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Abstract

Cluster expansion (CE) is a powerful theoretical tool to study the configuration-dependent

properties of substitutionally disordered systems. Typically, a CE model is built by fitting a

few tens or hundreds of target quantities calculated by first-principles approaches. To validate

the reliability of the model, a convergence test of cross-validation (CV) score to the training

set size is commonly conducted to verify the sufficiency of training data. However, such

test only confirms the convergence of the predictive capability of the CE model within the

training set and it is unknown whether the convergence of the CV score would lead to robust

thermodynamic simulation results such as order-disorder phase transition temperature Tc. In

this work, using carbon defective MoC1−x as a model system and aided by the machine-

learning force field technique, a training data pool with about 13000 configurations has been

efficiently obtained and used to generate different training sets of the same size randomly.
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By conducting parallel Monte Carlo simulations with the CE models trained with different

randomly selected training set, the uncertainty in calculated Tc can be evaluated at different

training set size. It is found that the training set size that is sufficient for the CV score to

converge still leads to a significant uncertainty in the predicted Tc, and that the latter can be

considerably reduced by enlarging the training set to that of a few thousand configurations.

This work highlights the importance of considering large training set for building the optimal

CE model that can achieve robust statistical modeling results, and the facility provided by the

machine-learning force field approach to efficiently produce adequate training data.

1 Introduction

Cluster expansion (CE)1 is a classic method widely used to study the configuration-dependent

properties of alloyed systems.2–5 The essence of the CE method is to represent the target configuration-

dependent property as an expansion of cluster functions with the effective cluster interactions

(ECIs) as the coefficients. The representation is in principle exact if all possible clusters are consid-

ered, while appropriate truncation6–8 into a finite cluster set is necessary in practice. In this work

we are mainly concerned with the total energy of a given occupation configuration in its relaxed

structure. Applications of the CE method to other properties, such as the band gap,9,10 ion diffu-

sion barrier,11 tensor properties,12 and configurational electronic entropy,13 have also been actively

explored. With a selected set of clusters, ECIs are usually determined with the Connolly-Williams

structure inversion method14 by fitting the energies of tens or hundreds of different configurations

calculated by first-principles methods. Once validated for its accuracy, the CE model can be used

for efficient search of ground state configurations, characterizing ordering behaviors at finite tem-

perature and establishing the phase diagram of alloyed systems.2

Although conceptually well established and practically widely used, the CE method, especially

regarding what is the optimal strategy to build CE models, has continuously attracted a lot of

interest in the recent decades.6–8,15–28 The main challenge is to build an accurate (unbiased) and

robust (with low variance) CE model based on a limited number of training data obtained from
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computationally demanding first-principles calculations. The cross-validation (CV) technique is

widely used for building CE models,6 in which the whole training data are divided into groups

with each group used for testing in turn and the remaining data for training, and one obtains a

quantitative measurement of the predictive accuracy of a given CE model, the so-called CV score.

For a given set of training data, minimizing the CV score with respect to different cluster selection

can usually lead to accurate CE models without suffering from the overfitting problem. One can

also validate the sufficiency of the training data by checking the convergence of the CV score as a

function of the training set size. This CV-based strategy suffers from the two major difficulties: 1)

the minimization of the CV score over all possible selections of clusters is an NP -hard problem,20

and 2) the CV-score optimized CE model depends quite sensitively on the training set selection. To

overcome the first difficulty, various techniques have been proposed, such as hierarchical cluster

selection,5,6 genetic algorithm,8,15 compressive sensing,20 and Bayesian inference.18,21 There have

been also several different schema to address the training set selection issue, some emphasizing

the importance of including ground state structures,6,29 and others emphasizing the importance of

covering different regions of the configuration space.17,30

We note that a large part of the difficulties of the CE method that many methodological develop-

ments have tried to tackle can be attributed to the limited number of training data that are obtained

from expensive first-principles calculations. Recent developments in machine-learning (ML) force

field (FF) methods,31–33 which can predict the energy of complex systems as accurately as the first

principles method that is used to train the force field, but with dramatically reduced computational

cost,32,33 provide a novel framework to address those difficulties faced by the CE method. In par-

ticular, in this work we combine the deep potential molecular dynamics (DeePMD) approach,34–36

which provides a state-of-the-art MLFF implementation based on the deep neural network and

active learning techniques,36 with the cluster expansion method to address the long-standing chal-

lenges of the latter related to insufficient training data. We use the carbon defective face-centered

cubic α-MoC (α-MoC1−x) as a model system. α-MoC has attracted a lot of interest in recent years

because of its intriguing catalytic properties.37–40 The defective nature of experimentally prepared
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α-MoC is well established,41,42 but how carbon vacancies are distributed and their roles played

in determining catalytic properties of α-MoC1−x are far from clear. In this work we mainly use

α-MoC1−x as a test-bed to showcase novel features of the MLFF-aided CE approach to config-

urationally disordered materials, and a comprehensive theoretical investigation of structural and

thermodynamic properties of α-MoC1−x surface that are relevant to heterogeneous catalysis is

scientifically interesting by itself, and will be presented elsewhere.

The paper is organized as the followings. In the next section, we briefly present main ingredi-

ents of the theoretical approach used in this work including the cluster expansion method and the

deep potential neural network force field, and give some important computational details. In Sec.3,

we first present some validation on the accuracy of the MLFF obtained for the α-MoC system,

and present our main findings regarding the convergence of the CE models with respect to training

set size and selection aided by the large data pool obtained from the MLFF calculations. Sec.4

summarizes the main findings of this work and conclude with some general remarks.

2 Theoretical Methods and Computational Details

2.1 Cluster expansion method

We first give a brief overview of the cluster expansion method using a generic binary alloy A1−xBx

as an example. The more systematic formulations for general multi-component and multi-sublattice

cases can be found in Refs. 1,3,43,44. For an alloyed system with N sites that can be occupied by

either A or B, a configuration σ characterizing the occupation of all sites is defined by specifying

a spin-like variable to each site, Si, which is equal to -1 (+1) if the site i is occupied by A (B). The

energy per site of a given configuration σ = (S1, S2, · · · , SN) in its locally relaxed structure can

be exactly mapped onto the following Ising-like Hamiltonian

E(σ) = N
∑
α

mαJαΠ̄α(σ). (1)
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Here the summation is taken over all symmetrically distinct clusters, with each cluster defined as a

particular set of sites denoted by α. Jα is the effective cluster interaction (ECI) associated with α,

mα is the multiplicity per site due to the translational and rotational symmetry of the underlying

lattice, and Π̄α(σ) denotes the cluster function defined as

Π̄α(σ) =
1

Nmα

∑
(i1<i2<···<igα )∈α

Si1Si2 · · ·Sig , (2)

with gα denoting the number of sites in the cluster, also termed as the order of the cluster. The

expansion is exact if all clusters up to the N -body term are considered in the summation,1,3 but in

practice it has to be truncated to consider only two-, three- and sometimes also four-body terms

within a certain spatial cutoff, denoted as Dcut. ECIs of a truncated CE model are usually deter-

mined by fitting the energies of a few tens or hundreds of representative supercell configurations

in their locally optimized structures calculated by DFT,2,5,6,45 known as the Connolly-Williams

method or structure inversion method.14 For a given training set, the clusters included in the CE

model are usually selected by using the k-fold cross-validation (CV) technique.46 The whole train-

ing set is divided into k roughly equal-size groups, denoted as Sj with j going from 1 to k. Each

group is used for testing in turn and the rest of the data for training. For each candidate set of

clusters, the k-fold CV score is calculated by

SCV =

√√√√1

k

k∑
j=1

1

nj

∑
i∈Sj

(Ei − Ê(i,j))2, (3)

where Ei is the energy of structure i calculated by DFT, nj is the number of structures in Sj , and

Ê(i,j) is the predicted energy of structure i by using the CE model with ECIs obtained from a

least-squares fitting of the data excluding those from the j-th group. With k equal to the size of

the training set, one obtains the leave-one-out cross-validation (LOOCV) score, which is widely

used in characterizing the predictive capability of CE models.6 We have compared the effects of

using different variants of CV, and obtained essentially the same results. Therefore we will use the
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LOOCV, abbreviated as CV henceforth, through the paper.

Once an accurate CE model is built, it can be used to calculate the energy of any configuration

efficiently. One of the most important uses of the CE approach is to calculate statistical thermo-

dynamical properties of alloyed systems, for which the central quantities are cluster correlation

functions (CCFs), defined as ensemble averaged cluster functions (Eq. 2) at finite temperature T ,

〈Π̄α〉T =

∑
σ Π̄α(σ)e−E(σ)/kBT∑

σ e−E(σ)/kBT
, (4)

which can be typically evaluated by Monte Carlo simulation in a large supercell.47 The short-

range order (SRO) in configurationally disordered materials can be directly revealed by comparing

the calculated CCFs to those of a fully random alloy A1−xBx, which correspond to the infinite

temperature limit of Eq. 4, and can be expressed analytically as48

〈Π̄α〉∞ = 〈
gα∏
i

Si〉 =

gα∏
i

〈Si〉 = (2x− 1)gα . (5)

In particular, for the two-body clusters, the clustering trend of A-A and B-B (A-B) pairs can be

indicated by CCFs being greater (smaller) than those of the fully random state.2 The evolution

of CCFs as a function of temperature can be also used to characterize the order-disorder phase

transition.6

2.2 Deep potential force field model

The generation of large training data pool is facilitated by exploiting the recently developed ML

inter-atomic potential model, DeePMD,35,36,49 as implemented in the DeePMD-kit package,49 termed

as the DP model henceforth. Following the protocol established by Behler and Parrinello,50 the DP

model represents the total energy E of a given structure, denoted by x, as a summation of atomic
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energies Ei that are dependent on the local environment of each atom

E(x) =
∑
i

Ei =
∑
i

Esi(Ri;wsi). (6)

Here si denotes the chemical species of the i-th atom, andRi denotes a set of structural descriptors

that characterize the local chemical environment of the i-th atom within a certain cutoff radius

Rcut and in the meanwhile preserve the translational, rotational and permutational symmetry.49

The atomic energy Ei is related to Ri by a deep neural network (DNN) function with parameters

denoted as wsi . To determine the NN parameters encoded in ws, the following loss function was

minimized34

L (pε, pf , pξ) = pε∆ε
2 +

pf
3n

∑
i

|∆Fi|2 +
pξ
9
‖∆ξ‖2, (7)

where ∆ε, ∆Fi and ∆ξ represent the root mean square errors in energy, force and virial, respec-

tively. More details about the methodological aspects of DeePMD can be found in Refs.35,49

In practice, we used the DFT data obtained during structural optimization of different occu-

pation configurations to train a preliminary DP force field, and then used the “on-the-fly” active

learning algorithm36 implemented in the Deep Potential GENerator (DP-GEN) scheme51 to refine

the force field iteratively. The workflow of DP-GEN includes three main steps: exploration, label-

ing and training. The general idea of DP-GEN is to efficiently explore the structural space with the

force field trained by available data (exploration), find structures that the current force field exhibits

significant prediction uncertainty, conduct DFT calculations for those newly found structures, and

add them to the training data to obtain the next generation of force field models with improved

predictive accuracy. This process is iterated until a sufficient accuracy is reached.

2.3 Computational details

All DFT calculations were conducted with the plane wave based periodic DFT method imple-

mented in the Vienna Ab Initio Simulation Package (VASP).52,53 The core-valence interaction

is described with the projector augmented wave (PAW) method.54,55 The electron exchange and
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correlation are treated within the generalized gradient approximation (GGA) in the Perdew-Burke-

Ernzerhof (PBE) functional.56 The energy cut-off for the plane wave basis is set to 450 eV and

the convergence criterion for the electronic relaxation loop was set as 10−5 eV. Electron occupa-

tion is determined by the Gaussian smearing technique with a smearing width of σ = 0.05 eV. A

Gamma-centered k-mesh of 3×3×3 was used to sample the Brillioun zone in DFT calculations.

For the DP force field training, we consider 94 different configurations of carbon vacancies ran-

domly generated within a 2×2×2 supercell of α-MoC1−x with x falling in the range of [0.0, 0.50]

that covers the vacancy concentration typically found in experimentally prepared samples.42 Geo-

metric optimization was carried out by DFT, and from the structures generated during relaxation,

about 2400 structures were selected as the initial training set. When running DP-GEN calcula-

tions, four DP force field models were trained with the same training data and different random

seeds for NN parameters. One of the four NN FF models is used to run molecular dynamics (MD)

simulation by LAMMPS program57 to explore the structural space, and the deviation between the

forces predicted by four models is used as the indicator for structures that need to be calculated by

DFT and included in the training set in the next iteration. The temperature for the MD simulation

gradually rises from 10 K to 1000 K in 27 iterations in order to explore the region far away from

local energy minima in the structural space in a well controlled manner. About 9300 structures are

labeled during the DP-GEN active learning process, and totally about 11700 DFT data are used to

train the final DP force field that is employed to generate the training data pool for subsequent CE

model building.

Both the construction of CE models and Monte Carlo simulation were accomplished by us-

ing Alloy Theoretical Automatic Toolkit (ATAT) packages.45,58 In the Monte Carlo simulation, we

started with a randomly generated α-MoC1−x supercell with x = 1/3 that contains 13824 Mo

atoms and 9216 C atoms totally, which is chosen in terms of the typical composition in experimen-

tally prepared α-MoC1−x samples.41 The initial simulation temperature was set as 2500 K and

decreased 50 K per step. At each temperature, the numbers of equilibration and sampling steps of

Monte Carlo simulation were automatically determined by using the algorithm developed in Ref.
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47, with the target convergence for the statistically averaged energy set to 10−4 eV.
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Figure 1: Comparison of the formation energies predicted by the DP force field against DFT
results of 44 testing configurations.

3 Results and discussions

3.1 Validation of the NN-FF and construction of the training data pool

All CE models to be considered in the following discussion are built by using the DP force field

to calculate the energy of any configuration with both internal coordinates and lattice constants

fully relaxed. While the process of building the DP force field itself involves multiple cycles of

training-validation steps, we further verify the accuracy of the final DP force field by considering

44 new configurations in a 2× 2× 2 α-MoC1−x supercell that are not used in the training process.

For each configuration, the structure is relaxed by the DP force field and DFT respectively, and the

final total energy is used to calculate the formation energy as

Ef(σ) = EMoC1−x(σ)− (1− x)EMoC − xEMo, (8)

where EMoC and EMo are the total energy of the stoichiometric α-MoC structure and the metal Mo

in the face centered cubic (FCC) structure, respective. Since the FCC Mo, corresponding to 100%
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vacancy concentration, is not included in the DP training set, we can expect that the DP approach

is incapable to accurately predict its total energy. Therefore we use EMo and EMoC calculated by

DFT when calculating the DP formation energy. In addition, there is usually a nearly constant

deviation, i.e. independent of configuration and geometric structure, between DP-predicted total

energies and DFT ones, which, however, has no physical effects on subsequent use of the force field

in statistical modeling. To account for that factor, we correct all DP total energies by a constant

of 25 meV/atom. A comparison of Ef from DP and DFT is shown in Fig. 1. The root of mean

squared error (RMSE) for the discrepancy between DP and DFT results is only 6.5 meV/atom,

indicating that the DP force field we have obtained for α-MoC1−x is able to produce results with

an accuracy comparable to that of DFT calculations.

Using the validated DP force field, it becomes feasible to build a training data pool with more

than ten thousand different configurations. In particular, we produced about 14000 different config-

urations with randomly distributed vacancies and the composition parameter x falling in the range

of [0.0, 0.5] based on the 2×2×2 supercell of α-MoC. Each configuration is structurally optimized

using the DP force field by the LAMMPS program57 facilitated by the DeePMD-kit package.49 For

a further insurance of the accuracy of the DP results, we use the strategies suggested in the DP-

GEN method36,51 and check the model deviation of all configurations by comparing the energies of

all relaxed structures calculated by four DP force field models with the identical NN architecture,

trained with the same DFT data but with different random initial seeds for NN hyper-parameters

(i.e. ws). As shown in Fig. S1, the energy uncertainties for most relaxed structures are within 3

meV/atom, and only a rather small number of configurations exhibit large model deviation, mainly

located in the high energy region in the configuration space (as shown in Fig. S2). All those signif-

icant outliers are eliminated, and we obtain a training data pool with about 13000 configurations,

which is used to generate training set for CE models in the following discussion.
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Figure 2: CV scores as a function of training set size in the three-body series (a) and four body
cluster series (b) of the CE models. The insets shows the CV scores as a function of the CE model
complexity with a given training set size. The error bars are evaluated by the variance of the
CV scores in fitting 64 different randomly selected training sets with the same data size from the
training data pool.
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model series.
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3.2 Systematic CV score and ECIs convergence test to training set size

With a training data pool two orders of magnitude larger in size than those in typical CE studies,

we can systematically check the CV score convergence with respect to the training set size. In ad-

dition, we can also explore the effects of random selection of training data in a more unambiguous

manner, since the similarity between the different training sets of the same size is negligible when

randomly sampling the the large data pool. The latter issue has never been carefully addressed, to

the best of our knowledge, because of demanding cost of DFT calculations of a large number of

configurations.

In order to investigate the convergence behavior of CE models with different complexity, the

diameter of the largest cluster considered, denoted as Dcut, is taken as a measurement of the CE

model complexity. For given Dcut, all the clusters to certain order whose diameters are within the

range of Dcut are included in the CE model. The larger Dcut means the more complex CE model

with more clusters. We have built two series of CE models. In the first series, three-body model

series, we consider all clusters up to three-body ones within Dcut, and the resultant CE models

contain 6, 12, 18, 27, 31 clusters for Dcut=4.4, 5.4, 6.2, 6.9 and 7.6 Å, denoted as T4.4, T5.4, T6.2,

T6.9, and T7.6, respectively. In the second series, four-body model series, we further consider

four-body clusters, and the corresponding CE models contain 9, 28, 53, 115, and 144 clusters,

denoted as F4.4, F5.4, F6.2, F6.9 and F7.6, respectively.

For a given CE model and training set size Ntrain, 64 different randomly selected training sets

are used to conduct least-squares fitting, and the mean and variance of the CV score are calculated

to characterize the accuracy of the CE model. Fig. 2 shows the convergence of the mean CV

score (SCV) as a function of training set size Ntrain with the error bars indicating the uncertainty

of SCV due to random selection of training set. In general, SCV decrease as Ntrain increases.

It can be regarded as converged when the decrease of the mean CV score gained by increasing

Ntrain becomes negligible with respect to the error bar. For the purpose of quantitative analysis,

the CV score is considered converged if the reduction of the mean SCV is within 0.1 meV/atom

when increasing Ntrain up to 3000 in the following discussion. For the three-body model series
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in Fig.2(a), the simplest T4.4 and T5.4 models converge with only 200 training data, and for

T6.2, T6.9, and T7.6 models, 400 training data are required to reach convergence. A similar trend

is observed in four-body model series in Fig.2(b). The simpler F4.4 and F5.4 models achieve

convergence with 400 training data, while the more complex models F6.9 and F7.6 with over 100

clusters converge with 1200 training data.

From another perspective, for a given training set size, the CV score can be taken as a function

of CE model complexity characterized byDcut, as shown in the inset of Fig. 2(a) and (b). When the

training set size (Ntrain=100 or 200) is small, the CV score exhibits a minimum at aboutDcut = 6.2,

indicating the occurrence of over-fitting whenDcut > 6.2. However, when the training data is large

enough (Ntrain = 3000), over-fitting can be avoided and the CV score decreases monotonically as

Dcut increases.

Besides the convergence of the mean value of SCV, what is also important is its variance caused

by random selection of training set, as indicated by the error bars shown in Fig.2. It is noteworthy

that the error bars of SCV are quite significant when the training set is small, i.e. a few hundred.

With a given set of clusters, the magnitude of the error bars decreases as the training set size

increases. As expected, for a given training set size, the more complex model shows a greater un-

certainty in the CV score. Generally speaking, the uncertainty of SCV can be regarded as negligible

only when Ntrain reaches a few thousand.

For the application of CE models for subsequent statistical simulation, it is more relevant to

check how ECIs in the CE model are affected by the training set selection. The uncertainty in

ECIs is expected to have significant effects on thermodynamic properties obtained from the CE

model. As an illustration, Fig. 3 shows the mean and the variance of the ECI corresponding to

the first nearest neighboring (1NN) cluster in the three-body model series as a function of the

training set size. For a given cluster selection (Dcut), the mean of the ECI is nearly constant

with increasing Ntrain. But a small training set size gives rise to a large error bar of ECI that

characterises the certainty with respect to random selection of training set, which can be as large

as about 10 meV/atom with Ntrain = 50 or 100. The uncertainty decreases significantly as the
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training set size increases, and reduces to about 1 meV/atom when Ntrain = 3000. Comparing CE

models of different complexity, we can see that the ECI of 1NN changes by about 1 meV/atom

when Dcut increases from 4.4 Å to 5.4 Å, and from 5.4 Å to 6.2 Å, and remains nearly constant

when further increasing Dcut, which is consistent with the trend observed in the CV score as a

function of the model complexity.
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Figure 4: The CCFs of 1NN and 2NN clusters as a function of temperature in Monte Carlo
simulation using T6.2. The simulations are performed with CE model trained with 100, 400, 1200,
3000 data. For given training data size, the results of 16 parallel simulations are combined and
the CCFs of a given cluster in different simulations are shown with the same color. The dash lines
represent the CCF for two-body clusters in a total random configuration.

3.3 Effects of training set selection on order-disorder transition

The CE method is widely used to study order-disorder properties of alloyed systems as a func-

tion of temperature, typically calculated by Monte Carlo simulations.2,47 The studies presented

above clearly indicate that the accuracy of the CE model as characterized by the CV score exhibits

considerable uncertainty with respect to the training data selection when the training set size is

small, i.e. several hundred, and it is therefore crucial to check how such uncertainty affects sta-

tistical thermodynamic properties calculated from the CE model. In this part, we investigate how

the order-disorder transition behavior is affected by the size and selection of training data, also

by conducting a series of parallel Monte Carlo simulations using CE models trained by different

training sets. For a given cluster set and training set size, 16 least square fittings are performed

with different data of the same size and the resultant CE models are then used in the subsequent

Monte Carlo simulation of the carbon vacancy distribution in α-MoC1−x with x = 1/3. Taking
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Figure 5: The Tcconvergence test to the training data size for three-body model series and four-
body model series respectively. The reduction tendency of Tcstandard error to the training data
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the T6.2 model as an example, the CCFs of smallest two-body clusters are presented as a function

of temperature in Fig. 4. CCFs of all two-body clusters obtained from different CE models are pre-

sented in Fig.S3-Fig.S12 in Supplementary Materials. In general the results from different models

exhibit a similar trend. At low temperature, the CCFs deviate strongly from those of the totally

random state, corresponding to an ordered phase, and as the temperature increases, they gradually

get close to those of the fully random state, indicating a typical second-order phase transition. It is

noteworthy that even well above the transition temperature, the CCFs of some two-body clusters

still exhibit significant deviation from those of the fully disordered state, indicating the existence

of short-range order. What is noteworthy is that there exists considerable uncertainty in calculated

CCFs caused by random selection of training data, especially when Ntrain is small (i.e. a few hun-

dred), and the impact of training data selection becomes negligible as the training set size increases

to 3000.

In order to check the convergence of calculated CCFs quantitatively, we extract the critical

temperature Tc for the order-disorder transition from each simulation by fitting the CCF of the

2NN cluster with the cubic spline, and determining Tc as the temperature at which the curvature

of the CCF curve changes the sign. The mean value and uncertainty of Tc for given Dcut and

training data size are then calculated, as shown in Fig. 5. In the results for the three-body model

series, presented in Fig.5(a) and (c), the mean of Tc converges rather quickly as a function of

Ntrain, especially for simple CE models (Dcut = 4.4 and 5.4 Å). In contrast, the uncertainty in

calculated Tc converges much more slowly as Ntrain increases, and is significantly larger for more

complex CE models. To be more specific, the Tc uncertainty from the T4.4 and T5.4 models is

already smaller than 50 K when Ntrain ≥ 200, but that from more complex models (T6.2, T6.9 and

T7.6) requires Ntrain ' 2000 to achieve a similar accuracy. The results for the four-body model

series, shown in Fig. 5(b) and (d), exhibit similar features, but the uncertainty in Tc is almost twice

larger due to significantly increased model complexity. Even withNtrain = 3000, Tc from the F7.6

model still has a uncertainty of about 100 K.

It is interesting to make a comparison between the convergence behaviors of the Tc uncertainty
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and the CV score with respect to the training data size. For the three-body model series, although

the CV scores can be regarded as converged with about 200 training data, there is still significant

uncertainty of Tc over 50 K for simple T4.4 and T5.4 and over 100K for complex T6.2, T6.9 and

T7.6 models (Fig. 5(c). The four-body cluster model series shows similar behavior. For example,

the F6.2 model trained with 800 data, well converged in terms of the CV score, still gives an

Tc uncertainty of over 100 K.

We close this section by discussing the effects of the model complexity, characterized by Dcut,

on the calculated Tc, using the results obtained with Ntrain = 3000, in which the uncertainty of

Tc is relatively small. As shown in Fig.5(a) and (c), Tc does not show any obvious convergence

tendency as the model complexity (Dcut) increases. Within the three-body model series, Tc from

T6.2 differs from that of T7.6 by about 100 K, even though the difference in the CV from the two

models is less than 0.1 meV/atom. The same is also true for the four-body model series. The

Tc values from three-body and four-body series with the same Dcut also differ significantly, e.g.

150 K for Dcut=6.2Å. It is therefore clear that the convergence of the CE model with respect to

cluster selection as characterized by the CV score does not necessarily lead to robust statistical

thermodynamic properties.

4 Conclusion

To summarize, in this work, using carbon-defective α-MoC1−x as a typical substitutionally dis-

ordered system, we have systematically studied the convergence of the CV score in building CE

models and the resultant thermodynamic properties, taking the order-disorder phase transition tem-

perature Tc as a representative, with respect to the training set size and random selection of train-

ing data. Aided by the deep neural network-based machine learning force field technique, a large

training data pool containing more than ten thousand structures with different carbon vacancy con-

figurations has been efficiently constructed with the accuracy of first-principle calculation, and is

used for the subsequent CE model building and convergence test. The main findings of this work
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can be summarized as the following points: 1) The mean value of the CV score converges quite

rapidly with increasing training set size (Ntrain), but the uncertainty due to random selection of

training data converges much more slowly, and becomes negligible only when Ntrain is as large as

about several thousand, which is about one order of magnitude larger than the training set size typ-

ically used in previous CE model building. 2) The calculated order-disorder transition temperature

Tc exhibits significant uncertainty with respect to random selection of training data, especially

when the CE model is complex (i.e. with a large Dcut) and Ntrain is small (i.e. a few hundred), and

the uncertainty decreases significantly to be less than 100 K when Ntrain reaches several thousand.

It is therefore clear that the convergence of the CV score alone can not guarantee robust statistical

thermodynamic modeling results. 3) With a large training set, although the CV score converges

well with respect to model complexity, the calculated Tc does not show a clear convergence with

respect to Dcut, which calls for further methodological development in the CE-based framework

to achieve more accurate prediction of thermodynamic properties. The results presented in this

work are obtained by using the least square fitting technique to build the CE models. We have also

tested the more sophisticated compressive sensing technique implemented in the least absolute

shrinkage and selection operator (LASSO) algorithm20 to build the CE models, and we obtained

similar results regarding the effects of training set size and selection. It should be emphasized that

the findings summarized above are achieved thanks to the availability of the large training data

pool generated with the aid of the machine learning force field well trained and validated based on

DFT calculation. One can expect that machine-learning techniques will play increasingly more im-

portant roles in theoretical study of substitutionally disordered materials, as clearly demonstrated

recent works in the literature (see Ref. 59 and references therein).
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