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ABSTRACT: An optimized catalytic protocol for enantio- and diastereoselective reduction of racemic α-CF3, α-SCF3 and α-
OCF3 aryl ketones is described. The reaction involves a dynamic kinetic resolution (DKR) based on ruthenium catalyzed 
Noyori–Ikariya asymmetric transfer hydrogenation for simultaneous construction of two contiguous stereogenic centers. A 
range of previously inaccessible fluorinated secondary alcohols was prepared in excellent stereomeric purity (up to above 
99.9% ee, up to above 99.9:0.1 dr) and in high isolated yield (up to 99%). The origin of DKR (exceptional stereoselectivity and 
racemization mechanism) is rationalized by density functional theory calculations. Pharmaceutically relevant further trans-
formations of the products are demonstrated including incorporation into heat shock protein 90 inhibitor with in vitro anti-
cancer activity. Moreover, needle-shaped crystals of representative stereopure products are mechanically responsive: either 
elastically or plastically flexible, opening the door to novel class of functional materials based on chiral molecular crystals.

Fluorine atom profoundly influences properties of bioac-
tive molecules on multiple levels, which reflects in half of 
blockbuster drugs and one third of newly Food and Drug 
Administration-approved drugs being fluoro-pharmaceuti-
cals.1 Organofluorine chemistry is essentially man-made as 
only a dozen fluorinated natural products has been identi-
fied on Earth.2 The consideration of new fluorinated chemo-
types in drug development therefore inevitably follows the 
availability of the synthetic methods to access the relevant 
moieties.  Outstanding progress was achieved in the prepa-
ration of a plethora of synthetic fluorine compounds.3 A less 
developed area being highly challenging while very reward-
ing is the asymmetric synthesis of stereogenic fluorinated 
molecules.4 In this context, we embarked on the asymmetric 
construction of chiral carbon atoms featuring a fluorinated 
motif with emphasis on the trifluoromethyl group C*–CF3 
and its heteroatomic homologues C*–SCF3 and C*–OCF3. 

In particular, β-CF3-substituted alcohols and amines are 
emerging motifs in medicinal chemistry (Figure 1). For ex-
ample, Compound I as a mixture of stereomers exhibits an-
tibacterial activity,5 and racemic Compound II is an inhibi-
tor of WD repeat-containing protein 5, which is over-ex-
pressed in some types of cancer.6 Stereochemically defined 
trifluoromethylated omarigliptin exhibits better pharmaco-
kinetic and pharmacodynamic profiles compared to the par-
ent drug molecule, and is clinically evaluated as a super 
long-acting antidiabetic.7 

 

Figure 1. Bioactive compounds with β-CF3 alcohol or amine 
motifs. 

Given the potential of stereogenic β-CF3-substituted alco-
hols and amines for medicinal chemistry applications, and 
eager to use them in our hit-to-lead endeavors, we were sur-
prised to find no preceding literature reports on asymmet-
ric synthesis of the model 2-CF3-1-indanol 2a, its amino an-
alog nor their higher homologues. Non-asymmetric ap-
proaches towards such cyclic benzo-fused β-trifluorome-
thyl alcohols or amines received significant attention in the 
past five years, and are based on photoredox, electrochem-
ical or transition metal-catalyzed oxy-trifluoromethylation8 
or amino-trifluoromethylation9 of the corresponding ole-
fins. There is only a handful of literature reports on stere-
oselective synthesis of β-trifluoromethyl secondary alcohol 
motif, based on diastereoselective hydrogenation of 2-CF3 
allylic alcohols10 or NaBH4 reduction of stereopure α-CF3 ke-
tone,11 or diastereoselective aldol or Reformatsky reactions 
using a chiral auxiliary,12 but to the best of our knowledge 
no catalytic enantioselective access to this class of mole-
cules has ever been reported. 
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Dynamic kinetic resolution based on Noyori–Ikariya 
transfer hydrogenation (DKR-ATH) seemed like a fitting 
synthetic strategy for addressing the challenging simultane-
ous control of both chiral centers of the target compound 
class.13 DKR-ATH is a robust method for stereoconvergent 
access to enantiomerically pure secondary alcohols with 
multiple contiguous chiral centers starting from the readily 
available racemic ketones,14 including fluorinated exam-
ples.15 Considering broad availability of the Noyori–Ikariya 
type ruthenium complexes (Table 1), and their relative sta-
bility towards air and moisture, this would offer not only 
conceptually new but also highly practical access to stereo-
pure β-CF3-substituted alcohols and their analogs. 

Table 1. Catalyst and solvent screening for Ru(II)-catalyzed 
DKR-ATH of 1a. a 

 

 Ru(II) cat. F/A Cosolvent Time 1a:2a:3a:4a 

1 (R,R)-C1 
 

3:2 PhCl 3 h 0:73:19:8 

2 (S,S)-C2 3:2 PhCl 3 h 0:75:6:19 

3 (S,S)-C3 
 

3:2 PhCl 3 h 0:75:19:6 

4 (S,S)-C4 3:2 PhCl 3 h 4:55:35:6 

5 (3R,1’S)-C5 3:2 PhCl 3 h 0:75:0:25 

6 (S,S)-C2 3:2 - 
3 h 

18 h 

5:24:71:0 

0:25:60:16 

7 (S,S)-C2 5:2 - 
3 h 

18 h 

21:74:5:0 

5:75:20:0 

8 (S,S)-C2 5:2 PhCl 3 h 0:99:0:1 

9 (S,S)-C2 5:2 DMF 3 h 0:97:0:3 

10 (S,S)-C2 5:2 dioxane 3 h 0:98:0:2 

11 (S,S)-C2 5:2 1,2-DCE 3 h 0:98:0:2 

 

 

aDKR-ATH of 1a (50 mg, 0.25 mmol) was carried out using 
Ru(II) cat. (1 mol%), HCO2H/Et3N (0.25 mL) and cosolvent (0.5 
mL) at 40 °C. The product ratio was determined by NMR analysis 
of reaction mixture aliquots, and the ratio of 2a stereomers 
(cis/trans >99:1; >99% ee in all cases) was determined after iso-
lation by 19F NMR and HPLC analysis using chiral stationary 
phase. F/A equals HCO2H/Et3N. 

A model racemic ketone 2-CF3-1-indanone 1a was pre-
pared in one step by triflic acid mediated annulation of ben-
zene with 2-CF3-acrylic acid.16 It was subjected to DKR-ATH 
using commonly used formic acid/triethylamine 3:2 mix-
ture as a source of hydrogen and chlorobenzene as a co-sol-
vent, and five representative Noyori–Ikariya type Ru(II) cat-
alysts were tested (Table 1, runs 1–5). C1 is the archetypical 
Noyori catalyst,17 and the rest are the so-called tethered cat-
alysts, which proved to be superior for the reduction of 
structurally complex ketones.18 Chronologically, C2 was de-
veloped by Wills et al.,19 followed by oxy-tethered catalyst 

C3 by Ikariya et al.,20 sulfamoyl-DPEN-cored C4,21 and ben-
zosultam-cored C5 by Mohar et al.22 The reactions using 1 
mol% of catalysts C1–C5 all reached >95% conversion 
within 3 h (Table 1, entries 1–5). Delightfully, all the cata-
lysts yielded the product 2a with excellent stereoselectiv-
ity23 (cis/trans > 99:1 and >99% ee) as determined by 19F 
NMR and chiral HPLC, respectively. The absolute configura-
tion of 2a being (S,S) was determined by single-crystal X-
ray diffraction (SCXRD) analysis of a product from run with 
(S,S)-C2. Disappointedly, significant amount of by-product, 
indanone 3a and/or indanol 4a (up to 41% total), was also 
detected in the reaction mixtures, indicating that an unex-
pected detrifluoromethylation took place during DKR-ATH. 
The catalysts performed differently regarding side product 
formation and C2 was chosen for further studies because of 
its wide availability and favorable reaction kinetics (Table 
S1).  Control experiments indicated that trifluoromethyl 
moiety is eliminated from the ketone 1a rather than the 
product cis-2a, that it is not a ruthenium-catalyzed process, 
and involves formation of Et3N/HF adduct (see SI). To miti-
gate fluoride elimination, the use of HCO2H/Et3N in 5:2 mo-
lar ratio with the most efficient (S,S)-C2 was attempted. Per-
forming the DKR-ATH in neat HCO2H/Et3N 3:2 or 5:2 (Table 
1, entries 6 and 7) indeed revealed that by increasing the 
relative amount of formic acid, detrifluoromethylation level 
dramatically decreases while excellent stereoselectivities 
are still obtained. Further solvent screening revealed that 
the use of any cosolvent together with HCO2H/Et3N 5:2 was 
beneficial for the reaction yield as less than 3% of the side 
products were observed in chlorobenzene, DMF, 1,4-diox-
ane or 1,2-dichloroethane (Table 1, entries 8–11). The first 
one was deemed optimal with only 1 mol% of 1-indanol ac-
companying the target product 2a. 

Computational modeling was further performed to col-
laborate high level of stereoselectivities and realize the pos-
sible mechanism of 1a-racemization being the core process 
of DKR. The reaction between 1a and the active form of 
precatalyst (S,S)-C2 was studied by M06-2X-
D3/SMD(chlorobenzene)/def2-qzvp//def2-svp method. 
Four diastereometic transition states are possible (Figure 
2). For the RRu,λ-catalyst structural arrangement,24 ob-
served in the solid-state of (S,S)-C2,19 computations predict 
the ratio of the reaction rates leading to each stereoisomer 
as ~ 109 (S,S) : 1800 (R,R) : 400 (S,R) : 1 (R, S).25 This trans-
forms into the cis/trans ratio of 2.5 × 106 and the enantiose-
lectivity of 99.9996% for the cis product.26 The discrepancy 
between experimentally and theoretically predicted % ee is 
likely due to the additional mechanisms of the generation of 
chirality.27a However, the calculation reproduces and points 
to high-level of stereodiscrimination. Two spatial regions of 
the catalyst simultaneously control the final stereoselectiv-
ity: the region of the tethered η6-arene ligand and the region 
of the SO2 moiety.27 Dynamic equilibrium and interplay of 
attraction and repulsion in each region through various 
noncovalent interactions lead to stabilization/destabiliza-
tion of the corresponding stereoselectivity determining 
transition state. The presence of α-CF3 functionality is cru-
cial for exceptionally high stereoselectivity. As a compari-
son, DKR-ATH of 2-methyl-1-indanone using C3 yielded the 
corresponding alcohol with a lower cis-selectivity (cis/trans 
= 98:2, 98% ee),14d whereas DKR-ATH of 2-acetamido-1-in-
danone (hydrogen bond donor α-substituent) using C5 was 
even trans-selective (cis/trans = 9:91).22c 
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Figure 2. Optimized transition state geometries en route to the 
four stereomeric products 2a taking place on RRu,λ-structural 
arrangement of (S,S)-C2 catalyst active form (see text). The rel-
ative free energies are given in kcal∙mol‒1. Some attractive and 
repulsive interactions are highlighted by green and red sym-
bols, respectively. Non-crytical H-atoms are omitted for clarity. 

A 3:2 mixture of HCO2H/Et3N is a typical choice for DKR 
with Noyori–Ikariya catalysts,28 whereas 5:2 mixture is usu-
ally used for ATH of simple ketones and imines.29 Although 
generally not explained, Et3N or Et3N/HCO2H mixture might 
serve as a catalyst for the DKR-enabling rapid in situ race-
mization of the α-substituted ketones, consistent with the 
3:2 choice.30  Indeed, computations point that direct non-
catalyzed epimerization of 1a is energetically prohibitive 
(Figure S1, top). On the contrary, 1a-racemization catalyzed 
by Et3N (“enolate-anion” pathway) and concerted 
Et3N/HCO2H process (“enol” pathway) is energetically plau-
sible with the preference to the former (Figure S1, middle 
and bottom). 

With optimal conditions in hand, we turned our attention 
to DKR-ATH of various α-trifluoromethyl substituted 
benzo-fused cyclic ketones 1b–1m (Table 2). These were 
prepared as described for 1a,16 via radical desulfur-frag-
mentation and reconstruction of enol triflates,31 and radical 
trifluoromethylation of the corresponding olefin32 or enol 
acetate,33 respectively (see SI). They were all converted to 
the corresponding stereopure alcohols 2 using the opti-
mized reaction conditions (1 mol% of C2 in HCO2H/Et3N 5:2 
and chlorobenzene at 40 °C) with reaction times to reach 
full conversion between 1 and 6 h. Their (S,S)-absolute con-
figuration was assigned based on SCXRD analysis of indan-
cored 2a, 2d, and 2f, and tetralin-cored 2k. The values of 
cis/trans ratio and enantiomeric excess (ee) in Table 2 are 
given as “>99” not to oversell the results but the other three 
possible stereoisomers were in fact present below the limit 
of detection for most cases,34 and the ee of the benzosuberol 
2m was determined to be 99.2%. The tetramethyl substi-
tuted indanone 1c required a higher catalyst loading (5 
mol%) to reach full conversion. The reaction yield was af-
fected by detrifluoromethylaton which was generally more 
expressed during DKR-ATH of indan-cored ketones com-
paring to their six-membered analogs. 7-Acetamido analog 
2h was formed in only 37% NMR yield with fast decompo-
sition coupled to fast reduction in HCO2H/Et3N 3:2, which 
still outperformed the 5:2 ratio with 25% NMR yield and full 
conversion only after 18 h. The decomposition products 3 
and 4 were nevertheless readily removable by flash 

chromatography. The tetralin derivatives 1i–1k were de-
void of detrifluoromethylation and the corresponding ste-
reopure products 2 were isolated directly after extraction. 

Table 2. Scope of the DKR-ATH.a 

 

 

 

 

 

 

aUnless otherwise specified, the reactions were carried out us-
ing (S,S)-C2 (1 mol%) in HCO2H/Et3N 5:2 and chlorobenzene at 
40 °C. bNMR yield based on integration of 2 relative to 1, 3 and 4. 
Isolated yields after extraction and optional column chromatog-
raphy were 1–15% lower. c5 mol% of (S,S)-C2 used. dHCO2H/Et3N 
3:2 used. 

The method was then extended to the synthesis of stere-
opure 2-SCF3 and 2-OCF3 carbinols 2n–2p, where no side 
reactions were observed in either HCO2H/Et3N ratio. Stere-
oselectivities for both trifluoromethylthioethers 2n and 2o 
were determined to be cis/trans = 99.9:0.1 and 99.8% ee by 
19F NMR and chiral GC, respectively, which gives an estimate 
of the detection limit. The starting 2-SCF3 ketones 1n and 
1o were prepared by means of Billard’s reagent under 
acidic conditions from the corresponding bare ketones.35 2-
Trifluoromethoxy-1-indanol 2p was obtained with some-
what lower stereopurity (cis/trans = 99:1, 96% ee) with the 
same sense of enantioselectivity (SCXRD analysis); its ke-
tone precursor 1p was accessed via silver mediated 

0.0

8.7

7.8

12.2
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oxidative trifluoromethylation of 2-hydroxy-1-indanone.36 
Pushing it further, the linear analog 1q was successfully re-
duced within 7 h using the same standard conditions deliv-
ering the product 2q as a 3:1 mixture of anti and syn dia-
stereomer with 97.4% and 90.4% ee, respectively. The re-
duction of 1-SCF3-2-indanone 1r to the corresponding alco-
hol 2r was unfortunately not highly enantioselective (45% 
ee) although a 95:5 cis/trans ratio was achieved. 

From medicinal chemistry point of view, the stereopure 
products 2 represent hitherto synthetically inaccessible 
building blocks featuring intrinsic non-planarity, potential 
for specific interactions with the protein binding sites, and 
several growth vectors.37 Selected stereopure products 2 
were thus prepared on 1 mmol scale, and relevant further 
synthetic transformations were demonstrated (Scheme 1). 
2g was transformed to trans-configured 5 via iron-cata-
lyzed diastereoselective Friedel-Crafts benzylation of 2-
chloroanisole.38 This hydroxy-substituted 1-arylindan motif 
is characteristic of resveratrol dimer natural products.39 2o 
was converted to azide 6 (trans/cis = 92:8) via nucleophilic 
substitution (SN2) of the corresponding mesylate ester. It 
was further reduced to the amine 7 which was isolated as a 
single stereomer after chromatography. 2i was O-alkylated 
to get stereopure clickable building block 8. 2d was con-
verted to biaryl 9 via Suzuki coupling reaction, illustrating 
that unprotected 2-CF3-carbinols are compatible with palla-
dium catalysis. And finally, stereopure 2a and 2c were re-
oxidized using pyridinium chlorochromate to get enantio-
enriched 1a and 1c with 57% and 92% ee, respectively. To 
showcase direct applicability of the developed synthetic 
methods in a medicinal chemistry setting, alkyne 8 was in-
corporated in 10 that represents a novel structural class of 
heat shock protein 90 (Hsp90) inhibitors. Compound 10 
was designed using molecular dynamics-derived pharma-
cophore model (Figure S2).40 It was shown to inhibit Hsp90 
in luciferase refolding assay and display antiproliferative 
activity in SkBr3 breast cancer cell line (IC50 = 51 ± 2 μM). 

Moreover, we were pleased to find out that some of the 
novel enantiopure compounds prepared by our method 
crystallize as needle-shaped crystals which are elastically 
(2a, 2d, 2p, 4d) or plastically flexible (2o) (Figure 3, and SI). 
Mechanically responsive molecular crystals are being rec-
ognized as an unexplored platform for applications ranging 
from adaptive systems and actuators to biocompatible de-
vices and all-organic soft robots.41 The crystal structures of  
2a, 2d, 2o, 2p and 4d exhibit some of the same features that 
were identified in other crystals with elastic42 or plastic de-
formation behavior.43 In particular, a short crystal axis (~5 
Å), anisotropic packing, corrugated crystal packing, and a 
prominent intermolecular interaction being highly direc-
tional (i.e., hydrogen-bonded chains parallel to the short a-
crystallographic axis in structures with P212121 symmetry 
and parallel to the short b-crystallographic axis in com-
pounds crystallizing in P21 space group) with much weaker 
interactions in perpendicular directions. The slippage of 
molecular layers lined with trifluoromethyl groups has 
been established to be the mechanism of the observed plas-
tic deformation.43c In our case, chiral OH and indan scaffold 
clearly also contribute to mechanic responsiveness as detri-
fluoromethylated bromoindanol 4d was also to some de-
gree elastically flexible.44 For plastically flexible 2o, two pol-
ymorphs (RT P21, and 100 K P212121) were identified.  

Scheme 1. Further synthetic transformations of stereopure 
DKR-ATH products 2. 

 

 

Figure 3. a) Three-point bending experiment with elastically 
flexible needle-shaped crystal of 2p. b) Crystal packing of 2p, 
view along c axis. c) Bent plastically flexible crystal of 2o. d) 
Crystal packing of 2o, view along b axis. 

In conclusion, we have successfully developed a highly ef-
ficient dynamic kinetic resolution strategy for the Noyori-
Ikariya asymmetric transfer hydrogenation of racemic α-
CF3, α-SCF3 and α-OCF3 aryl ketones with excellent stereose-
lectivities (up to above 99.9% ee, up to above 99.9:0.1 dr). 
The origin of DKR (in situ epimerization of the ketone sub-
strate, and stereoselectivity) were investigated by DFT cal-
culations. Applicability in the field of medicinal chemistry 
was demonstrated by several further transformations of the 
stereopure products including incorporation into in vitro 
anti-cancer compound. A new class of homochiral small or-
ganic molecules, which crystalize as mechanically respon-
sive single-component crystals, was identified. The pre-
sented synthetic methodology opens the door to new chiral 
fluorinated bioactive compounds, and to material science 
applications based on adaptive chiral molecular crystals. 
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