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Abstract

A computationally faster and reliable modelling approach called a physics-based artifi-

cial neural network framework for adsorption and chromatography emulation (PANACHE)

is developed. PANACHE uses deep neural networks for cycle synthesis and simulation

of cyclic adsorption processes. The proposed approach focuses on learning the un-

derlying governing partial differential equations in the form of a physics-constrained

loss function to simulate adsorption processes accurately. The methodology devel-

oped herein does not require any system-specific inputs such as isotherm parameters.

Accordingly, unique neural network models were built to fully predict the column dy-

namics of different constituent steps based on unique boundary conditions that are

typically encountered in adsorption processes. The trained neural network model for

each constituent step aims to predict the entire spatiotemporal solutions of different

state variables by obeying the underlying physical laws. The proposed approach is

tested by constructing and simulating four different vacuum swing adsorption cycles

for post-combustion CO2 capture without retraining the neural network models. For

each cycle, 50 simulations, each corresponding to a unique set of operating conditions,

are carried out until the cyclic-steady state. The results demonstrated that the purity

and recovery calculated from the neural network-based simulations are within 2.5%

of the detailed model’s predictions. PANACHE reduced computational times by 100

times while maintaining similar accuracy of the detailed model simulations.
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1 Introduction

Cyclic adsorption processes are particularly attractive for their flexibility in process con-

figurations and hence, are extensively used in industrial gas separations such as hydrogen

purification, oxygen enrichment, methane purification, carbon dioxide removal, etc.1,2 In

the most commonly used processes such as pressure swing adsorption (PSA), vacuum swing

adsorption (VSA), temperature swing adsorption (TSA), etc., one or more fixed bed ad-

sorption columns (with or without interactions) packed with a suitable adsorbent undergo a

sequence of steps through a cyclic variation of pressure or temperature in order to perform

the separation. Several process configurations (or cycles) can be synthesized by altering

the sequence of steps or interactions between the adsorption columns. Given their transient

and modular nature, adsorption processes are complex and operate at cyclic steady state

(CSS). Rigorous mathematical models based on the underlying physical laws are required

to better understand, simulate, and design such complex processes.3,4 Process simulations

involve solving these rigorous models characterized by a system of coupled nonlinear partial

differential equations (PDEs) repeatedly in time and space until CSS. Further, each process

configuration needs to be thoroughly optimized where thousands of simulations are carried

out in order to identify the optimal set of design variables that yield the best process per-

formance. Inherently, this makes the design and optimization of cyclic adsorption processes

computationally expensive, thereby limiting the design to few process configurations for prac-

tical applications.5,6 Despite the computational challenges, efforts have also been made to

develop superstructure-based optimal process design frameworks.7–9 With the recent discov-

ery of hundreds of thousands of adsorbents for gas separations, the current simulation and

optimization tools based on rigorous mathematical models are computationally inadequate

to handle such huge databases of adsorbents for process design and optimization.10

To address the computational challenges posed by adsorption process design and opti-

mization, the use of machine learning techniques such as artificial neural networks (ANNs)

have emerged as alternatives to rigorous mathematical models.11,12 To this end, Sant Anna et
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al.13 developed three-layer feed-forward ANN (input layer, one hidden layer and one output

layer) models for the separation of methane and nitrogen using PSA. Using these models in

the optimization, the authors show that the computational times significantly reduced from

15.7 h to 50 s. Subraveti et al.14 constructed three-layer feed-forward ANN models initially

within an optimization framework and subsequently used them to determine the Pareto so-

lutions of multi-objective maximization of CO2 purity and recovery for a complex eight-step

PSA cycle designed for pre-combustion CO2 capture. As a result, the relative error of Pareto

solutions in both objectives was less than 1% and accelerated the optimization routine by ten

times. Xiao et al.15 instead used a multi-output feed-forward ANN architecture to predict

process performances in the PSA optimizations. Pai et al.16 extended the use of feed-forward

ANN models to predict the axial profiles of the intensive variables for a four-step VSA pro-

cess at CSS, and the models were experimentally validated. Furthermore, Oliveira et al.17

developed a real-time soft sensor for a PSA unit based on neural network models. Three

types of ANN architectures, namely, feed-forward, recurrent, and long short-term memory

(LSTM) based on multi-input and a single output, are used to predict the PSA process

performance over the number of cycles. The LSTM-based deep neural networks were found

to be reliable for optimization, control and online measurements of PSA units. However, in

these studies, ANN models were trained to learn the mapping between the inputs and the

outputs for a fixed process configuration. This means that the models need to be retrained

if the process configuration is changed. Therefore, a more generalized framework is required

in order to facilitate the adsorption cycle synthesis and allow for the evaluation of several

process configurations. For instance, Leperi et al.18 used ANN to model individual steps in

typical PSA processes for post-combustion CO2 capture. Each step was modelled using 12

four-layer ANN (input layer, two hidden layers and multi-output layer) models. The trained

ANN models predicted the five state variables, i.e. absolute pressure, CO2 gas phase mole

fraction, CO2 molar loading, N2 molar loading, and column temperature, at ten different lo-

cations across the column. In the ANN model training, the normalized mean squared error
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between the neural network predictions and the training data from rigorous simulations was

minimized. While this approach allowed synthesis of different PSA cycles, such models can

require a large amount of training data to obtain accurate predictions.

The latest groundbreaking advances in artificial intelligence, machine, and deep learning

have allowed for the development of viable methodologies to model various physical systems

comprising governing PDEs.19 To this end, ANNs with several hidden layers, also known as

deep neural networks (DNNs), have shown an enhanced ability to capture very complex non-

linear dynamics that led to tremendous interest for modelling physical systems, particularly

the idea of learning PDEs through constraint-based loss functions.20–22 For instance, Raissi

et al.22 developed a physics-informed neural network framework in which fully connected

DNNs are capable of learning the PDE solutions anywhere on the spatiotemporal domain

with few training points by incorporating a physics-constrained loss function. The presence

of PDE-based terms in the loss function inherently facilitates the physics-constrained regu-

larization of the neural networks. Owing to the additional knowledge of physics, the learning

process for neural networks require only small amounts of training data, compared to the

complexity of the systems described. The philosophy of physics constraining the loss func-

tion was later adopted for several applications.23–25 However, most of these studies focused

on demonstrating the capabilities of physics-based neural networks to learn a single PDE

solution, i.e. for given initial and boundary conditions. If initial or boundary conditions

change, then the physics-based neural networks have to be retrained. In cyclic adsorption

processes, the initial condition of each step depends on the previous step’s final condition

that changes every cycle. This means that the PDE solutions differ from step to step and

also every cycle. Therefore, a more generalized framework is required to implement the

physics-based neural networks for cyclic adsorption systems.

In the present study, a modelling framework called physics-based artificial neural net-

work framework for adsorption and chromatography emulation (PANACHE) is developed to

synthesize and simulate different adsorption processes. By choosing the appropriate training
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philosophy, the framework developed herein does not require any system-specific inputs such

as isotherm parameters. Accordingly, unique neural networks models are trained for different

constituent steps typically encountered in cyclic adsorption processes. The trained neural

network model for each constituent step aims to predict the entire spatiotemporal solutions

of state variables for an arbitrary initial gas composition profile and step-parameters which

can be step operating conditions (such as step times and pressures) and inlet feed composi-

tions, inlet feed velocities, etc. obeying underlying physical laws. The proposed methodology

is tested by constructing and simulating four different VSA cycles for post-combustion CO2

capture. The cycle synthesis capabilities of this approach are demonstrated by comparing

the neural network- and the detailed process model-based simulations based on the four VSA

cycles considered for a variety of operating conditions.

2 VSA governing equations

The one-dimensional mathematical model describes the adsorption column dynamics in VSA

cycles after incorporating the following assumptions:

1. Axially dispersed plug flow model to describe the gas phase.

2. No radial gradients exist for composition and pressure across the column.

3. The gas-phase behaves ideally.

4. Uniform bed properties along the column.

5. The linear driving force model accounts for the solid-phase mass transfer.

6. Pressure drop calculations are based on Darcy’s law (valid for the column sizes and

the operating conditions considered here).

7. System operated under isothermal conditions.
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Based on the above assumptions, the model comprises a system of coupled nonlinear

PDEs based on the conservation of mass and momentum and takes the form:

∂ci
∂t

=
∂

∂z

[
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∂yi
∂z
− civ

]
− 1− ε

ε

∂qi
∂t

(1)

1
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∂P
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= − 1
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)2
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Here Eqs. 1 and 2 are component and overall mass balances for the gas phase, respectively.

In Eq. 1, ci, yi, qi are the gas-phase concentration, the gas-phase molar composition, and

the solid-phase loading of the component i, v is the interstitial velocity, ε is the bed void

fraction, and DL is the axial dispersion coefficient. The ideal gas law relates ci and yi as

follows: ci = yiP
RTref

, where P is the total pressure, R is the universal gas constant, and Tref is

the reference temperature. Using Eqs. 1 and 2, the gas-phase molar composition of the first

component, y1, and the the total pressure P are calculated, respectively. From the solution

of y1, the gas-phase molar composition of the second component can be obtained simply

by: y2 = 1 − y1. Equation 3 represents the Darcy’s law for calculating the pressure drop

throughout the column, where rp and µ are the particle radius and the gas-phase viscosity.

In addition to above equations, the linear driving force model describes the mass transfer

in the solid phase:

∂qi
∂t

= ki(q
∗
i − qi) (4)

where q∗ is the equilibrium loading and k is the mass transfer coefficient expressed, based on

the assumption that the molecular diffusion in the macropores controls the transport into
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the solid phase, as follows:

ki =
ci
q∗i

15εpDp

r2p
(5)

The adsorption equilibria was quantified using the competitive dual-site Langmuir (DSL)

isotherm model as shown below:

q∗i =
qsb,ibici

1 +
∑

i bici
+

qsd,idici
1 +

∑
i dici

(6)

where q∗i is the equilibrium solid-phase loading of the component i, qsb,i and qsd,i are satu-

ration capacities for the two sites and, bi and di are the adsorption equilibrium constants.

It is worth noting that the heat effects that are prominent in gas adsorption systems are

deliberately not considered in this work for simplicity. In the future, heat effects will be

accounted for to represent gas adsorption processes accurately.

3 PANACHE model

Physics-based neural networks adopt modern deep learning techniques to infer the underlying

physical laws that involve PDEs.22 The framework used for this study is illustrated in Fig. 1.

Here the neural networks are trained to learn the conservation laws of mass and momentum

along with adsorption equilibria. To this end, the residuals of PDEs are incorporated into

the loss function so that the neural networks are trained to match the labelled data while

penalizing them for violation of physical laws. Such a formulation allows the neural networks

to learn the spatiotemporal solutions with small amounts of labelled data. It is worth noting

that the labelled data represents the training data at the initial and the boundaries of the

spatiotemporal domain obtained from the high fidelity simulations. Typically, the initial and

the boundary conditions are required as inputs to solve the PDEs. However, in the proposed

approach, the initial and the boundary data (together as labelled data) and the PDEs are
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incorporated as loss terms in the loss function, minimized in the training procedure. The

neural network model ultimately learns the weights and the biases.
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ŷ1

@
@t

@
@z

@2

@z2

z

t

y0(z)

⇣

h1 h2 hj�1 hj

1

𝒓! ≔	
1
𝑃
𝜕𝑃
𝜕𝑡 +

1
𝑃
𝜕 P𝑣
𝜕𝑧 +	

1 − 𝜀
𝜀 𝑅𝑇0

𝜕𝑞"
𝜕𝑡

#

"$%

𝒓& ≔	
	𝜕𝑐"
𝜕𝑡 −	

𝜕
𝜕𝑧 𝑐𝐷'

𝜕𝑦"
𝜕𝑧 	− 𝑐"𝑣) +

1 − 𝜀
𝜀

𝜕𝑞"
𝜕𝑡

t

z
 Collocation points
 Initial condition (labelled data)
 Boundary conditions (labelled data)

Residuals of PDEs calculated using automatic differentiation

Deep neural network architecture

𝓛 = 𝓛data + 𝓛PDELoss function

Detailed 
process model

Step boundary 
conditions 

𝒮!,#

t

At boundary 

𝑧

𝒮!,$
Initial condition

Training data
Spatiotemporal domain

Figure 1: The physics-based neural network framework for adsorption and chromatography
emulation (PANACHE) developed in the present study. Top: Physics-based deep neural
network architecture. Bottom left: Training data generation using the detailed process
model. Bottom right: Spatiotemporal domain with collocation points (blue), initial (red)
and boundary (black) data.

The key idea of PANACHE is to recognize that P/V/T-SA processes comprise basic steps

that can be identified by the position of the valves at the two ends of the column. The po-

sitions of valves at the two ends of adsorption columns in P/V/T-SA processes periodically

change to implement different steps in the cycle. As a result, boundary conditions in each

constituent step are different. Depending on the state (open or close) of the valves, con-
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stituent steps can be categorized into generalized boundary conditions, such as open-open,

open-closed, closed-open, etc. For instance, adsorption and purge steps are identified by

open-open conditions; blowdown, evacuation, pressure equalization (donor) steps by closed

(inlet) - open (outlet) conditions; and finally, pressurization and pressure equalization (re-

ceiver) steps by open (inlet) - closed (outlet) conditions. Hence, if each constituent step can

be modelled by a suitable surrogate model, it should be, in principle, possible to synthesize

cycles by combining them in a logical and physically feasible manner. However, in a cyclic

process, the initial condition for each step depends on the final condition of the preceding

step. This means that the initial conditions change based on the sequence and the duration

of steps. To account for such variations in initial conditions, neural network models of each

step type must be able to learn the solutions for an arbitrary initial condition. Another

feature that affects the dynamics of adsorption columns is the step-parameters such as oper-

ating pressures, inlet gas conditions, etc. Here the neural network models are trained based

on Nk different initial profiles and the step-parameters to have generalized capabilities. Al-

though, in principle, different steps can be realized based on the same valve positions, the

ultimate goal of the proposed modelling approach is to train the step neural network models

that can take into account the dynamics of different possible steps for a given valve positions

by providing appropriate boundary data in the model training.

One deep neural network is defined for each constituent step s in the VSA process, and

the goal of the neural network is to learn the following mapping:

[z, t, ys0(z), ζs]
θs−→ [ys1(z, t), P

s(z, t), qs1(z, t), q
s
2(z, t)] (7)

Here the neural network takes the following inputs: spatiotemporal coordinates (z, t), initial

gas-phase molar composition profile, ys0(z), of the first component, and step-parameters, ζs,

for the step s. The neural network f s(z, t, ys0(z), ζs,θs) outputs the four state variables,

namely, gas-phase composition of the first component, ys1(z, t), the column total pressure,
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P s(z, t), and solid loadings, qs1(z, t) and qs2(z, t). The symbol θs represents the parameters

of the neural network used for the individual step s. In other words, the neural network

approximates the spatiotemporal solutions of four state variables of the step s for a given

initial gas composition profile ys0(z) and step-parameters ζs based on θs.

Based on the component and overall mass balances in Eqs. 1 and 2, the residuals can be

defined as follows:

rc(z, t) :=
∂c1
∂t

+
∂

∂z

[
c1v − cDL

∂y1
∂z

]
+

1− ε
ε

∂q1
∂t

rp(z, t) :=
1

P

∂P

∂t
+

1

P

∂(Pv)

∂z
+
RT0
P

1− ε
ε

[
∂q1
∂t

+
∂q2
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]
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and v = 4
150µ

(
ε

1−ε

)2
r2p
(
− ∂P

∂z

)
is directly substituted in Eq. 8 to account for Darcy’s pressure

drop through the column. Equations 4-6 are not required to calculate q1(z, t) and q2(z, t).

Instead, the neural networks are expected to learn solutions for q1(z, t) and q2(z, t) through

constraints imposed on the right hand side of Eq. 8 while also matching the labelled data

corresponding to q1 and q2. More details on the neural network architecture, the loss function,

and the learning procedure are provided below.

3.1 Neural network architecture

Feed-forward deep neural networks are considered, comprising Nlayers layers (one input layer,

Nlayers - 2 hidden layers and one output layer) with a predefined number of neurons. The

neurons are interconnected to form a fully-connected complex network as shown in Fig. 1.

The inputs to each neuron are combined with a set of coefficients called weights which can

either dampen or amplify the input depending on its significance. In addition to weights,

each neuron also has a bias. The inputs, weights and biases are combined in each neuron

through a nonlinear activation function as shown below:

Xl = σl(Xl−1Wl + bl) (9)
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where Xl−1 is the output of the l − 1 layer; Wl and bl represent the weight matrix and bias

vector of the layer l, respectively and; Xl is the output of the l layer. The dimensions of

weight matrix Wl and bias vector bl are Nl−1 × Nl and Nl, respectively, where Nl−1 and Nl

are the number of neurons in the l − 1 and l layer, respectively. Collectively, the weight

matrices (W) and biases (b) of the entire neural network are denoted using θ, i.e., (W, b)

∈ θ. In this way, each layer receives the outputs of a previous layer as inputs and feeds

forward to the next layer. The number of hidden layers, Nlayers, number of hidden neurons,

Nl, and the activation functions (such as tanh, sine, sigmoid, etc.) are considered model

hyperparameters and selected based on limited numerical experimentation.

3.2 Loss function

For enabling the mapping in Eq. 7, the hidden parameters, θ, need to determined by

minimizing the loss function. The loss function constructed herein comprises two parts.

Details of each part of the loss function are provided below:

3.2.1 Loss term: Labelled data

In this part of the loss function, the predictions of the neural network are constrained to

match the labelled data. Here the labelled data refers to the training data obtained from the

high fidelity simulations. The PDE solutions are unique to initial and boundary conditions

of the each step s and proper enforcement of initial and boundary conditions is essential to

have well-posed systems. Hence, the initial and the boundary data from the simulations are

introduced as the labelled data. The loss term is expressed as the mean-squared error (MSE)

between the neural network predictions and the labelled data. The loss term (for index #k)
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can be written as

Lkdata,0 =
1
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[
λ0,y1

Nk
i,0∑
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[
ŷ1(z
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i , 0, y
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Here Lkdata,0, Lkdata,lb, and Lkdata,rb represent the MSE on the initial, the left and the right

boundary data, respectively. ŷ1, P̂ , q̂1, and q̂2 are the neural network predictions whereas

y1, P , q1, and q2 denote the labelled data of four state variables. Nk
i,0 and Nk

i,b represent

the number of labelled initial and boundary data points. zklb and zkrb are spatial coordinates

on the left and the right boundary of the spatiotemporal domain. k = 1, 2.., Nk, represent

different cases of initial profile and operating parameters. It is worth mentioning that all

physical quantities in Eqs. 10-12 are in their non-dimensionalized form to scale to order

∼ O(1) and the non-dimensionalization was carried out as outlined in Section 3.4. Finally,

λ0, λlb, and λrb are the weight terms ([0,∞]). The choice of weights influence the constraints

of matching the labelled data. Although there is no rule of thumb for choosing appropriate

weights, limited numerical experimentation was carried out to estimate the weights that

better fit both boundary and interior of spatiotemporal domain reasonably well. In addition

to initial and boundary data, final column profiles of gas-phase composition are also provided

in the training to improve prediction accuracies. The corresponding loss term, Lkdata,f , for

index #k can be written as

Lkdata,f =
λf,y1
Nk
i,0

Nk
i,0∑

i=1

[
ŷ1(z

k
i , t

k
f , y

k
0(z), ζk,θs)− y1(zki , tkf , yk0(z), ζk)

]2
(13)

Combining the four terms above leads to the first part of the loss function as shown below:

Lkdata = Lkdata,0 + Lkdata,lb + Lkdata,rb + Lkdata,f (14)

3.2.2 Loss term: PDE residuals

The second part of the loss function introduces the physics regularization of the neural

networks. The PDE residuals defined in Eq. 8 are incorporated here. For evaluating these

residuals, Nr collocation points, i.e., (zr, tr), within the spatiotemporal domain are used as

illustrated in Fig. 1. These collocation points are randomly chosen using Latin hypercube

14



sampling. Notably, this part of the loss function requires no additional labelled data from

the simulations because the collocation points are just auxiliary points that help calculate

the partial derivatives. The loss term for index #k expressed as the MSE is shown below:

Lkresidual =
1

Nk
r

[
λr,c

Nk
r∑

r=1

rkc (zkr , t
k
r , y

k
0(z), ζk,θs) + λr,p

Nr∑
r=1

rkp(zkr , t
k
r , y

k
0(z), ζk,θs)

]
(15)

where Nk
r is the number of collocation points for case #k. rkc and rkp correspond to the

residuals of component and overall mass balances for case #k, where k = 1, 2.., Nk. λr,c and

λr,p are the weight terms.

3.2.3 Overall loss function

The overall MSE L defined by combining the loss terms from Eqs. 14 and 15 takes the

following form:

L =

Nk∑
k=1

[
Lkdata + Lkresidual

]
(16)

Here, individual terms Lkdata and Lkresidual obtained in each case k are summed over Nk cases

of different initial profiles ys0(z) and operating parameters, ζs, for step s. The idea here is to

minimize L such that the neural network aims to learn the unique spatiotemporal solutions

corresponding to different initial profiles and operating parameters. Hence, the constraints

of matching the labelled data and reducing the PDE residuals close to zero are imposed for

each case k and together minimize the MSE values obtained from all cases considered.

3.3 Training

The objective of training the deep neural networks is to determine the optimized weights and

biases associated with each neuron in such a way that minimizes the loss function described

in Eq. 16. Initially, the weights are specified using Xavier initialization26 and the biases
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are initialized based on random normal distribution. The training follows a backpropagation

approach where the gradients of loss function with respect to each of the training weight com-

puted based on the chain rule along with the learning rate are used to update the weights and

the biases. This procedures continues to iterate until convergence is achieved. The loss func-

tion was minimized using Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)

algorithm, a quasi-Newton full-batch gradient-based optimization method. It is worth not-

ing that the convergence to the global minimum with hundreds of thousands of adjustable

parameters and the complex loss function may not be possible; however, studies show that

this approach is capable of determining parameters for weights and biases that provide good

prediction accuracies provided the hyperparameters are appropriately selected.22

Since the loss function requires computing the residuals of the PDEs, the spatial and

temporal derivatives of outputs of the neural network are calculated using automatic dif-

ferentiation.27 Automatic differentiation uses chain rule to compute the partial derivatives

of loss function through backpropagation of errors from the output layer to the input layer.

The analytically defined connections between the layers of the deep neural network enable

the implementation of this technique. In terms of accuracy, automatic differentiation of-

fers higher accuracy compared to numerical differentiation as errors arising from truncation

and rounding-off are avoided.27 Automatic differentiation has been implemented in the deep

learning frameworks such as Tensorflow28 and PyTorch.29 We implemented the training pro-

cedure using the deep learning library Tensorflow and the partial differential operators were

computed using “tf.gradients()” in Tensorflow. The use of automatic differentiation on the

neural network removes the need to have labelled data at the collocation points. This is an

important feature of this approach. It is important to reiterate that the neural network model

is trained for each step defined by a unique set of boundary conditions and the cycles are

not used for the training. Given that AD has been implemented using in-built “tf.gradients”

function in Tensorflow, quantifying the accuracy of AD implementation is not straightfor-

ward. Therefore, overall prediction accuracies of neural network models are considered for
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ensuring appropriate implementation of differentiation routines.

3.4 Non-dimensionalization and normalization

The state variables, ys1(z, t), P
s(z, t), qs1(z, t), and qs2(z, t) have different orders of magnitude

that can lead to difficulties while calculating backpropagated gradients during neural network

training.23,30 Hence, the physical quantities are non-dimensionalized in Eqs. 1 - 3 to have an

appropriate scaling, i.e.∼ O(1). The non-dimensionalized quantities are defined as follows:

P̄ =
P

Pref

, c̄i =
yiP̄

Pref

q̄1 =
q1
qref,1

, q̄2 =
q2
qref,2

, v̄ =
v

vfeed
(17)

Here Pref is the reference pressure (Pref = 1 atm), qref,1 and qref,2 are the equilibrium loadings

of the first and the second component at feed conditions, and vfeed is the feed interstitial

velocity (m s−1). Since the gas-phase composition y is a molar fraction that lies in [0,1], this

state variable is not non-dimensionalized.

The inputs are normalized to scale between [-1,1] to enhance the robustness of the neural

network training22,23,30 as follows:

z̄ = 2
z

L
− 1, t̄ = 2

t

tref
− 1, ȳ0(z) = 2

y0(z)−min(y0(z))

max(y0(z))−min(y0(z))
− 1 (18)

where z̄, t̄, and ȳ0(z) are the normalized inputs to the neural network. L is the column

length and tref is the maximum step duration. The operating parameters, ζ, are scaled such

that the values lie in the range of [-1,1].

Based on the non-dimensionalized variables, Eqs. 1-3 can be rewritten as

∂c̄i
∂t̄

=
∂

∂z̄

[
− ψ1c̄iv̄ + ψ2

∂yi
∂z̄

]
− ωi

∂q̄i
∂t̄

(19)

1

P̄

∂P̄

∂t̄
= −ψ1

1

P̄

∂(P̄ v̄)

∂z̄
−

ncomp∑
i=1

ωi
∂q̄i
∂t̄

(20)
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−∂P̄
∂z̄

= ψ3v̄ (21)

The dimensionless groups in the above equations are given by

ψ1 =
vfeedtref
L

, ψ2 =
DLtref
L2

, ψ3 =
150

4

1

r2p

(1− ε
ε

)2µvfeedL
Pref

, ωi =
RTrefqref,i
Pref

1− ε
ε

The non-dimensionalization and the normalization ensures that all the variables and inputs

are scaled to order O(1). Prior to training, the labelled data provided to the neural network

are scaled based on Eqs. 17-18 and the residuals are defined based on Eqs. 19-21. The

predicted quantities are finally reverted to their original form at the end of the simulation.

3.5 Detailed model simulations

The VSA cycles are simulated using our detailed one-dimensional mathematical model.3 The

system of coupled nonlinear PDEs are numerically solved by discretizing the spatial terms

into 50 finite volumes using the total variation diminishing (TVD) scheme with van-Leer

flux limiter. The resulting ordinary differential equations (ODEs) are integrated in time

based on ode23s solver in MATLAB. Individual steps are simulated by imposing appropriate

boundary conditions.3 All cycle simulations are carried out using standard unibed approach,

i.e., a single column undergoes all steps in the cycle sequentially, until it reaches CSS. The

CSS was considered to be achieved when the mass balance error for the entire cycle equals

to 0.5% or less in the five consecutive cycles. The simulations provide detailed composition,

pressure and temperature spatiotemporal profiles from the initial cycle to CSS which are

then used to calculate process performance indicators. It is worth noting that the detailed

simulations are validated elsewhere against both lab-scale31 and pilot-scale experiments.32
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Figure 2: Four different VSA cycles considered for demonstrating the cycle synthesis capa-
bilities of physics-based neural networks.

4 Results and discussion

Four simple VSA cycles, illustrated in Fig. 2, are considered to demonstrate the ability of

the proposed methodology to synthesize and simulate different cyclic adsorption processes.

The feed consists of a binary mixture of 20 mol% CO2 and 80 mol% N2 at 1 bar and
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25 ◦C. The constituent steps used to construct these cycles can be categorized into four

different step types: the adsorption step, the blowdown step, the evacuation step and the

pressurization step. First, a simple three-step VSA cycle, shown in Fig. 2(a), consists of the

following steps is considered: 1) In the adsorption step (ADS), the feed mixture introduced

in the column with constant interstitial velocity (vfeed) at PH = 1 bar undergoes separation

through preferential adsorption of the heavy component CO2. On the other hand, the light

component N2 leaves the column. 2) In the evacuation step (EVAC), the column pressure is

reduced to a low pressure (PL) in the counter-current direction using a vacuum pump with

constant interstitial velocity (vEVAC) at the boundary, similar to realistic conditions,33,34 to

collect the CO2 rich product at the feed end of the column. 3) The feed pressurization

step (FP) pressurizes the column to 1 bar using the feed mixture through a blower with

constant interstitial velocity at the boundary, vFP. The second cycle in Fig. 2(b) is a

variant of the first cycle. Instead of using the fresh feed for pressurizing the column in

the pressurization step, the light product from the adsorption step is used to pressurize

the column from the light product end. In the third and the fourth cycles, the blowdown

step is included after the adsorption step in the first and the second cycles to depressurize

the column to an intermediate pressure PI in the co-current direction through the light

product end to remove N2 from the column. The vacuum pump is used to remove the

gas by implementing a constant interstitial velocity (vBLO) boundary condition at the light

product end. Although the underlying constituent steps are the same in these cycles, in

principle, these cycles can yield different performances and are considered unique from a

process design perspective. The VSA cycle performs the separation with IISERP MOF2,

a novel metal-organic framework, as an adsorbent. Previous screening studies have shown

superior performance of IISERP MOF2 for post-combustion CO2 capture.34,35 The CO2

and N2 isotherms on IISERP MOF2 at 25 ◦C are shown in Fig. 3 and the DSL isotherm

parameters are reported in Table S1 in the Supporting Information. Each step in the VSA

cycle can be distinguished based on boundary conditions provided in Table 1. Hence, separate
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neural network models are developed for each step to predict its spatiotemporal dynamics.

As can be seen from Table 1, the durations of blowdown, evacuation, and pressurization step

can be calculated through implementation of a constant velocity boundary condition based

on the pressures PH, PI, and PL.
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Figure 3: CO2 and N2 isotherms on IISERP MOF2 at 298.15K.35

The VSA cycle performance can be tuned based on the following operating parameters.

For the adsorption step, feed velocity (vfeed) and duration of the adsorption step (tADS) can

be varied. In blowdown and evacuation steps, pressures PI, PL, and vacuum pump velocities,

vBLO, vEVAC are the variables. The pressurization inlet velocity, vFP, is an operating param-

eter in the pressurization step. In the present study, vfeed, vBLO, vEVAC, and vFP are held

constant and are not considered operating parameters in neural network training. In other

words, the VSA cycle simulations are restricted to fixed vacuum pump and blower sizes.
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Table 1: Boundary conditions and the related parameters (ζ) for different steps considered
in this study.

Step z=0 z=L ζ

Adsorption

v|z=0 = vfeed

DL
∂yi
∂z

∣∣
z=0

= −v|z=0 (yi,feed − yi|z=0)

P |z=L = PADS

∂yi
∂z

∣∣
z=L

= 0

-

Blowdown

∂P
∂z

∣∣
z=0

= 0

∂yi
∂z

∣∣
z=0

= 0

v|z=L = vBLO

∂yi
∂z

∣∣
z=L

= 0

-

Evacuation

v|z=0 = vEVAC

∂yi
∂z

∣∣
z=0

= 0

∂P
∂z

∣∣
z=L

= 0

∂yi
∂z

∣∣
z=L

= 0

P0

Pressurisation

v|z=0 = vFP

DL
∂yi
∂z

∣∣
z=0

= −v|z=L (yi,feed − yi|z=L)

∂P
∂z

∣∣
z=L

= 0

∂yi
∂z

∣∣
z=L

= 0

P0

yin

4.1 Neural network training

4.1.1 Neural network architecture

Unique neural networks are trained to learn the spatiotemporal dynamics of four different

constituent steps: the pressurization step, the adsorption step, the co-current blowdown step,

and the counter-current evacuation step. The neural network architecture employed for all

steps consists of an input layer, ten hidden layers with 100 neurons each, and one output

layer with four neurons (four state variables). The choice of specified number of hidden layers

and neurons was based on limited numerical experimentation that was carried out where no

significant influence on the neural network training performance was observed when the
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number of hidden layers were varied between 8 to 12 layers and the number of neurons were

varied from 80 to 120. The number of neurons in the input layer varies from step to step.

The common inputs for all steps are the spatiotemporal coordinates (z, t), and the initial gas

composition at 50 spatial locations (based on the finite volume discretization of the detailed

model). In addition to these 52 inputs, other inputs related to the step-parameters are

included depending on the step. For this study, the only variable in the adsorption step is

the step duration tADS. Since time t is already one of the inputs to the neural networks, the

variation of tADS can be achieved by extracting different slices of spatiotemporal solutions

of the four state variables. Therefore, tADS is explicitly not considered as a step-parameter

input. As the blowdown step occurs after the adsorption step, the column pressure at the

z = 1 boundary is always at 1 bar initially. Subsequently, it reduces to the final column

pressure, PI, when subjected to a constant vacuum pump flow. Similar to the adsorption

step, slices of spatiotemporal solutions can be extracted for any PI. Again, there is no need

for an additional step-parameter. In the evacuation step, the initial column pressure, P0, will

be either PH or PI and then depressurizes to PL. Here, initial column pressure, P0, depends

on the preceding step and the spatiotemporal solutions of evacuation step are dependent on

P0. Hence, P0 is considered as an input to the evacuation step model. Similarly, the initial

column pressure, P0, in the pressurization step is also an input for the pressurization step

model. Moreover, the inlet gas-phase composition (yin,P) in the pressurization step can be

a variable depending on the stream (i.e. feed or light product) used for pressurizing the

column. This makes yin,P a parameter for the pressurization step. Hence, P0 and yin,P are

the additional inputs for the pressurization step. To summarize, the adsorption and the

blowdown step neural networks have 52 inputs, the evacuation step neural neural network

has 53 inputs, and the pressurization step input has 54 inputs. Since the proposed approach

requires the calculation of first and second order derivatives using automatic differentiation,

the nonlinear activation in the neural networks must be differentiable. Hence, a hyperbolic

tangent function is used for the nonlinear activation in the adsorption and sinusoidal function
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for other steps. It is worth noting that the neural network hyperparameters such as the

number of hidden layers, the number of hidden neurons, activation function, and weight

terms (λdata,0, λdata,lb, λdata,rb, λdata,f , λr,c, and λr,p) are chosen based on limited numerical

experimentation.

4.1.2 Generating initial profiles for training

To gather training data for each model, individual steps must be simulated at various ini-

tial column profiles and step-parameters to enable the mapping in Eq. 7. As previously

mentioned, the column profiles change drastically depending on the sequence of steps imple-

mented, step-parameters, and the number of times the cycle is simulated until CSS. To ensure

appropriate sampling of different initial column profiles for training, knowledge of various col-

umn profiles encountered in cyclic adsorption processes is essential. One way to learn about

the types of column profiles typically encountered is to simulate various adsorption processes

using the detailed model and gather different column profiles of individual steps for various

operating conditions. The other approach involves synthetically generating different types

of column profiles based on mathematical functions, splines, etc. The drawback of the latter

approach is the loss of column profile characteristics specific to adsorption processes. Here,

the former approach is used to gather different initial profiles by first simulating different

VSA cycles using the detailed model based on the simulation parameters provided in Table

S2 in the Supporting Information. The detailed model-based cycle simulations are carried

out at different operating conditions generated randomly using Latin hypercube sampling.

For each set of operating conditions, VSA cycle simulations are carried out until the CSS.

At the same time, the gas-phase composition column profiles after every step are gathered

from the initial cycle to the CSS. From these, Nk=60 different initial column profiles and the

corresponding step-parameters of each step are randomly chosen and used for training the

model. Note that Nk=60 was determined as an appropriate number of initial column profiles

based on a numerical experimentation reported in the supporting information. Moreover,
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while selecting the initial gas-phase composition profiles for training, it was ensured that

initial column profiles are unique and diverse by gathering them from a well-sampled space

that corresponds to different cycles, operating conditions, cycle number before the system

reaches CSS, and also the extent to which the fronts propagated into the column. Figure S2

in the supporting information illustrates different initial profiles used in the neural network

training for each step.

4.1.3 Data acquisition and learning procedure

Next, individual steps are separately simulated based on these initial profiles and step-

parameters to obtain the labelled data for model training. The temporal domains defined

for the individual steps in the step simulations are larger than the typical operating ranges

used in the cycles. For instance, the blowdown and the evacuation steps are simulated

for durations where the column pressures reach lower than the desired pressures in the

cycles. The rationale behind defining such large temporal domains in the individual step

simulations is the flexibility to extract different slices of temporal solutions within the larger

domain, when using a trained neural network. In essence, this approach allows us to use

the neural network model for predictions with all meaningful step times. It is worth noting

that a unique simulation is carried out for each set of initial profiles and step-parameters.

In the data acquisition procedure, the simulation data from each case is first gathered,

and then the inputs and the physical quantities are subjected to normalization and non-

dimensionalization, respectively. Following this, the initial and the boundary data of four

state variables based on Nk cases are gathered for each step to form the labelled data.

Although the data generated in simulations is massive, only a tiny portion is extracted as

the labelled data. For inferring the PDE solution within the spatiotemporal domain, Nr =

250 collocation points are randomly generated using Latin hypercube sampling for each

initial profile and step-parameter. It is worth reiterating that no additional simulation data

is required for the collocation points.
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The learning procedure is implemented in Tensorflow v1.1528 and the computations are

performed based on a single Quadro P5000 GPU card where it took approximately 4-8

hours training each model. It is worth reiterating that no system-specific inputs such as

mass transfer coefficients, CO2 and N2 isotherm parameters are fed to the neural networks

in the learning process.

4.1.4 Comparison of predicted and detailed model solutions

The effectiveness of the trained neural network models in learning the spatiotemporal so-

lutions of VSA governing equations can be visualized in Fig. 4, where the spatiotemporal

solutions based on both neural network predictions and detailed model simulations are com-

pared for one of the test cases in the previous section. For the discussion, the blowdown step

is shown as an example. Here, the emphasis remains on whether the neural network model

has accurately learnt the interior of the spatiotemporal solutions of the four state variables.

As can be seen from the figure, the results produced by the physics-based neural networks

are in very good agreement with the detailed model solutions for all four state variables and

the relative L2 error calculated for the four state variables are as follows: y1(z, t): 4.3e-02,

P (z, t): 2.9e-03, q1(z, t): 2.9e-02, and q2(z, t): 1.7e-02. Remarkably, this also means that the

neural networks accurately learnt the underlying interdependencies of each state variable in

the VSA process. The prediction accuracies indicate that the methodology employed herein

can successfully enable the desired coupling of the state variables by simultaneously mini-

mizing the residuals of component and overall mass balances along with labelled data. It is

worth reiterating that the use of physics-based residuals in the loss function has allowed the

neural networks to learn the adsorption column dynamics with one fully connected multi-

output architecture instead of conventional approaches of having multiple surrogate models

for each state variable. Another interesting feature is the ability to predict q1 and q2 so-

lutions. The detailed model calculations of q1 and q2 require the adsorption isotherm and

the linear driving force model. In the present methodology, instead of explicitly providing
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these equations, the initial, final and boundary data of q1 and q2 are provided. By simulta-

neously allowing the neural networks to match this data along with minimizing the overall

PDE residuals, the q1 and q2 terms in the PDEs are forced to obey the imposed constraints,

thereby predicting the interior solutions of q1 and q2 reasonably well.

4.2 Cycle synthesis and simulations

Here, the effectiveness of the proposed approach is tested for cycle synthesis by constructing

and simulating the four VSA cycles illustrated in Fig. 2. For this, the cycle simulations are

carried out by varying tADS, PI, and PL between 5-50 seconds, 0.7-0.99 bar and 0.18-0.23

bar, respectively. Both neural networks and the detailed process model are initialized with

an arbitrary initial condition and each of the constituent steps are simulated sequentially.

The final state of the column in a step is set as the initial condition for the subsequent one.

The simulations are carried out until CSS and the results produced by the two approaches

are compared at CSS. In detailed process simulations, the CSS condition is reached when

the overall mass balance error equals 0.5% or less for five consecutive cycles. The CSS was

assumed to be achieved in neural network-based simulations when there is no variation in the

column dynamics of each step in the cycle during repeated cycling. It is worth noting that

the overall mass balance error in neural network simulations may not necessarily converge

to less than 0.5% due to slight discrepancies in the neural network predictions compared to

the original solutions (see Section 4.3 for the detailed discussion).

4.2.1 Simulation of three-step FP cycle

First, a simple three-step VSA cycle with feed pressurization (FP) is constructed based

on the individual feed pressurization, adsorption, and evacuation step models. A specific

process operating condition chosen randomly: tADS = 25 s, PL=0.2 bar is considered to test

the ability of neural network-based simulations to predict CSS profiles. Figures 5 and 6

illustrate the column profiles of four state variables after cycle #1 and at CSS from neural
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Figure 4: Comparison of spatiotemporal solutions of the four state variables based on the
detailed process model (left hand panel) and the blowdown step neural network predictions
(right hand panel) for one of the test initial column profile. In both the simulations, the
blowdown step is initialized with a column pressure of 1 bar.
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network- and detailed process model-based simulations, respectively. Overall, the neural

network predictions are accurate. However, the neural network model predicted CO2 gas-

phase compositions and CO2 solid loadings at the end of the cycle #1 marginally advanced

further through the column. Nevertheless, this discrepancy vanished at CSS where the

profiles calculated from both the simulations are in good agreement. In Table 2, the CO2

purity and CO2 recovery calculated based on both neural network and detailed process

simulations are reported. Moreover, the computational times are also provided. The neural

network-based calculations of CO2 purity and CO2 recovery have an error deviation of 3%

and the neural networks simulations are almost 31 times faster than the detailed model

simulations.
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Figure 5: Comparison of cycle #1 profiles of four state variables obtained from the neural
network (markers) and the detailed model (lines) simulations of three-step FP cycle for the
operating condition: tADS=25 s and PL = 0.2 bar.

30



1.2

1.0

0.8

0.6

0.4

0.2

0.0

C
O

2 g
as

 p
ha

se
 c

om
po

si
tio

n 
(-)

1.00.80.60.40.20.0
Axial length (m)

 Pressurization
 Adsorption
 Evacuation

1.2

1.0

0.8

0.6

0.4

0.2

0.0

C
ol

um
n 

pr
es

su
re

 (b
ar

)

1.00.80.60.40.20.0
Axial length (m)

 Pressurization
 Adsorption
 Evacuation

2.0

1.5

1.0

0.5

0.0

C
O

2 s
ol

id
 lo

ad
in

g 
(m

ol
/k

g)

1.00.80.60.40.20.0
Axial length (m)

 Pressurization
 Adsorption
 Evacuation

0.010

0.008

0.006

0.004

0.002

0.000

N 2
 s

ol
id

 lo
ad

in
g 

(m
m

ol
/k

g)

1.00.80.60.40.20.0
Axial length (m)

 Pressurization
 Adsorption
 Evacuation

1.2

1.0

0.8

0.6

0.4

0.2

0.0

C
ol

um
n 

pr
es

su
re

 (b
ar

)

50403020100
Cycle time (s)

FP ADS EVAC

(a) (b)

(c) (d)

(e)

Figure 6: Comparison of cyclic steady state (CSS) profiles of four state variables obtained
from the neural network (markers) and the detailed model (lines) simulations of three-step
FP cycle for the operating condition: tADS=25 s and PL = 0.2 bar.
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Table 2: Summary of CO2 purity and CO2 recovery calculated based on neural networks
(NN) and detailed process model (DM) simulations for the operating condition: tADS=25 s
and PL = 0.2 bar. For four-step cycles, PI = 0.75 bar was used. The number of cycles to
reach CSS and the computational time are also reported. Note that both the neural network
and the detailed process model simulations were carried out on a CPU and the CPU seconds
reported were on a 128 GB and 3.10 GHz workstation.

VSA cycles
CO2 purity (%) CO2 recovery (%) Computational time (s)

DM NN DM NN DM NN

Three-step FP cycle 46.1 48.9 29.0 32.5 231.5 7.5

Three-step LPP cycle 52.1 50.6 40.2 37.9 330.2 17.9

Four-step FP cycle 53.2 55.5 26.2 29.3 247.8 7.9

Four-step LPP cycle 59.9 57.4 37.0 34.3 351.3 41.3

4.2.2 Simulation of three-step LPP cycle

Another three-step cycle can be constructed by pressurizing the column using light product

from the adsorption step instead of feed pressurization, as illustrated in Fig. 2(b). In the

light product pressurization (LPP) step, the inlet CO2 gas-phase composition depends on the

outlet stream of the adsorption step. For simplicity, it is assumed that the outlet stream of the

adsorption step is first directed into a well-mixed tank before feeding to pressurize the column

in the LPP step. Both neural network and detailed process model simulations are carried

out based on this additional assumption. The same operating condition as earlier is used to

compare the CSS profiles from both models. Figure S3 in the supporting information shows

the column profiles of four state variables after cycle #1 and Fig. 7 illustrates the column

profiles of four state variables at CSS from both simulations, respectively. The neural network

profile predictions are remarkable. The impact of pressurizing the column with outlet stream

of the adsorption step can be visualized from the CO2 gas-phase compositions/solid loadings

at the light product end. The final CO2 solid loading at z = 1 at the end of the LPP

step at CSS is ≈ 1 mol kg−1, whereas in the previous case with FP, the final CO2 solid

loading at z = 1 at CSS is ≈ 1.4 mol kg−1. It is worth mentioning that the pressurization

step neural network model learnt the impact of inlet CO2 gas-phase composition on the
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spatiotemporal dynamics very well. As can be seen from Table 2, the calculated CO2 purity

and CO2 recovery from the neural network simulations deviate by 2% from the detailed

model simulations. The computational speeds for neural networks simulations were up to 18

times faster than the detailed model simulations.
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Figure 7: Comparison of cyclic steady state (CSS) profiles of four state variables obtained
from the neural network (markers) and the detailed model (lines) simulations of three-step
LPP cycle for the operating condition: tADS=25 s and PL = 0.2 bar.

4.2.3 Simulation of four-step FP cycle

Here the four-step FP cycle, shown in Fig. 2(c), is constructed using the pressurization, the

adsorption, the blowdown, the evacuation step models. For the operating condition of tADS
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= 25 s, PI=0.75 bar, and PL=0.2 bar, the column profiles after cycle #1 and at CSS from

both neural network- and detailed model-based simulations can be visualized in Fig. S4 (in

the supporting information) and Fig. 8, respectively. The profiles calculated from both the

simulations are in good agreement, although the neural network predicted CO2 gas-phase

compositions and CO2 solid loadings at the end of the cycle #1 marginally advanced further

through the column. Nevertheless, the overall effectiveness of the neural network models

in predicting the CSS profiles are excellent. As can be seen from Table 2, the inclusion

of the blowdown step between the adsorption and the evacuation step improved the CO2

purity while the CO2 recovery remained almost the same compared to the first case. This is

because the blowdown step removed some residual N2 from the column, as can be seen from

the increase in the CO2 gas-phase compositions across the column before the evacuation

step. Finally, the CO2 purity and the CO2 recovery from the neural network simulations

within 3% deviation compared to the detailed model simulations. In terms of computational

efficiency, neural networks simulations saved up to 31 times the computational run-time.
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Figure 8: Comparison of cyclic steady state (CSS) profiles of four state variables obtained
from the neural network (markers) and the detailed model (lines) simulations of four-step
FP cycle for the operating condition: tADS=25 s, PI = 0.75 bar, and PL = 0.2 bar.

4.2.4 Simulation of four-step LPP cycle

Finally, the four-step LPP cycle is constructed and simulated for the operating condition:

tADS = 25 s, PI=0.75 bar, and PL=0.2 bar. The profiles of four step variables after cycle #1
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and at CSS are shown in Fig. S5 (in the supporting information) and Fig. 9, respectively.

Again, the predictions from the neural network simulations are in very good agreement with

the detailed model simulations. Based on Table 2, the CO2 purity and the CO2 recovery

are within 3% deviation. The computational speeds achieved were 8.5 times higher than the

detailed model.
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Figure 9: Comparison of cyclic steady state (CSS) profiles of four state variables obtained
from the neural network (markers) and the detailed model (lines) simulations of four-step
LPP cycle for the operating condition: tADS=25 s, PI = 0.75 bar, and PL = 0.2 bar.

4.2.5 Comparative performance for various operating conditions

The performance of the neural network models are tested based on 50 different randomly

chosen operating conditions spanning the entire range considered for cycle synthesis study.
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Here, CO2 purity and CO2 recovery calculated at CSS from neural network and detailed

process model simulations are compared. Figure 10 compares the CO2 purities obtained

from both the models and the shaded region represents ± 2.5% deviation. For all the cycles,

the CO2 purity calculated based on neural network simulations lie within the 2.5% difference

from the original values. On the other hand, the parity plot for CO2 recovery illustrated

in Fig. 11 show that the most of the predictions based on neural network simulations are

within the 2.5% margin. Finally, the computational times incurred for 50 simulations of all

four cycles are reported in Table 3. The differences in computational speed-ups for different

cycles can be attributed to the fact that each cycle configuration takes different the number

of cycles to achieve CSS condition depending on the operating conditions.
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Figure 10: Parity plots of CO2 purity obtained from the detailed process model- and the
neural network-based simulations of (a) three-step FP cycle (b) three-step LPP cycle (c)
four-step FP cycle (d) four-step LPP cycle at 50 different operating conditions. The shaded
region represents ±2.5% deviation.
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Figure 11: Parity plots of CO2 recovery obtained from the detailed process model- and the
neural network-based simulations of (a) three-step FP cycle (b) three-step LPP cycle (c)
four-step FP cycle (d) four-step LPP cycle at 50 different operating conditions. The shaded
region represents ±2.5% deviation.
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Table 3: Summary of computational times for carrying out 50 simulations using PANACHE,
the detailed process model, and also PANACHE enabled detailed process model. Note that
both the neural network and the detailed process model simulations were carried out on a
CPU and the CPU seconds reported were on a 128 GB and 3.10 GHz workstation.

VSA cycles
Computational time (s)

Detailed model PANACHE PANACHE enabled detailed model

Three-step FP cycle 8452 409 4626

Three-step LPP cycle 11637 117 4371

Four-step FP cycle 9041 450 3764

Four-step LPP cycle 12422 129 4273

4.3 PANACHE enabled detailed process model

As mentioned previously, one of the challenges with the neural network-based simulations

is achieving an overall mass balance convergence of less than 0.5% at CSS. While some of

the simulations in Section 4.2.5 resulted in the overall mass balance error less than 0.5%,

the overall mass balance error in other simulations was typically between 0.5-19%, although

the column profiles remained nearly invariant after repeated cycling. This was primarily due

to the small discrepancies while predicting the evacuation step duration in neural network

simulations. For instance, see Fig. 6(e) where the neural networks slightly over-predicts

the evacuation step duration compared to the detailed process model. Because of this, the

moles out of the evacuation step calculated by the neural network simulations are marginally

overestimated, resulting in increased overall mass balance error; however this effect remains

insignificant on purity and recovery calculations (i.e. within 2.5% error). While the effec-

tiveness of this approach relies on the flexibility to synthesize different cycles through faster

computations, especially for screening several thousands of adsorbents, achieving the overall

mass balance convergence can be a potential challenge. To overcome this, the CSS profiles

from the neural network simulations can be fed into the detailed process model until the

mass balance converges to less than 0.5% to increase the accuracy. This section explores the
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possibility of using PANACHE to accelerate the convergence of the detailed process model.

Here, the CSS profiles from PANACHE in Section 4.2.5 are fed as initial conditions to the

detailed process model. Subsequently, the detailed process model is simulated until the over-

all mass balance is less than 0.5%. Figures S6 and S7 illustrate the parity plots of CO2 purity

and recovery for the four different VSA cycles. The computational times recorded for this

hybrid approach can be seen in Table 2. As can be seen, the hybrid approach resulted in

almost 100% accuracy in predicting CO2 purity and recovery, however with only ≈3 times

the computational speeds.

5 Conclusions

PANACHE, a physics-based neural network framework based on modern deep learning tech-

niques was developed to rapidly synthesize and simulate cyclic adsorption processes. The

deep neural networks employed herein are trained to learn the full spatiotemporal solutions

of different state variables in cyclic adsorption processes by obeying the underlying conserva-

tion laws of mass and momentum along with adsorption equilibria. Unique neural networks

are trained for different constituent steps of cyclic adsorption processes. The generaliza-

tion capabilities are enabled by training the neural network models based on different initial

conditions and operating parameters. In the present study, the proposed methodology was

tested on the case of post-combustion CO2 capture by synthesizing four simple VSA cycles

using individual neural network models.

The results demonstrated that the trained neural network accurately predicts the spa-

tiotemporal solutions of four state variables: CO2 gas phase composition, column pressure,

CO2 solid loading, and N2 solid loading. Particularly, the dynamics of state variables in-

terior of the spatiotemporal domain were well-captured, even though no labelled data was

provided. Using the trained neural network models, a three-step VSA cycle with feed pres-

surization, adsorption, and evacuation steps are constructed and simulated. The results
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showed that the neural network-based simulations accurately predicted the CSS profiles of

each step in the cycle. Later on, the a three-step VSA cycle with light product pressuriza-

tion is simulated and the neural network predictions were found to be in excellent agreement

with the detailed process simulations. Finally, the complexity was increased by synthesizing

two four-step VSA cycles with feed and light product pressurization steps. The compara-

tive performances between the neural network and the detailed model simulations at various

operating conditions demonstrated the effectiveness of this methodology. In terms of compu-

tational speeds, the neural network simulations were up to 100 times faster than the detailed

model simulations. Moreover, a hybrid approach was explored where the CSS profiles from

the neural networks simulations were later fed into the detailed process model to improve the

overall mass balance convergence while achieving 3× computational speeds. In future, this

methodology will be extended to incorporate more steps in order to synthesize and optimize

complex adsorption cycles, a step towards superstructure-based optimal cycle synthesis.

While the capabilities of the proposed approach was successfully demonstrated for one

material and different process configurations, future research should also focus on extending

the methodology that can incorporate different isotherms as inputs, thereby allowing the

framework to simultaneously evaluate different materials and processes. In addition, efforts

have to be made in the subsequent studies to further improve the computational speeds of

this methodology. Different sampling strategies to generate collocation points must also be

explored in future to improve the model training in regions where solutions are stiff.

Nomenclature

Roman symbols

b adsorption equilibrium constant for site 1 (m3 mol−1)

bl bias of layer l of the neural network

b biases of the neural network
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c gas-phase concentration (mol m−3)

c̄ non-dimensionalized gas-phase concentration (-)

d adsorption equilibrium constant for site 2 (m3 mol−1)

DL axial dispersion (m2 s−1)

Dm molecular diffusivity (m2 s−1)

DP macropore diffusivity (m2 s−1)

h hidden layer

k mass transfer coefficient (s−1)

L column length (m)

ncomp number of components

Ni number of labelled data points

Nk number of initial profiles

Nl number of neurons in layer l of the neural network

Nlayers total number of layers in neural network architecture

Nr number of collocation points

P pressure (Pa)

P̄ non-dimensionalized pressure (-)

q concentration in the solid phase (mol kg−1)

q̄ non-dimensionalized solid-phase concentration (-)

q∗ equilibrium concentration in the solid phase (mol kg−1)

qsb saturation concentration in the solid phase for site 1 (mol kg−1)

qsd saturation concentration in the solid phase for site 2 (mol kg−1)

qref equilibrium concentration in the solid phase at feed condition (mol kg−1)

ri column inner radius (m)

ro column outer radius (m)

rp particle radius (m)

r residual of the partial differential equation
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R universal gas constant (Pa m3 mol−1 K−1)

s constituent step

t time (s)

t̄ normalized time (-)

T temperature (K)

v interstitial velocity (m s−1)

v̄ non-dimensionalized interstitial velocity (-)

Wl weights of layer l of the neural network

W weight matrices of the neural network

y gas-phase composition (-)

z bed coordinate (m)

z̄ normalized axial coordinate (-)

Greek and math symbols

ε column void fraction (-)

εp particle void fraction (-)

ζ step-related parameters

θ parameters of the neural network

λ weight term in the loss function

µ gas viscosity (kg m−1 s−1)

ρs adsorbent particle density (kg m−3)

σ nonlinear activation function

τ tortuosity (-)

ψ dimensionless quantity in component and overall mass balance equations

ω dimensionless quantity in component and overall mass balance equations

L mean-squared error

L2 averaged relative L2-norm
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S state variable

Acronyms

ADS adsorption step

ANN artificial neural network

BLO blowdown step

CSS cyclic steady state

DM detailed process model

DNN deep neural network

DSL dual-site Langmuir isotherm model

EVAC evacuation step

FP feed pressurization

L-BFGS limited-memory Broyden-Fletcher-Goldfarb-Shanno

LDF linear driving force

LPP light product pressurization

LSTM long short-term memory

MSE mean-squared error

NN neural network

ODE ordinary differential equation

PANACHE Physics-based artificial neural network framework for adsorption and chromatography

emulation

PDE partial differential equation

PSA pressure swing adsorption

TSA temperature swing adsorption

TVD total variation diminishing

VSA vacuum swing adsorption
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Subscripts

0 initial

ADS adsorption

BLO blowdown

c component mass balance

EVAC evacuation

f final

FP feed pressurization

H high

I intermediate

in inlet

L low

lb left boundary (z = 0)

p overall mass balance

rb right boundary (z = L)

ref reference value for normalization
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