energy one (mode

29, the symmetric in-phase stretching of all four water molecules in the cell), which instead

decreases. When stretching modes are allowed to couple with each other we observe three

significant effects: i) the pronounced lowering of all O-H stretching frequencies; ii) the relative

lowering in energy of mode 32 (brown) with respect to mode 33 (turquoise) while the two are

very close in energy in the independent mode approximation; iii) the splitting of the three

modes (31, 32 and 33, characterized by a very close harmonic frequency) into a single mode
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with lower frequency (yellow mode in the Figure) and two modes still exhibiting a similar

frequency (blue and orange modes in the Figure). If stretching modes are further allowed to

couple with THz vibrations, no significant change in their fundamental transition frequencies

are observed. A slightly more pronounced effect is produced by coupling the stretches with

the bends, which goes in the direction of further lowering the frequencies of the stretches.

As expected from the pair coupling analysis of Figure 3, the coupling of the stretches with

the librations produces a significant further red-shift of all O-H stretching frequencies, with

the exception - once again - of the symmetric in-phase stretching, whose frequency is blue-

shifted instead, getting very close in value to the second lowest energy state. The energy

difference between these two states is further reduces by the simultaneous coupling of all

stretches, bends and librations and eventually vanishes when all 33 modes are coupled with

each other, leading to the spectral distribution of the O-H stretches in ice XI shown on the

right of Figure 4.

Clearly, couplings among stretching modes are the most critical ones for a correct de-

scription of O-H stretching vibrational states in ice. In the Supporting Information, we

present a detailed analysis of individual couplings between all pairs of stretches and, based on

the analysis of the respective normal modes sketched in Figure 2, we identify some factors,

which help predict the strength of anharmonic pair couplings among stretches:

1. Motion on the same molecules of the unit cell in the two modes;

2. Relative phase of the motions in each molecule in the two modes (in-phase stretches

on the same molecule in the two modes being optimal);

3. Symmetry of motion (symmetric stretches couple best to asymmetric stretches, and

vice-versa).

To better highlight the different spectral distribution of the O-H stetching modes when

passing from an independent mode approximation to a coupled one, we introduce Figure

5, where simulated frequencies are also compared to experimental ones extracted from peak
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Figure 5: Comparison of the vibrational frequencies of O-H stretching modes in ice XI
as predicted by the harmonic approximation, by an “intrinsic anharmonicity” independent
mode treatment, and by the coupled VCI approach with experimental peak positions from
IR and Raman spectra.56

positions of IR and Raman spectra.56 A first quick look at the Figure reveals the different

spectral ranges of the various sets of data, with the harmonic approximation describing

the O-H stretches as largely blue-shifted with respect to the experiment and spanning a

narrower energy range. The energy range widens upon inclusion of intrinsic anharmonic

effects and eventually the frequencies are lowered by mode-mode couplings as accounted for

by the VCI method. The matching of experimental and VCI energy ranges is not perfect

but this aspect has little relevance in this context as this critically depends on the adopted

exchange-correlation functional and could be easily tuned by varying the fraction of Fock

exchange used in hybrid functionals, for instance. What we find much more relevant here is

the evolution of the relative positions of the frequencies (i.e. the pattern of the filled circles in

the Figure) when passing from an independent mode approach to a coupled mode approach.

Indeed, the three theoretical sets are characterized by very different patterns, with that from

the coupled VCI approach closely matching that from the experiments.
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These findings have profound practical implications in computational spectroscopy of

strongly anharmonic systems as they clearly show how a simple uniform scaling of harmonic

frequencies may result in a correct frequency range but incorrect relative spectral distribution

of different spectral features.

19



Acknowledgments

MTR and RS thank the National Science Foundation (award numbers CHE-2055402 and

DMR-2046483), the American Chemical Society Petroleum Research Fund (61794-DNI10),

and the University of Vermont for support.

20



References

(1) Gupta, V. In Principles and Applications of Quantum Chemistry ; Gupta, V., Ed.;

Academic Press: Boston, 2016; pp 247–289.

(2) Born, M.; Huang, K. Dynamical theory of Crystal Lattices ; Clarendon Press, 2002.

(3) Hill, T. L. An Introduction to Statistical Thermodynamics ; Dover Publications, 2012.

(4) Allen, R. E.; De Wette, F. W. Calculation of Dynamical Surface Properties of Noble-

Gas Crystals. I. The Quasiharmonic Approximation. Phys. Rev. 1969, 179, 873–886.

(5) Baroni, S.; Giannozzi, P.; Isaev, E. Density-Functional Perturbation Theory for Quasi-

Harmonic Calculations. Rev. Mineral. Geochem. 2010, 71, 39–57.

(6) Erba, A. On Combining Temperature and Pressure Effects on Structural Properties of

Crystals with Standard ab initio Techniques. J. Chem. Phys. 2014, 141, 124115.

(7) Erba, A.; Shahrokhi, M.; Moradian, R.; Dovesi, R. On How Differently the Quasi-

harmonic Approximation Works for Two Isostructural Crystals: Thermal Properties of

MgO and CaO. J. Chem. Phys. 2015, 142, 044114.

(8) Erba, A.; Maul, J.; Demichelis, R.; Dovesi, R. Assessing Thermochemical Properties

of Materials through Ab initio Quantum-mechanical Methods: The Case of α-Al2O3.

Phys. Chem. Chem. Phys. 2015, 17, 11670–11677.

(9) Erba, A.; Maul, J.; De La Pierre, M.; Dovesi, R. Structural and Elastic Anisotropy of

Crystals at High Pressure and Temperature from Quantum-mechanical Methods: The

Case of Mg2SiO4 Forsterite. J. Chem. Phys. 2015, 142, 204502.

(10) Erba, A.; Maul, J.; Itou, M.; Dovesi, R.; Sakurai, Y. Anharmonic Thermal Oscillations

of the Electron Momentum Distribution in Lithium Fluoride. Phys. Rev. Lett. 2015,

115, 117402.

21



(11) Erba, A.; Maul, J.; Civalleri, B. Thermal Properties of Molecular Crystals through

Dispersion-corrected Quasi-harmonic Ab initio Calculations: The Case of Urea. Chem.

Commun. 2016, 52, 1820–1823.

(12) Destefanis, M.; Ravoux, C.; Cossard, A.; Erba, A. Thermo-Elasticity of Materials from

Quasi-Harmonic Calculations. Minerals 2019, 9, 16.

(13) Leibfried, G.; Ludwig, W. In Theory of Anharmonic Effects in Crystals ; Seitz, F.,

Turnbull, D., Eds.; Solid State Physics; Academic Press, 1961; Vol. 12; pp 275 – 444.

(14) Plakida, N. M.; Siklós, T. Theory of Anharmonic Crystals. I. General Formulation.

Phys. Status Solidi B 33, 103–112.

(15) Togo, A.; Chaput, L.; Tanaka, I. Distributions of Phonon Lifetimes in Brillouin Zones.

Phys. Rev. B 2015, 91, 094306.

(16) Togo, A.; Tanaka, I. First Principles Phonon Calculations in Materials Science. Scr.

Mater. 2015, 108, 1 – 5.

(17) Plata, J. J.; Nath, P.; Usanmaz, D.; Carrete, J.; Toher, C.; de Jong, M.; Asta, M.;

Fornari, M.; Nardelli, M. B.; Curtarolo, S. An Efficient and Accurate Framework for

Calculating Lattice Thermal Conductivity of Solids: AFLOW-AAPL Automatic non

Library. NPJ Comput. Mater. 2017, 3, 45.

(18) Skelton, J. M.; Parker, S. C.; Togo, A.; Tanaka, I.; Walsh, A. Thermal Physics of the

Lead Chalcogenides PbS, PbSe, and PbTe from First Principles. Phys. Rev. B 2014,

89, 205203.

(19) Whalley, L. D.; Skelton, J. M.; Frost, J. M.; Walsh, A. Phonon Anharmonicity, Life-

times, and Thermal Transport in CH3NH3PbI3 from Many-body Perturbation Theory.

Phys. Rev. B 2016, 94, 220301.

22



(20) Linnera, J.; Karttunen, A. J. Ab initio Study of The Lattice Thermal Conductivity of

Cu2O Using the Generalized Gradient Approximation and Hybrid Density Functional

Methods. Phys. Rev. B 2017, 96, 014304.

(21) Werthamer, N. R. Self-Consistent Phonon Formulation of Anharmonic Lattice Dynam-

ics. Phys. Rev. B 1970, 1, 572–581.

(22) Tadano, S., T.and Tsuneyuki Self-consistent Phonon Calculations of Lattice Dynamical

Properties in Cubic SrTiO3 with First-principles Anharmonic Force Constants. Phys.

Rev. B 2015, 92, 054301.

(23) Tadano, T.; Tsuneyuki, S. Quartic Anharmonicity of Rattlers and Its Effect on Lattice

Thermal Conductivity of Clathrates from First Principles. Phys. Rev. Lett. 2018, 120,

105901.

(24) Zhou, F.; Nielson, W.; Xia, Y.; Ozolin, š, V. Lattice Anharmonicity and Thermal Con-

ductivity from Compressive Sensing of First-Principles Calculations. Phys. Rev. Lett.

2014, 113, 185501.

(25) Monserrat, B.; Drummond, N. D.; Needs, R. J. Anharmonic Vibrational Properties in

Periodic Systems: Energy, Electron-phonon Coupling, and Stress. Phys. Rev. B 2013,

87, 144302.

(26) Engel, E. A.; Monserrat, B.; Needs, R. J. Anharmonic Nuclear Motion and the Relative

Stability of Hexagonal and Cubic ice. Phys. Rev. X 2015, 5, 021033.

(27) Prentice, J. C. A.; Needs, R. J. Using Forces to Accelerate First-principles Anharmonic

Vibrational Calculations. Phys. Rev. Materials. 2017, 1, 023801.

(28) Souvatzis, P.; Eriksson, O.; Katsnelson, M. I.; Rudin, S. P. Entropy Driven Stabilization

of Energetically Unstable Crystal Structures Explained from First Principles Theory.

Phys. Rev. Lett. 2008, 100, 095901.

23



(29) Errea, I.; Calandra, M.; Mauri, F. Anharmonic Free Energies and Phonon Dispersions

from the Stochastic Self-Consistent Harmonic Approximation: Application to Platinum

and Palladium Hydrides. Phys. Rev. B 2014, 89, 064302.

(30) Parlinski, K. Ab Initio Determination of Anharmonic Phonon Peaks. Phys. Rev. B

2018, 98, 054305.

(31) Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C. M.; Civalleri, B.; Maschio, L.;

Rérat, M.; Casassa, S.; Baima, J.; Salustro, S. et al. Quantum-Mechanical Condensed

Matter Simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. 2018, 8 .

(32) Erba, A.; Maul, J.; Ferrabone, M.; Dovesi, R.; Rérat, M.; Carbonière, P. Anharmonic

Vibrational States of Solids from DFT Calculations. Part II: Implementation of the

VSCF and VCI Methods. J. Chem. Theory Comput. 2019, 15, 3766–3777.

(33) Erba, A.; Maul, J.; Ferrabone, M.; Carbonniére, P.; Rérat, M.; Dovesi, R. Anharmonic

Vibrational States of Solids from DFT Calculations. Part I: Description of the Potential

Energy Surface. J. Chem. Theory Comput. 2019, 15, 3755–3765.

(34) Carbonniére, P.; Erba, A.; Richter, F.; Dovesi, R.; Rérat, M. Calculation of Anharmonic

IR and Raman Intensities for Periodic Systems from DFT Calculations: Implementation

and Validation. J. Chem. Theory Comput. 2020, 16, 3343–3351.

(35) Maul, J.; Spoto, G.; Mino, L.; Erba, A. Elucidating the Structure and Dynamics of CO

ad-layers on MgO Surfaces. Phys. Chem. Chem. Phys. 2019, 21, 26279–26283.

(36) Cherubini, M.; Monacelli, L.; Mauri, F. The Microscopic Origin of the Anomalous

Isotopic Properties of Ice Relies on the Strong Quantum Anharmonic Regime of Atomic

Vibration. J. Chem. Phys. 2021, 155, 184502.

(37) Bergren, M. S.; Rice, S. A. An Improved Analysis of the OH Stretching Region of the

Vibrational Spectrum of Ice Ih. J. Chem. Phys. 1982, 77, 583–602.

24



(38) Sceats, M. G.; Rice, S. A. The Intramolecular Potential of Water Molecules Engaged

in Hydrogen Bonding from Analysis of the Overtone Spectrum of Ice I. J. Chem. Phys.

1979, 71, 973–982.

(39) Kapil, V.; Engel, E.; Rossi, M.; Ceriotti, M. Assessment of Approximate Methods for

Anharmonic Free Energies. J. Chem. Theory Comput. 2019, 15, 5845–5857.

(40) Herrero, C. P.; Ramírez, R. Path-Integral Simulation of Ice VII: Pressure and Temper-

ature Effects. Chem. Phys. 2015, 461, 125–136.

(41) Knuts, S.; Ojamäe, L.; Hermansson, K. An Ab Initio Study of the OH Stretching

Frequencies in Ice II, Ice VIII, and Ice IX. J. Chem. Phys. 1993, 99, 2917–2928.

(42) Engel, E. A.; Monserrat, B.; Needs, R. J. Anharmonic Nuclear Motion and the Relative

Stability of Hexagonal and Cubic ice. Phys. Rev. X 2015, 5, 021033.

(43) Burnham, C. J.; Reiter, G. F.; Mayers, J.; Abdul-Redah, T.; Reichert, H.; Dosch, H. On

the Origin of the Redshift of the OH Stretch in Ice Ih: Evidence from the Momentum

Distribution of the Protons and the Infrared Spectral Density. Phys. Chem. Chem.

Phys. 2006, 8, 3966–3977.

(44) Senesi, R.; Flammini, D.; Kolesnikov, A. I.; Murray, E. D.; Galli, G.; Andreani, C.

The Quantum Nature of the OH Stretching Mode in Ice and Water Probed by Neutron

Scattering Experiments. J. Chem. Phys. 2013, 139, 074504.

(45) Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct

Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100.

(46) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy

Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789.

(47) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent Molecular Orbital

25



Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72,

650–654.

(48) Frisch, M. J.; Pople, J. A. Self-Consistent Molecular Orbital Methods 25. Supplemen-

tary Functions for Gaussian Basis Sets. J. Chem. Phys. 1984, 80, 3265.

(49) Pascale, F.; Zicovich-Wilson, C. M.; Gejo, F. L.; Civalleri, B.; Orlando, R.; Dovesi, R.

The Calculation of the Vibrational Frequencies of Crystalline Compounds and its Im-

plementation in the CRYSTAL Code. J. Comput. Chem. 2004, 25, 888–897.

(50) Zicovich-Wilson, C. M.; Pascale, F.; Roetti, C.; Saunders, V. R.; Orlando, R.; Dovesi, R.

Calculation of the Vibration Frequencies of α-quartz: The Effect of Hamiltonian and

Basis Set. J. Comput. Chem. 2004, 25, 1873–1881.

(51) Maschio, L.; Kirtman, B.; Rérat, M.; Orlando, R.; Dovesi, R. Ab initio analytical Ra-

man Intensities for Periodic Systems through a Coupled Perturbed Hartree-Fock/Kohn-

Sham Method in an Atomic Orbital Basis. II. Validation and Comparison with Exper-

iments. J. Chem. Phys. 2013, 139, 164102.

(52) Maschio, L.; Kirtman, B.; Rérat, M.; Orlando, R.; Dovesi, R. Ab initio Analytical Ra-

man Intensities for Periodic Systems through a Coupled Perturbed Hartree-Fock/Kohn-

Sham Method in an Atomic Orbital Basis. I. Theory. J. Chem. Phys. 2013, 139, 164101.

(53) Banks, P.; Song, Z.; Ruggiero, M. Assessing the Performance of Density Functional

Theory Methods on the Prediction of Low-Frequency Vibrational Spectra. 2020,

(54) Erba, A.; Casassa, S.; Maschio, L.; Pisani, C. DFT and Local-MP2 Periodic Study of

the Structure and Stability of Two Proton Ordered Polymorphs of Ice. J. Phys. Chem.

B 2009, 113, 2347.

(55) Howe, R.; Whitworth, R. W. A Determination of the Crystal Structure of Ice XI. J.

Chem. Phys. 1989, 4450.

26



(56) Shigenari, T.; Abe, K. Vibrational Modes of Hydrogens in the Proton Ordered Phase

XI of Ice: Raman Spectra Above 400 cm−1. J. Chem. Phys. 2012, 174504.

(57) Erba, A.; Casassa, S.; Dovesi, R.; Maschio, L.; Pisani, C. Periodic Density Functional

Theory and Local-MP2 Study of the Librational Modes of Ice XI. J. Chem. Phys. 2009,

130, 074505.

(58) Banks, P. A.; Maul, J.; Mancini, M. T.; Whalley, A. C.; Erba, A.; Ruggiero, M. T.

Thermoelasticity in organic semiconductors determined with terahertz spectroscopy

and quantum quasi-harmonic simulations. J. Mater. Chem. C 2020, 8, 10917–10925.

(59) Hutereau, M.; Banks, P. A.; Slater, B.; Zeitler, J. A.; Bond, A. D.; Ruggiero, M. T.

Resolving Anharmonic Lattice Dynamics in Molecular Crystals with X-Ray Diffraction

and Terahertz Spectroscopy. Phys. Rev. Lett. 2020, 125, 103001.

(60) King, M. D.; Buchanan, W. D.; Korter, T. M. Investigating the Anharmonicity of Lat-

tice Vibrations in Water-Containing Molecular Crystals through the Terahertz Spec-

troscopy ofl-Serine Monohydrate. J. Phys. Chem. A 2010, 114, 9570–9578.

27


