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Abstract 

High-throughput experiments (HTE) enable fast exploration of 

advanced battery electrolytes over vast compositional spaces. 

Among the multiple properties considered for optimal 

electrolyte performance, the conductivity is critical. An analytical 

expression for ionic transport in electrolytes, accurate for 

practical compositions and operating conditions, would 

accelerate the process of i) co-optimizing conductivity alongside 

other desirable electrolyte properties, and ii) learning 

fundamental physical laws from data, which is one of the 

paramount goals of scientific big-data analytics. Here, we used 

symbolic regression with an HTE-acquired dataset of electrolyte 

conductivity and discovered a simple, accurate, consistent and 

generalizable surrogate expression. Notably, despite emerging 

from a purely statistical approach, the expression reflects 

functional aspects from established thermodynamic limiting 

laws, indicating our model is grounded on the fundamental 

physical mechanisms underpinning ionic transport. We prove 

the potential of using machine learning with HTE to find accurate 

and physically-sound models in complex systems without 

established physico-chemical theories. 

Introduction 

Non-aqueous aprotic formulations are state-of-the-art 

electrolytes for Li-ion batteries (LIBs) as they comply with the 

strict operation requirements for safety, life, reliability and 

performance. These electrolytes consist of a Li salt dissolved in a 

mixture of organic solvents, and complemented with 

performance-enhancing functional additives. Electrolyte 

formulations balance multiple and often competing properties, 

among which the ionic conductivity is arguably the most 

important.1–4 The choice of solvents, conducting salts and their 

proportion usually aims at achieving electrolytes with an 

optimum mix of low viscosity and high ion dissociation.1,5–7 

However, the conductivity is not the only electrolyte property to 

tailor: the electrochemical stability window, chemical 

compatibility with both electrodes, thermal and chemical 

stability, liquid range, toxicity and costs, are all important factors 

to consider.7–11 In this multi-objective optimization scenario, 

researchers in the field would greatly benefit from a predictive, 

thermodynamic model for electrolyte conductivity, enabling 

quick exploration of how a promising formulation would affect 

the electrolytes ionic conductivity without additional 

experiments. Such a model would ideally be denoted as a simple 

and universal closed-form expression; i.e., an equation with few 

algebraic terms, relating easily measurable variables with 

fundamental physical constants, and without fitting parameters. 

Despite significant progress in the thermodynamic description of 

ionic transport,12 such a “utopic” model only exists for highly 

dilute electrolytes. At infinite dilution, the conductivity is simply 

directly proportional to the ion concentration in solution c.13,14 

However, this model fails at the dilute domain (0 < c < 10-3 mol/L) 

since the conductivity depends additionally on a squared root 

term of the conducting salt concentration.15 Kohlrausch 

formulated these findings into an empirical law with an 

adjustable parameter,15,16 later addressed by Onsager by 

considering that ions are dragged not only by hydrodynamic 

effects, but also by electrophoretic and relaxation phenomena 

as in the Debye-Hückel theory. The Debye-Hückel-Onsager 

(DHO) theory effectively upgrades Kohlrausch’s law into a fully 

theoretical law, without adjustable parameters:17 
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where 𝜅0 is the limiting conductivity, directly proportional to c, 

and 𝑇, 𝜀 and 𝜂 the solution’s temperature, permittivity and 

viscosity, respectively. Despite the success of DHO theory on 

strong electrolytes, it fails at describing the concentrated (c > 1 

mol/L) and weak electrolyte formulations used in Li-ion 

batteries. In its place, researchers formulate expressions 

following two main approaches. Semi-empirical approaches 

extend non-electrolyte thermodynamic theories by including 

long-ranged ion-ion interactions from DHO theory.18,19 Instead, 

phenomenological approaches assume the conductivity to 

depend on conducting salt concentration and temperature via 

an arbitrarily-chosen functional expression (e.g. polynomial, 

exponential), expanded to enough terms to reach a good fit of 

experimental data;20–22 While these models might fit the data 

well, they are ill-posed to generalize and provide physical insight, 

given the arbitrary choice of functional expression and all the 

parameters that need to be adjusted for every new system. 

Alternatively, a new paradigm of electrolyte engineering 

employs machine learning run alongside HTE, capable of 

handling optimization in high dimensional spaces.23,24 However, 

these methods are usually not transferable, hence optimizing for 

other formulations requires performing new experiments; in 

addition, little can be learned from a scientific standpoint due to 

the black-box nature of the underlying process. 

In this work we propose an alternative approach –Symbolic 

Regression (SR)– to find an explainable and accurate model 

describing the transport of ions in non-aqueous electrolytes. In 

essence, SR simultaneously learns both adjustable parameters 



and the functional form relating electrolyte conductivity with its 

formulation. We make use of a HTE setup25 to collect thousands 

of conductivity measurements of LiPF6-based electrolytes with 

ethylene carbonate (EC), propylene carbonate (PC) and ethyl 

methyl carbonate (EMC) as solvents at different temperatures. 

For each electrolyte formulation the conductivity was measured 

in multiple individual samples in order to obtain mean 

conductivities and standard deviations. The original 3626 

individual measurements are thus aggregated into 859 data 

points. With a simple SR approach, we train multiple candidate 

expressions. We show that a particular expression emerges as a 

clear candidate, complying with numerous strict and often 

competing criteria: i) prediction accuracy, ii) expression 

simplicity, and iii) model consistency.  

In our SR approach, we approximate the conductivity with a 

generalized linear model, not on the original predictors, but on 

non-linear transformations of these (i.e. candidate features). 

Formally: 

𝜅 ≈  ∑ 𝛽𝑘𝚯𝒌(𝑇, 𝑐, 𝑟)
𝑘

 Eqn. 2 

where 𝛽𝑘  are the k-th coefficient and 𝚯𝒌 the k-th transformation 

on the predictors: temperature 𝑇, conducting salt concentration 

𝑐 and PC:EC molar ratio 𝑟. The conductivity is assumed to depend 

not on all possible candidate features, but on a much-reduced 

set of these; i.e., the solution of Eqn. 2 is sparse. Figure 1 

illustrates the methodology, split into feature generation and 

selection steps. Briefly, the training process involves defining a 

transformation set (e.g. inverse, logarithms, exponentials), then 

applying it to the initial predictors to generate a library of 

candidate features, a few of which are selected to form a 

candidate expression.  

The discovered expressions are not unique: candidate features 

might combine in multiple ways to result in similarly accurate 

expressions. Consequently, instead of using all 515 samples on 

the training set, we train instead on multiple, random 

subsamples of 50, 100, 250 and 400 data points in order to 

evaluate whether a discovered expression is consistent across a 

total of 20 independent training sessions. We use the validation 

set to evaluate the performance of the discovered expressions 

and compare them to four benchmark models (Supplementary 

Information, Table 4). The first benchmark uses the three initial 

predictors as the simplest approximation. The second uses 3rd-

order polynomial expansions of the initial predictors, as in 

phenomenological models.26 The third assumes exponential 

transformations as in Arrhenius-based models. The fourth uses 

exponential transformations on the 3rd-order polynomial 

expansion of the initial predictors, such as in the extended 

Castel-Amis model.6 

During the evaluation, we search for an expression being not 

only i) accurate, i.e., yielding a low mean squared error (MSE), 

but also ii) parsimonious, quantified as the number of terms of 

the expression, and iii) stable, represented by the number of 

times the expression repeats across training sessions. Figure 2a 

presents the accuracy vs. complexity trade-off from the 

expressions found. Each data point represents an expression, 

Figure 2. Accuracy, parsimony and consistency of discovered 
expressions throughout multiple training sessions. All expressions 
were trained with the constrain k0 = 0. 

Figure 1. Representation of the symbolic regression method. The 
conductivity k is represented as a linear model of non-linear 
transformations of the original predictors: temperature T, 
conducting salt concentration c, and PC:EC molar ratio r. Based 
on multiple criteria, only few of the thousands of 
transformations are selected and used to build an expression. 



whose color references its parent transformation set. As 

expected, larger expressions fit the data better, however, at the 

expense of increased complexity; this is the case of the 

expressions originating from exponential and logarithmic 

transformations (MSE < 2 but 10+ terms). Interestingly, the 

expressions populating the Pareto-frontier of the figure 

originate from transformation sets including square-root 

operations; i.e., they offer the best compromise between MSE 

and the number of terms.  

Note that most expressions only appear once, highlighting these 

to be highly sensitive to the training subsample and that there is 

no unique solution. Figure 2b shows the most frequent 

expressions across the training sessions, where expressions with 

square-root operations are highlighted in green. Unlike most 

expressions, the model: 

𝜅 =  𝛽1𝑐 +  𝛽2𝑇 + 𝛽3𝑐5/2𝑟1/2 + 𝛽4𝑐1/4𝑇5/2 
 

Eqn. 3 

is by far the most frequent and was discovered 15 times out of 

20 training sessions. We, therefore, select this expression as it 

clearly stands out from the other competing models, for being 

not only consistent but also parsimonious (four terms), 

comparatively accurate in the training set (MSE < 0.75), and 

generalizable, as evidenced by a good accuracy in the validation 

set. Table 1 summarizes the coefficients and performance 

metrics of the selected expression Eqn. 3. 

Table 1. Coefficients of Eqn. 3 and associated performance 

metrics after training on the full training set of 515 samples.  

Attribute Value 

𝛽1 - 5.11 

𝛽2 - 0.040 

𝛽3 -0.35 

𝛽4 2.73x10-4 

Training MSE 1.08 

Training R2 0.92 

Validation MSE 1.22 

Validation R2 0.90 

 

Constraining models might be beneficial when selecting 

promising surrogate models. To illustrate why, we repeated the 

20 training sessions with the same transformation sets, this time 

allowing the intercept to vary freely. The corresponding training 

errors and stability histograms are shown in Supplementary 

Figures 4 and 5. Expectedly, removing the intercept constrain 

results in slightly improved accuracy but significantly aggravates 

model stability. Implementing domain-knowledge constraints is 

clearly an effective filter to discover consistent and physically-

sound expressions. However, constrained models have 

significantly higher data requirements. Figure S6 shows the 

learning curves of the discovered expression, retrained on 

subsamples of different sizes with and without the intercept 

constraint. The non-constrained expression converges to 

optimal accuracy already with 100 samples; in contrast, the 

constrained model fails at almost all samples sizes and only 

approaches optimal accuracy when using all 515 training 

samples. Such data requirements need to be weighed when 

modelling the often-small datasets available from experiments. 

Figure 3a compares the accuracy of the selected constrained 

expression on the validation set, relative to the measurement 

dispersion and along with benchmark models. We use the root 

mean squared error (rMSE) to describe the prediction accuracy 

in the same units [mS/cm] as the conductivity measurements. As 

expected, the simpler benchmarks such as Linear and Simple 

Arrhenius models are less accurate. Instead, the more complex 

models (Polynomial and Arrhenius Polynomial) are prone to 

overfitting, as their prediction errors are smaller than a non-

negligible fraction of measurement dispersion values. Notably, 

the selected model stands in the middle with a validation-set 

rMSE of 1.1 mS/cm, indicating that it is accurate up to the 

measurement noise and so it does not overfit the dataset. At first 

glance, the selected model seems to yield only a minor 

improvement (0.3 mS/cm) compared to the basic linear model; 

Figure 3: a. Root mean square error of selected model (green) 
and benchmarks (red) on the validation set, compared to 
measurement dispersion (grey). b. Fit of the selected model on 
the withheld (validation and test) set at r=1.0. 



however, the square-root dependence in the selected model 

reproduces the curvature and maxima in the data and ii) by 

having no intercept, it complies with the physical constraint of 

no conductivity at c, T, r = 0. 

Figure 3b illustrates that the selected model generally fits well 

the data not used in the training (i.e., validation and testing sets). 

However, the fit generally underestimates the measurements. 

The same expression trained with an intercept (Figure S7) fits the 

withheld data without such bias, indicating that the 

underestimation in Figure 3b is a result of imposing the 

physically-motivated y0 = 0 constraint. In addition, the model is 

not flexible enough to describe the conductivities measured 

at -30 °C and concentrations >1 mol/kg; in these extreme 

regimes the high salt concentration and low temperature result 

in a highly viscous medium that might promote a non-vehicular 

type of ionic transport.27  

However, we highlight that in most of the experimental range 

the fit reproduces the concentration- and temperature-

dependent conductivity maxima observed in the data and in 

previous studies, which is a key attribute for implementing the 

discovered model as part of multi-target optimization and/or 

active learning frameworks.24 

Assigning a physical meaning to the discovered expression is not 

straightforward. For one, any comparison to the 

thermodynamically-derived DHO law would require to explicitly 

account for the solution’s viscosity and dielectric constant, 

measurements that are not available in the dataset. Second, 

there are no constraints to avoid unphysical values, like the 

negative conductivities at sub-zero temperatures and high 

conducting salt concentrations (Figure 3b). Third, the solution to 

our symbolic regression approach is generally not unique, i.e., 

there are multiple expressions equally accurate to fit the 

dataset. Despite these limitations, we observe that expressions 

sharing square-root transformations achieve the best 

compromise between simplicity and accuracy. Therefore, we 

believe that our method is learning square-root trends inherent 

to the data manifold, which indicates that some functional 

aspects of the DHO law – i.e. its square-root trends on 

temperature and concentration – are still valid to describe 

electrolyte conductivity in concentrated formulations.  

Physical insights can be drawn not only from the expression itself 

but also from its predictions. Figure 4 illustrates the conductivity 

trends from our selected model within the space of electrolyte 

formulations used for the training. As expected, at higher 

temperatures, the conductivity increases and the conductivity 

maxima shift towards higher salt concentrations (0.74 mol/kg at 

-30 °C to 1.70 mol/kg at 60 °C, see Fig. 3b). However, the role of 

the cyclic carbonate is subtler. Note first that all conductivities 

peak when the electrolyte formulation is EC-pure (PC:EC ratio = 

0). Second, the tails along the salt concentration axis elongate at 

higher concentrations as the formulations become increasingly 

EC-pure. From a fundamental standpoint, conductivity depends 

on a compromise between the ionic mobility, mainly influenced 

by viscosity, and the number of charge carriers available for 

migration, mainly controlled by the electrolyte’s dielectric 

constant (c.f. see Bjerrums criterion1 for ionic association).5,6 As 

EC has a higher dielectric constant compared to PC,28 EC-pure 

solutions are more effective at preventing ion association and so 

enhance electrolyte conductivity. This effect is especially 

pronounced at high conducting salt concentrations, as indicated 

in the tails in Figure 4, where ionic association becomes a critical 

limiting factor for ion transport in the electrolyte.5,29 Such EC-

Figure 4. Contour maps of electrolyte conductivity versus PC:EC 
ratio and conducting salt concentration, as predicted by our 
selected and trained model (Eqn.3) at a. low and b. high 
operating temperatures.  



driven improvement of conductivity, which has been observed 

experimentally,30 is not evident neither in the correlation maps 

in Supplementary Figure 2 nor the pair-plots Supplementary 

Figure 3. Despite this, our SR approach manages to capture these 

subtle effects that align with our current understanding of the 

interplay between the solvent’s dielectric properties and ionic 

migration. 

At this point, we emphasize we have only implemented two 

domain-knowledge decisions – include square-root 

transformations and constrain the intercept to zero – on an 

otherwise purely statistical approach. Even in these 

circumstances, we observe the emergence of an expression 

clearly outstanding from competing models, for being accurate 

without overfitting, simple, consistent, with a square-root 

functional structure resembling the DHO law, and agreeing with 

our understanding of ionic migration. In other words, our 

expression is not only an appropriate surrogate model from a 

machine-learning standpoint but also seems grounded on the 

physical-chemical mechanisms underpinning ion transport in 

electrolytes. Our work opens multiple avenues to pursue further 

the data-driven discovery of accurate surrogate models capable 

of bridging the existing gap19 in the understanding of 

concentrated electrolyte formulations. To start with, atomistic 

descriptors can be incorporated in order to generalize to solvent 

mixtures other than PC/EC/EMC and conducting salt chemistries 

beyond conventional Li-ion technology.21 In addition, using other 

promising SR algorithms31 and implementing domain-knowledge 

constraints in the feature selection step32 could alleviate the 

issue with expression consistency and yield physically-sound 

expressions; i.e. rigorous to known boundary conditions (e.g. 

𝜅(𝑐 = 0) = 0) and to asymptotic behavior on key limits (e.g. 

lim
𝑐→0

𝜅 ∝ 𝑐). These constraints will have to be carefully balanced, 

given our observations of the data-intensive nature of 

constrained models.  

In summary, we apply symbolic regression as a data-driven 

method to learn the effects of temperature, conducting salt 

concentration and solvent ratio on the conductivity of a 

concentrated electrolyte. We use a dataset of 859 experimental 

measurements on a LiPF6 in EC, PC and EMC electrolyte at 

different temperatures, conducting salt concentrations and 

EC-to-PC ratios within the practical ranges of operation of Li-

based battery electrolytes. Our approach generates thousands 

of derived features from the initial predictors using a set of non-

linear transformations. Few of the derived features are then 

selected using cross-validated Lasso regression to discover 

candidate expressions, which are then compared in terms of 

accuracy, simplicity, and consistency. We find that expressions 

in the Pareto-frontier share a square-root form, which we 

believe reflects an underlying data manifold resembling the 

Debye-Hückel-Onsager equation. Out of these expressions, we 

singled out a 4-term expression for being consistent, accurate 

and simple. The discovered expression does not overfit the data 

fits the withheld set well, and reproduces the conductivity 

behavior expected from similar theoretical and experimental 

studies. The discovered expression is a promising surrogate 

model to be used in multi-variable electrolyte optimization. 

More broadly, the presented methodology can be used to find 

surrogate expressions to physicochemical systems where no 

closed-form solution exists. Implementing phenomenological 

constraints in the feature selection step, keeping in mind the 

inherently high data requirements, would significantly support 

the search for physically-sound surrogate expressions using 

symbolic regression. 
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repository: https://github.com/BIG-MAP/SR-electrolytes. 

Data availability. The dataset is openly available as a 

supplementary file. The predictions from the trained model can 
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