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ABSTRACT: Despite decades of effort, no earth abundant homogeneous catalysts have been 
discovered that can selectively oxidize methane to methanol. We exploit active learning to 
simultaneously optimize methane activation and methanol release calculated with machine 
learning (ML)-accelerated density functional theory (DFT) in a space of 16M candidate catalysts 
with novel macrocycles. By constructing these macrocycles from fragments inspired by 
synthesized compounds, we ensure synthetic realism in our computational search. Our large-
scale search reveals that low spin Fe(II) compounds paired with strong field (e.g. P or S-
coordinating) ligands have the best energetic tradeoff between hydrogen atom transfer (HAT) 
and methanol release. This observation is distinct from prior efforts that have focused on high 
spin Fe(II) with weak field ligands. By decoupling equatorial and axial ligand effects, we 
determine that negatively charged axial ligands are critical for more rapid release of methanol 
and, higher valency metals (i.e., M(III) vs M(II)) are unlikely to be suitable for methanol release. 
With full characterization of barrier heights, we confirmed that optimizing for HAT did not lead 
to large oxo formation barriers. Energetic span analysis revealed designs for an intermediate spin 
Mn(II) catalyst and a low spin Fe(II) catalyst that would lead to good turnover frequencies. This 
active learning approach is expected to be beneficial for search of large catalyst spaces where no 
prior designs have been identified and where linear scaling relationships between reaction 
energies or barriers may be limited or unknown.  
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1. Introduction 

Direct methane-to-methanol conversion with high selectivity remains a challenge1 in 

unlocking natural gas as a feedstock.2 Catalysts that can readily convert methane into methanol 

must be potent enough to activate the strong C-H bonds of methane but also release methanol to 

facilitate catalyst turnover and avoid catalyst poisoning or methanol overoxidation.3, 4 Thus, the 

design of the optimal catalysts for methane-to-methanol or similarly challenging reactions 

requires balancing inherent tradeoffs between activity, selectivity, and stability, motivating an 

exhaustive search over chemical space.5 Enzymes with mononuclear Fe active sites (e.g. TauD6-8 

or P4509, 10) have demonstrated the capability to perform selective partial oxidation of substrates 

with strong C-H bonds, including methane. These enzymes have thus motivated the design of 

ligands11-14 for synthetic systems, including both homogeneous15-18 and heterogeneous19-22 

catalysts. Nevertheless, to date no Earth abundant molecular catalyst has been identified that can 

meet all criteria. 

 Compounding the challenges of the need to search a large space, high-valent metal-oxo 

moieties that are frequently invoked for C-H bond activation23 on transition metal complexes14, 24-

28, heterogeneous catalysts29-35, or enzymes6, 7, 10 are challenging to isolate and characterize 

experimentally36-41. Instead, first-principles computation with density functional theory (DFT) 

has filled this gap42-46 in understanding the electronic structure47-50 needed for C-H bond 

activation. First-principles modeling has revealed the role of spin state in reactivity51-55, and 

revealed the importance of multi-state reactivity56-59 that is difficult to study experimentally.60 To 

reduce the computational cost of catalyst screening needed to explore a large chemical space, it 

is appealing to extend to homogeneous catalysis61, 62 the linear free energy relationships 

(LFERs)29, 63-67 between thermodynamic steps or Brønsted-Evans-Polanyi (BEPs)68-71 linear 
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scaling relationships between barrier heights and reaction energies. Nevertheless, in open shell 

transition metal catalysis, the nature of the LFERs or BEPs are rarely known beforehand72. 

Theese relationships are also easily disrupted by changes in metal-local structure73-75 or spin 

state24, 76. Although these disruptions in thermodynamic or kinetic scaling increase computational 

cost by requiring full characterization of the catalytic cycle, they simultaneously provide the 

opportunity for overcoming kinetic or thermodynamic limitations observed in catalysts that obey 

these scaling relations, potentially providing paths to overcome challenges in direct methane-to-

methanol conversion.  

 Thus far, an Edisonian approach for catalyst design has been unsuccessful in identifying 

effective molecular catalysts for direct methane-to-methanol conversion, in part because the 

variations in chemistry that can be searched in one single study are fairly limited (e.g., to 

Hammett tuning26, 77, 78). As an alternative approach, the absence of universal scaling relations 

between intermediate energetics provides an opportunity for non-linear machine learning (ML) 

models that can be used over a larger space. Rather than relying on linear relationships between 

quantities or small variations in chemistry, ML models can be trained to directly predict catalyst 

reactivity on the basis of chemical composition and applied to thousands of compounds.79 In 

recent years, this strategy has reduced the time to property prediction to seconds, which would 

otherwise take days using DFT, and has led to accurate predictions of reaction energetics80-83, 

redox and ionization potentials84-87, and frontier orbital energetics88, 89 that pave the way for 

catalyst discovery over large chemical spaces. Importantly, they have demonstrated the limits of 

conventional descriptor-based screening, highlighting where quantities like the frontier orbital 

energies of reactive intermediates are poor predictors of reaction energies.80 
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 A key trade-off for the machine learning approach is that data must be acquired to make 

the models predictive. When aiming to search a large space of catalysts or materials, active 

learning90-94 is instead preferred as a way to acquire data95, 96 where models are most uncertain.97, 

98 For example, efficient global optimization99, 100 (EGO) was employed to search a space of 2.8 

M redox flow couples84 to reveal design principles in weeks instead of decades.  It is thus 

attractive to exploit similar approaches for search of C-H activation catalysts, given no mid-row 

3d transition metal complexes can efficiently convert methane into methanol.69  

 In this work, we construct a 16M compound space of realistic Mn and Fe catalysts with 

novel tetradentate macrocycles and coordinating axial ligands. We demonstrate that our active 

learning approach enables the discovery of optimal catalysts in the design space where strong 

thermodynamic or kinetic scaling relations do not hold. We decouple the roles of axial and 

equatorial ligands on tuning reaction energetics and determine that Hammett tuning on catalysts 

has a modest effect relative to optimal macrocycle design or axial ligand selection. These 

discovered lead compounds provide alternative designs with  novel spin state and ligand 

chemistry in comparison to prior known best-in-class catalysts. 

2. Reaction Mechanism. 

We calculate the reaction energies for the radical rebound mechanism101 for methane-to-

methanol conversion on mononuclear Mn and Fe catalysts. For these catalysts, we consider two 

resting state oxidation states, M(II) and M(III), in their corresponding spin states (Supporting 

Information Table S1). We do not study Cr and Co catalysts because Cr catalysts form terminal 

metal-oxo moieties that are too stable and cannot activate C-H bonds24, 102 while Co metal-oxo 

intermediates are rarely stable (i.e., are past the oxo wall).103 From a resting state structure (1), 

we form a high valent terminal metal-oxo (2) upon two-electron metal oxidation by nitrous oxide 
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(Figure 1). An alternate oxidant choice (i.e. triplet O2) will rigidly shift reaction energetics but 

does not affect relative energetics (Supporting Information Table S2). We compute the oxo 

formation energy (∆E(oxo)) as: 

Δ𝐸(oxo) = 𝐸(2) + 𝐸(N!) − 𝐸(1) − 𝐸(N!O) 

Upon oxo formation, the metal formal oxidation state changes from M(II/III) to M(IV/V). The 

high valent M(IV/V)=O intermediate then undergoes hydrogen atom transfer (HAT) from a 

methane substrate to form a M(III/IV)-OH intermediate (3), leaving a methyl radical (Figure 1). 

We compute the reaction energy for the HAT step (∆E(HAT)) as: 

Δ𝐸(HAT) = 𝐸(3) + 𝐸(∙ CH") − 𝐸(2) − 𝐸(CH#) 

Following HAT, the methyl radical rebounds with the M(III/IV)-OH intermediate to form a 

metal-bound methanol intermediate (4, Figure 1). We compute the ∆E(rebound) step as: 

Δ𝐸(rebound) = 𝐸(4) − 𝐸(3) − 𝐸(∙ CH") 

The catalyst then returns to its resting state (1) upon methanol release (∆E(release)): 

Δ𝐸(release) = 𝐸(1) + 𝐸(CH"OH) − 𝐸(4) 

Although both oxo formation73, 104 and hydrogen atom transfer105, 106 can be turnover 

determining, methanol release is believed to be a universal thermodynamic sink in the radical 

rebound mechanism.24, 102 
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Figure 1. The radical rebound mechanism for partial oxidation of methane to methanol. The 
cycle proceeds clockwise from the resting state (1) in oxidation state n = II/III, to the metal−oxo 
intermediate (2) formed by two-electron oxidation with N2O, followed by hydrogen atom 
transfer to form a metal-hydroxo intermediate (3), and rebound to form a metal-bound methanol 
intermediate (4). A representative catalyst is shown, with the metal (M) shown in brown, 
corresponding to Mn and Fe in this work. All catalysts have a tetradentate equatorial ligand (L1) 
and a monodentate axial ligand (L2). We color the arrows of steps that have been observed to be 
turnover determining, with potential turnover determining transition states in blue and the 
turnover determining intermediate in red. 

 

3. Design Space and Objectives. 

Molecular complexes that have been studied for C–H activation typically consist of Fe(II) 

centers coordinated by nitrogen atoms in analogy to enzymes11, 107, 108. This means many 

chemical environments, such as those with O, P, and S-coordinating atoms, have not been 

thoroughly examined for C–H activation, motivating their inclusion in a wider search. To create 

an expanded space of macrocycles that are likely to be synthetically accessible, we design 

realistic ligands by recombining fragments of known ligands into new tetradentate macrocycles, 

ultimately producing spaces as large as 16 M catalysts. From this space, we aim to discover 
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ligand chemistry that optimally tunes catalyst energetics to reach the “utopia point”109 where a 

catalyst will simultaneously activate methane and release methanol.  

As an example of our fragment-based approach, the pyrrole subunits that comprise a 

porphyrin and the dimethylamine subunits that comprise a cyclam can be combined to produce 

new macrocycles (Figure 2). We also include 3p equivalents of more well studied 2p fragments 

(e.g., P-coordinating phosphole in analogy to N-coordinating pyrrole, Figure 2). Many of these 

fragments have been part of synthesized macrocycles110, 111 but not necessarily in those that have 

been studied for C–H activation. In select cases, fragments may favor multiple charge states 

(e.g., pyrrole and phosphole), and in those cases we consider all possibilities to construct 

macrocycles (Supporting Information Figures S1 and S2). We join fragments together with 

compatible bridge atoms that determine the macrocycle ring size and aromaticity (Supporting 

Information Tables S3 and S4). These combinations result in 16,986 candidate tetradentate 

macrocycles of varying in coordination atom identities, size, ring size, charge, and aromaticity 

(Supporting Information Table S4 and Figure S3).  
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Figure 2. 15 fragments (top) and 9 bridges (middle) that are used to construct tetradentate 
macrocycles in transition metal complexes for light alkane oxidation. All metal-coordinating 
atoms are highlighted by gray circles, and X is used to indicate the possibility of multiple metal-
coordinating element types. Two fragment types in cis orientation are combined with up to three 
distinct bridges to construct a macrocycle. (bottom) An example macrocycle is shown that is 
constructed from two dimethylamine fragments and two pyrrole fragments joined via one 
phosphorus bridge, one methylene bridge, and two bridges with no atoms. 

 

Our ligand design strategy reproduces existing chemistry such as porphyrins, corroles, 

and cyclams but also extends beyond to other candidate macrocycles (Supporting Information 

Figure S4). Quantitatively, comparison of our database to tetradentate ligands that exist in the 

Cambridge Structural Database112 (CSD), demonstrates that our candidate ligand space 

reproduces existing local chemical environments and introduces new environments that are yet to 

be reported in the experimental literature (Supporting Information Figure S5). We combine these 

tetradentate macrocycles with 8 possible neutral and anionic axial ligands and 9 metal oxidation- 
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and spin- state combinations (i.e., M(II/III) where M = Mn or Fe in LS, IS, and HS states) to 

make an initial design space of over 1.2M candidate complexes (Supporting Information Figure 

S6). The addition of functional groups to these macrocycles later led to a space of 16 M 

candidate complexes. For complexes that have distinct connectivity but are duplicates in revised 

autocorrelation85 (RAC) descriptor space (i.e., are isomers), we systematically retain one case, 

after controlled studies that demonstrated only minor differences in catalyst thermodynamics 

between the two isomers (Supporting Information Figure S7). 

We use EGO113 with a 2D expected improvement (2D-EI) criterion100 to simultaneously 

optimize ΔE(HAT) and ΔE(release) because a catalyst must simultaneously activate methane and 

desorb methanol to prevent overoxidation of methanol.3, 5 We also selected HAT and release to 

simultaneously optimize because moderate scaling between ΔE(oxo) and ΔE(HAT) within a 

single metal/oxidation state suggests24 greater opportunities to independently optimize HAT and 

release than HAT and oxo formation. The ML-model predicted ΔE(HAT) and ΔE(release) values 

for a new complex, x, are determined as: 

ΔE(HAT)(x)
ΔE(release)(x) ≈ N@A

µC$%('())
µC$%(+,-,./,)

D , A
σG$%('())!

0 	
0

σG$%(+,-,./,)! DJ 

where 𝜇̂01(234) and 𝜇̂01(5676896) are the ML-model predicted mean values and 𝜎C01(234)!  and 

𝜎C01(5676896)!  are the effective variances from the model uncertainty.100 The protocol we employ 

largely follows prior work84, where we use ANN models with calibrated latent space uncertainty 

metric84, 97 as our surrogate models, and we employ k-medoids sampling at each generation to 

generate new DFT data and retrain our models (Supporting Information Figure S8 and Text 

S1).84   
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4. Results and Discussion. 

4.1 Design Outcomes in Initial Macrocycle Space. 

To start our exploration of the catalyst space, we performed k-medoids sampling over the 

1.2M compound design space to generate an initial set of reaction energies for ML model 

training (Supporting Information Figure S9). We then trained independent ANN models to 

predict ΔE(HAT) and ΔE(release) (Supporting Information Figure S10). For the first generation 

(i.e., generation 0), we collected 516 pairs of ΔE(HAT) and ΔE(release) reaction energies and 

used them to train ANNs with RACs as input features (Supporting Information Tables S5-S7). 

Although efficient global optimization is typically carried out with Gaussian process (GP) 

models, we selected independent ANNs because they have superior performance on the 

generation 0 test data (Supporting Information Table S7 and Figure S11). As in prior work84, we 

used the 10-nearest-neighbor ANN latent space distances97 to training data as an uncertainty 

quantification (UQ) metric (Supporting Information Figure S12). The latent space distance 

provides an intuitive measure of UQ and brings to an ANN-based approach the benefit that the 

GPs normally have of including built-in uncertainty.  

We then applied the trained ANN models to predict reaction energies for the full 1.2M 

compound design space and select new catalysts for DFT characterization based on their 2D-EI 

scores (Supporting Information Table S8). This allows us to improve ANN model performance 

at the Pareto front while discovering new Pareto-optimal catalysts. At each generation, we 

selected the top 10,000 catalysts by their E[I] scores and performed k-medoids sampling to 

initiate 400 representative metal-oxo DFT calculations for model retraining in subsequent 

generations (Supporting Information Table S9 and Figures S13 and S14).To quantify model 

improvement by generation, we use lookahead errors84 that quantify the ability of models to 
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predict properties for subsequent generations. Over three full generations of 2D-EI, ΔE(HAT) 

lookahead errors reduce threefold (i.e., from 15 to 5 kcal/mol), and ΔE(release) lookahead errors 

are reduced twofold (i.e., from 8 to 4 kcal/mol). Model errors on set aside test data at each 

generation also improve to a lesser degree (Figure 3 and Supporting Information Figures S15 and 

S16). We thus stopped the search for Pareto optimal catalysts after three generations, as 

lookahead errors approach test set errors by this point and average E[I] scores decrease markedly 

(Figure 3 and Supporting Information Figure S17).  

 

Figure 3. (left) E[I] over the initial ligand space as predicted by ANN models during generation 
0 (top) and generation 1 (bottom). The Pareto front after each generation is shown in gray. (right) 
Lookahead and test set mean absolute errors (MAEs) for ΔE(HAT) (top, in kcal/mol) and 
ΔE(release) (bottom) for the two single task ANNs. Each bar is colored by the generation at 
which it is trained, as indicated in the top inset. Lookahead MAEs are reported on data sets (1−3, 
as indicated on axis) generated in each relevant subsequent generation. The MAEs on a test set 
representative for each generation are reported. 

 

 Studies of bio-inspired Fe(II) compounds have typically targeted C–H bond reactivity for 
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high-spin (HS) Fe(II) because most enzymes capable of C–H activation are believed to be HS 

Fe(II) stabilized by weak field N- and O-coordinating species. At odds with these expectations, 

we observe low-spin (LS) Fe(II) compounds to have the best tradeoff between ΔE(HAT) and 

ΔE(release) on the Pareto front, having both the most favorable HAT thermodynamics and not 

binding methanol too tightly (Figure 4). This observation was made possible by the EGO 

exploration because our initial sampling of the design space had instead primarily favored 

intermediate spin (IS) Mn(II) compounds (Figure 4 and Supporting Information Figures S18 and 

S19). After three generations of EGO, only a single IS Mn(II) catalyst is Pareto optimal and LS 

Fe(II) catalysts with weak field oxygen coordinating (e.g. dimethylether, 4H-pyran, and furan) 

fragments occupy the majority of the Pareto front (Figure 4 and Supporting Information Table 

S10). The relative position of a catalyst on the Pareto front is governed by the equatorial ligand 

field strength: stronger ligand fields with donating equatorial ligands have favorable ΔE(release) 

and unfavorable ΔE(HAT). The compounds that have the most favorable HAT thermodynamics 

at the cost of binding methanol more tightly primarily contain oxygen-coordinating macrocycles, 

whereas those that release methanol more readily but do not favor HAT contain 3p-coordinating 

macrocycles (Figure 4 and Supporting Information Figure S18). Over this 1.2M initial design 

space, EGO reveals ligands that have been understudied (e.g. 3p-coordinating ligands) combined 

with LS Fe(II) will lead to ground state complexes that demonstrate a good balance between 

ΔE(HAT) and ΔE(release). 
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Figure 4. (top) Pareto optimal compounds from the initial ligand space simulated during three 
generations of the design algorithm in the ball and stick representation, with Fe in brown, Mn in 
purple, C in gray, N in blue, O in red, P in orange, and S in yellow. (middle) fragments that make 
up Pareto optimal compounds in the initial ligand space. (bottom) Compounds simulated during 
three generations of the design algorithm, colored by generation and with unique symbols for 
each metal center (as indicated in inset legend). The range of values sampled in each generation 
is indicated by a convex hull. For generation 2, four outlier points that expand the convex hull 
are truncated from the plot. A final Pareto front is indicated by letters A-F. 

 

4.2 Exploring Hammett Tuning Effects on Macrocycles. 

A frequently pursued synthetic approach to fine tuning catalyst reaction energetics is to 

functionalize macrocycles with electron withdrawing or donating groups. To evaluate the utility 

of this strategy, we performed controlled studies on functionalized porphyrins, which suggested 

the possibility to tune macrocycle energetics by 5-15 kcal/mol (Supporting Information Figure 

S20). We thus functionalized the initial set of 1.2M macrocycles with common functional groups 
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used in Hammett tuning, which enlarges our catalyst space to 16M compounds (Figure 5). We 

functionalize all C–H bonds on bridges and C–H bonds on select fragments (Figure 5 and 

Supporting Information Figure S21). This approach reproduces well-studied macrocyclic 

ligands, such as phthalocyanine or tetraphenylporphyrin but also introduces new chemistry. 

There are differences in functional group effects for ΔE(HAT) and ΔE(release) on porphyrins, 

and so functionalization should alter both the relative positioning of catalysts on the Pareto front 

and change the identity of macrocycles on the Pareto front (Supporting Information Figures S22 

and S23). Assuming this trend is general, it should also be possible to advance the Pareto front 

with functional group variation.  

 

Figure 5. Functional groups used to perform Hammett tuning on macrocycles, ranging from 
electron donating groups to electron withdrawing groups. C–H bonds on select fragments and 
bridges (left) can be functionalized, while remaining fragments and bridges (right) are not 
considered for functionalization. 

 

Although functional group addition tunes energetics by 5-15 kcal/mol on porphyrins, 

these functional groups are distant from the metal center on the molecular graph. The RAC 
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featurization we use has a default cutoff of correlating atoms only three bond paths (i.e., d = 3) 

apart. Thus, we revisited our models an examined the potential benefit of using higher depth (d = 

4) RACs to ensure we adequately capture changes in functional groups (Supporting Information 

Figure S24). In combination with a revised feature set for model training, at the first generation 

with functional groups present (i.e., generation 4), we also sample the initial 16M compound 

space with k-medoids sampling to select 1,800 new data points (Supporting Information Tables 

S11 and S12 and Figure S25). The revised RACs representation improves model accuracy, 

reducing test set MAEs for both HAT and release to below 5 kcal/mol. This performance is 

superior to the best-performing models we obtained using the original RACs on this 

functionalized data (Supporting Information Figure S25).  

To determine if we could extend the Pareto front, we carried out additional generations of 

EGO in the 16M compound functionalized macrocycle space. Since the functional groups 

expand our space 10-fold, we increased our selection of catalysts to the top 100,000 (i.e., as 

judged by E[I] scores) over which we carried out k-medoids sampling (Supporting Information 

Figure S26). Over this expanded search in the 16M compound space, within three additional 

generations lookahead errors again reduce to test set errors and E[I] values reduce significantly 

(Supporting Information Figures S27 and S28). For the final Pareto set, four out of the five 

Pareto-optimal catalysts are those obtained only after functionalization, while the one catalyst 

from the initial space contained no sites compatible with functionalization (Figures 4 and 6). The 

functional groups range from both electron donating (e.g. methyl and phenyl) to electron 

withdrawing (e.g. cyano and fluoro) on N or O coordinating equatorial ligands (Figure 6). Three 

out of the four Pareto optimal catalysts have functional groups on bridge C–H bonds, as opposed 

to on fragments, suggesting the greater importance of steric bulk in our functionalization strategy 
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in comparison to through-bond, electronic effects. We observe that functional groups do indeed 

shift catalysts to the Pareto front, as none of the initial versions of the functionalized macrocycles 

had unfunctionalized forms on the Pareto front optimization of the initial design space.  

 

Figure 6. (top) Fragments that make up Pareto optimal compounds in the global functionalized 
ligand space simulated during three additional generations of the design algorithm after 
introducing functional groups. Functional groups are highlighted in cyan boxes, and metal 
coordinating atoms are indicated by translucent circles. (bottom) Compounds simulated during 
three additional generations of the design algorithm after introducing functional groups, colored 
by generation and with unique symbols for each metal center (as indicated in inset legend). The 
initial Pareto front, prior to the introduction of functional groups, is shown as a black dotted line. 
A final Pareto front is shown as a solid black line. New, functionalized compounds that reach the 
Pareto front are indicated by letters A-D. A black dashed line indicates a value of 0 for 
ΔE(HAT). 

 

4.3 Identifying Design Principles for Catalysts with Optimal Reaction Energetics. 
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Good catalysts for methane to methanol conversion should have equally favorable 

DE(HAT) and DE(release) while also being in their ground spin states. To identify the catalyst 

designs most likely to meet these criteria in our search space, we next applied relative energy 

cutoffs of DE(HAT) < 10 kcal/mol and DE(release) < 30 kcal/mol, as predicted by the generation 

3 ML models. This reduces the theoretical space of catalysts to 30,095 compounds that represent 

2.5% of the initial design space (Figure 7 and Supporting Information Figure S29). Small 

changes to the cutoff values will not alter conclusions about the compounds favored in this the 

space (Figure 7 and Supporting Information Figure S30). Examining this smaller set of 

compounds, we observe that the best catalysts have 15- or 16-membered rings (i.e., the same as 

corroles, porphyrins, and phthalocyanines), but the distribution of macrocycle ring sizes does not 

change after applying the energetic criteria (Supporting Information Table S10 and Figure S31). 

A clearer preference is established for the axial ligand within the cutoff zone: we observe a 

strong preference for anionic axial ligands with 3p coordinating atoms (Figure 7). The selection 

for these anionic axial ligands appears to have an overriding effect on energetics with respect to 

the equatorial macrocycle ligand chemistry (Figure 7).  
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Figure 7. (top) axial ligands present within our energetic cutoff zone of 30,095 catalysts, colored 
by their metal coordinating atom with oxygen in red, nitrogen in blue, sulfur in yellow, and 
phosphorus in orange. (bottom) absolute frequencies of fragments that comprise equatorial 
ligands for catalysts in the cutoff zone, with chord thickness representing increased frequency of 
the pairs of fragments appearing within the cutoff zone. The circles containing the fragments are 
colored by the metal-coordinating atom identity, with carbon in gray, oxygen in red, nitrogen in 
blue, sulfur in yellow, and phosphorus in orange. 

 

The source of this preference for anionic axial ligands in good catalyst designs could 

either be due to the lower field strength or how a charged ligand alters the charge on the metal 

center. To identify if the metal charge is altered, we computed the partial charges for resting state 
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catalysts from generations 0 to 3 and grouped them by axial ligand type (Figure 8 and Supporting 

Information Figure S32). Indeed, compounds with axial anionic ligands have metal centers with 

lower partial charge (i.e., are more neutral) due to increased charge transfer from the axial 

ligand. A series of one-tailed Welch’s t-tests114 confirms that for all coordinating atom identities 

in our set (i.e., N, O, P, or S), compounds with negative axial ligands have less oxidized metal 

charge distributions than compounds with neutral axial ligands at a 5% significance level 

(Supporting Information Table S13). This lower positive partial charge on the metal should be 

expected to reduce electrostatic attraction to methanol, favoring its release. The axial ligand has a 

larger effect on release energetics than HAT, and we observe that DE(HAT) distributions are 

unchanged as a function of axial anionic ligand (Supporting Information Figure S33). Analysis 

of the metal-oxo HOMO level, which has been used as a descriptor for DE(HAT) reactivity106, 

reveals it is more sensitive to equatorial ligand charge than axial ligand charge (Supporting 

Information Figure S34).  



 20 

 

Figure 8. Metal Hirshfeld charge (in units of e) for catalysts from generations 0 to 3 with 
different axial ligands (N, O, P, S from top to bottom). Axial ligands are categorized into anionic 
(green) and neutral (blue) forms. The average Hirshfeld charge for anionic and neutral axial 
ligands are shown as green and blue lines respectively. A dotted black line indicates a metal 
Hirshfeld charge of 0. 

 

We next explored whether we could obtain even further improved results in this already 

favorable set by again employing Hammett tuning. Adding functional groups to this subset of the 

catalyst space increases the number of compounds to over 412,000. Over this subspace of 

compounds, we are able to train models that have even smaller test set errors (<4 kcal/mol) than 

when we functionalized the full space, enabling us to predict the effects of functional group 

tuning more robustly (Supporting Information Table S14 and Figures S35−S37). Over three 
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additional generations of EGO, we find two additional Pareto optimal catalysts with functional 

groups that outperform any prior designs. One catalyst has an LS Fe(II) center in its ground spin 

state with strong field phosphole and trimethylphosphine fragments and trifluoromethyl 

functional groups (Supporting Information Figure S37 and Table S15). The other complex 

consists of an IS Mn(II) center in its ground spin state with a weak field equatorial macrocycle 

that is constructed from flexible oxygen fragments and amino-functionalized bridges (Supporting 

Information Figure S37 and Table S15). For this compound, the metal-oxo bond in the oxo 

intermediate has a strong tilt, which has been hypothesized to promote increased reactivity for 

Fe(IV)=O complexes41 (Supporting Information Figure S38).  

For both our original functional group search and for this honed-in search, we observe 

more modest changes in the composition of the Pareto front than originally anticipated based on 

effects on porphyrin energetics. We hypothesized that the effects of functional groups were 

likely smaller in the case that the design space was enriched with non-aromatic compounds. To 

determine the relative percentage of aromatic compounds in our honed in design space, we 

estimated aromaticity in the equatorial macrocycles from their canonical SMILES string 

(Supporting Information Figure S39). Indeed, almost all (97%) compounds that are within the 

cutoff zone (i.e., the 30,095 compounds) have little-to-no aromaticity. This suggests that within 

our set of macrocycles non-aromatic compounds exhibit better reaction energetics than aromatic 

counterparts, despite the fact that porphyrinoid compounds115 that are frequently studied for C-H 

activation. Although some aromatic macrocycles fall within the cutoff zone, the best cases still 

have DE(HAT) and DE(release) energetics that are predicted by the ML models to be far (i.e., 8 

to 10 kcal/mol) from the Pareto front in comparison to non-aromatic compounds (Supporting 

Information Figure S40). Thus, functional group tuning could be expected to alter the energetics 
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of aromatic macrocycles by a significant 5-15 kcal/mol margin, but most are too far from the 

Pareto front to surpass non-aromatic compounds even after functional group tuning. These 

observations further strengthen the case for ML-accelerated search of a wide macrocycle space 

rather than a focus on functional group tuning within a fixed macrocycle structure. 

4.4 Catalytic Cycles of Pareto Optimal Catalysts. 

To validate our best case catalyst designs, we completed the radical rebound catalytic 

cycle by computing additional reaction energies and barrier heights for the Pareto optimal 

catalysts that were identified by our honed in search. Because we optimized the catalysts for 

HAT and methanol release thermodynamics, we already know the reaction energetics of these 

steps are favorable. For HAT, a strong BEP relation means that favorable reaction energetics also 

correspond to favorable HAT kinetics. For methanol release, we model it as an unassisted 

dissociation and so we neglect any kinetic barrier. Thus, to complete the catalytic cycle, we next 

computed properties related to oxo formation and radical rebound.  

Although strong Brønsted-Evans-Polanyi (BEP) relations between reaction energies and 

barrier heights have been invoked68, 71, we observe these to only hold for HAT and not for oxo 

formation, consistent with prior work68, 73, 116 (Supporting Information Figures S41 and S42). 

Since thermodynamic scaling between oxo formation and HAT can be disrupted in molecular 

complexes24, we had used EGO to optimize our catalysts for HAT and rebound with the 

expectation that oxo formation could still be favorable. Indeed, all eight Pareto optimal catalysts, 

two of which are in their ground spin states, have favorable oxo formation reaction energetics as 

well (Supporting Information Table S16). We obtained oxo formation barrier heights and 

approximate transition states (i.e., with NEB, see Computational Details) for the Pareto optimal 
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catalysts (Figure 9 and Supporting Information Table S16 and Figure S43). Indeed, we calculate 

a low barrier height (i.e., 5 kcal/mol) for oxo formation with our Pareto optimal IS Mn(II) 

catalyst that has a weak field oxygen-cooridnating macrocycle (Figure 9 and Supporting 

Information Table S16 and Figure S43). This low barrier height is indeed correlated to the metal-

oxo tilt we observed in the Mn(IV)=O intermediate (Supporting Information Figure S38). The 

oxo formation barrier for the Pareto optimal LS Fe(II) catalyst with strong field ligands is 

significantly higher (i.e., 25 kcal/mol) but still lower than what had been previously observed (> 

30 kcal/mol) for Fe(II) model catalysts (Supporting Information Figure S43).  

 

Figure 9. The full energy landscape of the two ground state Pareto optimal complexes with the 
Mn(II) lead complex (top), and Fe(II) lead complex (bottom) in green and red respectively. We 
draw the reaction coordinate from reactants (R) to products (P) through a metal-N2O bound 
intermediate, the oxo formation transition state (TS1), the metal-oxo intermediate (=O), the 
hydrogen atom transfer transition state (TS2), the metal-hydroxyl intermediate (-OH), the 
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rebound transition state (TS3), and the metal-methanol bound intermediate. The turnover 
determining transition state (TDTS), and turnover determining intermediate (TDI) are shown 
inset, along with the energy span (dE) that governs efficient catalysis. HAT transition-states were 
found to be barrierless and are omitted, with neighboring steps connected by a dotted line. 

 

Finally to complete the catalytic cycle, we also computed the kinetic barrier for the 

rebound step using potential energy scans in which the distance between the methyl radical and 

oxygen atom were constrained and all other degrees of freedom were relaxed (see Computational 

Details).  This step is nearly barrierless in the Pareto optimal catalysts and thus cannot govern 

turnover on these catalysts (Supporting Information Figure S44). For the Pareto optimal IS 

Mn(II) catalyst, we find that the more stable oxo correspond to a higher (e.g. 10 kcal/mol) 

rebound barrier height, although this step still does not become a rate determining step (Figure 9 

and Supporting Information Table S16 and Figure S44). 

To identify the best catalyst of our two ground state Pareto-optimal catalysts, we use the 

energetic span model117 to approximate catalyst turnover frequencies. In all eight Pareto optimal 

catalysts, oxo formation is the turnover determining transition state (TDTS), and the methanol-

bound intermediate is the turnover determining intermediate (TDI). Despite the moderate kinetic 

barriers for oxo formation from N2O for all Pareto optimal catalysts, the improvements for 

methanol release thermodynamics relative to oxo formation kinetics make the expected catalytic 

performance of these identified complexes better than any HS FeIV=O catalysts that we have 

previously investigated73 (Supporting Information Figure S43). We next calculate the energy 

spans of our two ground state Pareto optimal catalysts (Figure 9). Comparison of these systems 

to the model catalytic systems from prior work73 indicates our Pareto optimal catalysts reduce the 

energy span by 15 kcal/mol, which corresponds to eleven orders of magnitude increase in 
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expected catalyst turnover frequency (Supporting Information Table S17 and Figure S45). 

Additionally, we find that the relative energetics and energy spans for methane oxidation on our 

Pareto optimal catalysts are comparable to the energy spans on multimetallic metal-organic 

framework (MOF) nodes45, 46 (Supporting Information Table S18). Nevertheless, this comparison 

is qualitative in nature due to the sensitivity of the TDTS and TDI energetics to functional choice 

for methane oxidation.118 The reduced oxo formation activation barrier heights and improved 

thermodynamics for methanol release energetics that correspond to smaller energy spans on our 

macrocyclic catalysts compared to previous model systems demonstrate that our ML-accelerated 

EGO strategy can uncover new and more efficient catalysts. Further catalyst designs will focus 

on designing pentadentate scaffolds that can simultaneously incorporate effects of increased out-

of-plane distortion that can further reduce oxo formation barriers, while also quantifying the 

effect of oxidant (i.e., N2O vs. O2) choice on barrier heights. 

5. Conclusions. 

Catalyst design requires consideration of tradeoffs between different steps on the catalyst 

energy landscape that are difficult to optimize by trial and error alone. As LFERs and BEP 

relations seldom hold strongly in single-site catalysis, these trade-offs are not readily captured by 

descriptor-based screening, suggesting the possibility to overcome present limitations in the 

design of active methane-to-methanol catalysts. To leverage these possibilities and overcome the 

limitations or prior approaches, we used EGO to optimize two reaction energies for two steps in 

the radical rebound mechanism for direct methane-to-methanol conversion. We constructed a 

nearly 2M compound space of catalysts comprised of oft-studied Mn and Fe centers combined 

with equatorial ligands constructed from fragments inspired by synthesized macrocycles. With 

this strategy, we recovered existing chemistry (e.g., porphyrins, corroles, and phthalocyanines) 
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while introducing novel, underexplored compounds. By using EGO in combination with ANN 

models we identified novel low spin Fe(II) compounds were often paired with strong field (e.g. P 

or S-coordinating) axial ligands that differed from more commonly studied high-spin Fe(II) 

catalysts with weak field ligands.  

To mimic Hammett tuning commonly employed in catalyst screening, we added 

functional groups to fragments and bridges of our macrocycles, thereby expanding our candidate 

space to nearly 16M compoundS. Because the most favorable macrocycles lack aromaticity, the 

improvement of reaction energetics achieved by changing the macrocycle or axial ligand 

exceeded what could be achieved through functionalization. Nevertheless, the majority of the 

final Pareto optimal set from this screen consisted of catalysts only identified after a full six 

generations of EGO. To refine our search, we downselected to a subset of favorable catalysts 

prior to functionalization. Over this set, we both improved model performance and observed that 

the best tradeoff between HAT and methanol release occurred when catalysts had negatively 

charged axial ligands that correlated to facile methanol release.  

Finally, we computed the kinetic barriers alongside reaction thermodynamics for the 

radical rebound mechanism in methane-to-methanol conversion of the Pareto optimal catalysts. 

As EGO was used to optimize catalysts for HAT and methanol release, we focused on 

determining if this led to any deleterious effect on oxo formation or radical rebound. Analysis of 

these steps revealed that all Pareto optimal catalysts form metal-oxos favorably and have modest 

N2O barrier heights relative to previously studied catalysts. At the same time, the radical rebound 

step is never rate determining. Thus, our catalyst screening strategy captured the key steps to 

optimize for this reaction mechanism. Energetic span analysis on the two lead compounds in 

their ground state spin, an IS Mn(II) catalyst and a LS Fe(II) catalyst, revealed both had 
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favorable energetics that would lead to reasonable turnover frequencies. Our 2D-EI approach on 

in silico synthesized macrocycles represents a promising strategy for rapidly optimizing 

decoupled reaction steps and is expected to be general to other reaction systems in homogeneous 

catalysis.  

6. Methods 

Gas-phase geometry optimizations and single-point energy calculations were performed 

using density functional theory (DFT) with a development version of TeraChem v1.9.119 The 

B3LYP120-122 global hybrid functional with the empirical D3 dispersion correction123 using 

Becke−Johnson damping124 was employed for all calculations. The LACVP* composite basis set 

was employed throughout this work, which consists of a LANL2DZ effective core potential125, 

126 for Mn, Fe, Br, and I, and the 6-31G* basis127 for all other atoms. As in prior work, we focus 

on relative energetics over a large data set, and we neglect solvent corrections and zero-point 

vibrational energy or entropic corrections to avoid a significant increase in computational cost.24 

Singlet calculations were carried out in a spin-restricted formalism following prior 

work24, whereas all other spin states were performed as unrestricted calculations. The convention 

of majority-spin addition of radicals is employed throughout. Level shifting128 of 0.25 Ha was 

applied to both majority and minority spin virtual orbitals to aid self-consistent field (SCF) 

convergence to an unrestricted solution. Geometry optimizations were carried out with the 

translation rotation internal coordinate (TRIC) optimizer129 using the L-BFGS algorithm. Default 

tolerances in the convergence criteria were employed for the maximum energy gradient of 

4.5×10−4 hartree/bohr and energy difference between steps of 10−6 hartree. The initial geometries 

for metal−oxo species were constructed using molSimplify,130 which uses OpenBabel131, 132 as a 

backend to interpret SMILES strings. Tetradentate macrocycle SMILES strings were constructed 
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using custom algorithms available in molSimplify and validated using RDKit version 

2020.03.2.133 We oriented any methyl groups on metal-coordinating atoms syn relative to the 

metal-oxo to follow the most common isomer in experimentally characterized metal-oxo 

compounds.134-136 

Job submission was automated by molSimplify with a 24 h wall time per run with up to 

five resubmissions. Geometry optimizations were carried out with geometry checks137 prior to 

each resubmission and structures that failed any check were eliminated (Supporting Information 

Table S19). Open-shell structures were also removed from the data set following established 

protocols80, 88, 137 if the expectation value of the S2 operator deviated from its expected value of 

S(S + 1) by >1 μB2 or the combined Mulliken spin density on the metal and oxygen differed from 

the spin multiplicity by >1 μB. We employed a machine learning strategy to predict calculation 

failure from the electronic137 using a multitask neural network classifier138 applied up to the first 

forty steps of the geometry optimization (Supporting Information Tables S19−S21 and Figure 

S46).  

In addition to metal−oxo intermediates, other radical rebound intermediates are generated 

in the following sequence. All metal−hydroxo geometries were generated by adding an H atom 

to the optimized metal−oxo structure, and all methanol-bound intermediates were generated by 

adding a methyl group to the optimized metal−hydroxo structures using a custom script in 

molSimplify, as in prior work24 (Supporting Information Figures S47 and S48). Resting state 

catalyst structures are obtained as single-point energies after removal of the methanol molecule 

from methanol-bound intermediates. The workflow starts by optimizing the metal−oxo 

geometry, and if this or a subsequent intermediate does not succeed, downstream intermediate 

optimizations are not attempted.  
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Approximate transition states (TSs) for N2O activation were modeled with nudged elastic 

band (NEB) method with climbing image139, 140 as implemented in the TeraChem119, 141 interface 

to DL-FIND142. Approximate TSs for the radical rebound step were obtained via a series of 

constrained optimizations in which the metal-oxo oxygen and methyl radical carbon distance was 

scanned from 2.6 Å to 1.4 Å in 0.1 Å increments while letting all other atoms relax.  

 
ASSOCIATED CONTENT 

Supporting Information. The following files are available free of charge. 

Spin and oxidation state definitions; reference energetics for all small molecules used for 
reaction energies; criteria used for geometry and electronic structure checks; dynamic 
classification latent space entropy cutoffs and comparisons; details of workflows for reactive 
intermediate functionalization; examples of macrocycle construction; macrocycles eliminated 
due to repeats; counts of ring sizes in macrocycles; statistics on macrocycles with different 
coordinating atoms; duplicate complexes in RAC space; comparisons of hypothetical compounds 
to synthesized compounds; visual and mathematical explanation of 2D-expected improvement; 
relationship between HAT and methanol release energetics; failure rate statistics and k-medoids 
sampling for generation 0; hyperparameters for all ANN models; comparison between ANN and 
GP model performance; timing for one full generation of EGO; demonstration of EI by 
generation; train-validation-test set splits; ANN performance by generation; evolution of Pareto 
optimal catalysts over time; rules for functionalizing macrocycles on fragments and bridges; 
analyses on functionalization effects on metal charges and HOMO levels; SHAP analysis on 
ANNs with functionalized macrocycles; changes in chemical space diversity while subsampling 
ligand space; statistical analyses of metal Hirshfeld charges; effects of net charge on frontier 
orbital energies; analyses of spin splitting energies for lead complexes; identification of 
aromaticity via SMILES; verification of BEP principle for oxo formation and HAT; full energy 
landscapes for Pareto optimal catalysts; transition state structures for N2O activation; kinetic 
barriers for radical rebound; comparison to existing catalysts for light alkane activation. (PDF) 

 

Structures for all reactive intermediates for all generations; structures for approximate transition 
states; raw electronic energies and reaction energies for all catalysts in all generations; and train-
validation-test data splits at each generation. (ZIP) 

AUTHOR INFORMATION 

Notes 



 30 

The authors declare no competing financial interests. 

ACKNOWLEDGMENT 

This work is supported as part of the Inorganometallic Catalysis Design Center, an Energy 

Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic 

Energy Sciences under Award DE-SC0012702 (to A.N. and H.J.K). The authors also 

acknowledge support by DARPA (grant number D18AP00039) for the active learning efforts, 

and some of the algorithmic developments were supported by the Office of Naval Research 

under grant number N00014-20-1-2150 (to C.D. and H.J.K). C.G. was supported by the National 

Science Foundation grant number CBET-1704266. This work was also partially supported by a 

National Science Foundation Graduate Research Fellowship under Grant #1122374 (to A.N.). 

H.J.K. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund, an 

AAAS Marion Milligan Mason Award, and an Alfred P. Sloan Fellowship in Chemistry, which 

supported this work. The authors thank Akash Bajaj, Adam H. Steeves, Shuwen Yue, and 

Vyshnavi Vennelakanti for providing a critical reading of the manuscript.  

REFERENCES 
 
1. Olah, G. A., Beyond Oil and Gas: the Methanol Economy. Angew. Chem., Int. Ed. 2005, 
44 (18), 2636-2639. 
2. Lunsford, J. H., Catalytic Conversion of Methane to More Useful Chemicals and Fuels: a 
Challenge for the 21st Century. Catal. Today 2000, 63 (2), 165-174. 
3. Ravi, M.;  Ranocchiari, M.; van Bokhoven, J. A., The Direct Catalytic Oxidation of 
Methane to Methanol-A Critical Assessment. Angew. Chem., Int. Ed. 2017, 56 (52), 16464-
16483. 
4. Tomkins, P.;  Ranocchiari, M.; van Bokhoven, J. A., Direct Conversion of Methane to 
Methanol under Mild Conditions over Cu-Zeolites and beyond. Acc. Chem. Res. 2017, 50 (2), 
418-425. 
5. Latimer, A. A.;  Kakekhani, A.;  Kulkarni, A. R.; Nørskov, J. K., Direct Methane to 
Methanol: The Selectivity–Conversion Limit and Design Strategies. ACS Catal. 2018, 8 (8), 
6894-6907. 
6. Price, J. C.;  Barr, E. W.;  Glass, T. E.;  Krebs, C.; Bollinger, J. M., Evidence for 
Hydrogen Abstraction from C1 of Taurine by the High-Spin Fe(IV) Intermediate Detected 



 31 

During Oxygen Activation by Taurine: α-Ketoglutarate Dioxygenase (TauD). J. Am. Chem. Soc. 
2003, 125 (43), 13008-13009. 
7. Price, J. C.;  Barr, E. W.;  Tirupati, B.;  Bollinger, J. M.; Krebs, C., The First Direct 
Characterization of a High-Valent Iron Intermediate in the Reaction of an α-Ketoglutarate-
Dependent Dioxygenase: a High-Spin Fe(IV) Complex in Taurine/α-Ketoglutarate Dioxygenase 
(TauD) from Escherichia Coli. Biochemistry 2003, 42 (24), 7497-7508. 
8. Eichhorn, E.;  van der Ploeg, J. R.;  Kertesz, M. A.; Leisinger, T., Characterization of α-
Ketoglutarate-Dependent Taurine Dioxygenase from Escherichia Coli. J. Biol. Chem. 1997, 272 
(37), 23031-23036. 
9. Zilly, F. E.;  Acevedo, J. P.;  Augustyniak, W.;  Deege, A.;  Häusig, U. W.; Reetz, M. T., 
Tuning a P450 Enzyme for Methane Oxidation. Angew. Chem., Int. Ed. 2011, 50 (12), 2720-
2724. 
10. Chen, M. M.;  Coelho, P. S.; Arnold, F. H., Utilizing Terminal Oxidants to Achieve 
P450-Catalyzed Oxidation of Methane. Adv. Synth. Catal. 2012, 354 (6), 964-968. 
11. Oloo, W., N.; Que, L., Jr., Bioinspired Nonheme Iron Catalysts for C-H and C-C Bond 
Oxidation: Insights into the Nature of the Metal-Based Oxidants. Acc. Chem. Res. 2015, 48 (9), 
2612-2621. 
12. Que, L., Jr.; Tolman, W. B., Biologically Inspired Oxidation Catalysis. Nature 2008, 455 
(7211), 333-340. 
13. Biswas, A. N.;  Puri, M.;  Meier, K. K.;  Oloo, W. N.;  Rohde, G. T.;  Bominaar, E. L.;  
Munck, E.; Que, L., Jr., Modeling TauD-J: a High-Spin Nonheme Oxoiron(IV) Complex with 
High Reactivity Toward C-H Bonds. J. Am. Chem. Soc. 2015, 137 (7), 2428-2431. 
14. Engelmann, X.;  Monte-Perez, I.; Ray, K., Oxidation Reactions with Bioinspired 
Mononuclear Non-Heme Metal-Oxo Complexes. Angew. Chem., Int. Ed. 2016, 55 (27), 7632-
7649. 
15. Periana, R. A.;  Taube, D. J.;  Gamble, S.;  Taube, H.;  Satoh, T.; Fujii, H., Platinum 
Catalysts for the High-Yield Oxidation of Methane to a Methanol Derivative. Science 1998, 280 
(5363), 560-564. 
16. Muehlhofer, M.;  Strassner, T.; Herrmann, W. A., New Catalyst Systems for the Catalytic 
Conversion of Methane into Methanol. Angew. Chem., Int. Ed. 2002, 41 (10), 1745-1747. 
17. Shilov, A. E.; Shul'pin, G. B., Activation of C−H Bonds by Metal Complexes. Chem. 
Rev. 1997, 97 (8), 2879-2932. 
18. Jones, C.;  Taube, D.;  Ziatdinov, V. R.;  Periana, R. A.;  Nielsen, R. J.;  Oxgaard, J.; 
Goddard, W. A., Selective Oxidation of Methane to Methanol Catalyzed, with C-H Activation, 
by Homogeneous, Cationic Gold. Angew. Chem., Int. Ed. 2004, 116 (35), 4726-4729. 
19. Palkovits, R.;  Antonietti, M.;  Kuhn, P.;  Thomas, A.; Schüth, F., Solid Catalysts for the 
Selective Low‐Temperature Oxidation of Methane to Methanol. Angew. Chem., Int. Ed. 2009, 48 
(37), 6909-6912. 
20. Dinh, K. T.;  Sullivan, M. M.;  Serna, P.;  Meyer, R. J.;  Dincă, M.; Román-Leshkov, Y., 
Viewpoint on the Partial Oxidation of Methane to Methanol Using Cu- and Fe-Exchanged 
Zeolites. ACS Catal. 2018, 8 (9), 8306-8313. 
21. Szécsényi, Á.;  Li, G.;  Gascon, J.; Pidko, E. A., Mechanistic Complexity of Methane 
Oxidation with H2O2 by Single-Site Fe/ZSM-5 Catalyst. ACS Catal. 2018, 8 (9), 7961-7972. 
22. Vogiatzis, K. D.;  Haldoupis, E.;  Xiao, D. J.;  Long, J. R.;  Siepmann, J. I.; Gagliardi, L., 
Accelerated Computational Analysis of Metal–Organic Frameworks for Oxidation Catalysis. J. 
Phys. Chem. C 2016, 120 (33), 18707-18712. 



 32 

23. Borovik, A. S., Role of Metal-Oxo Complexes in the Cleavage of C-H Bonds. Chem. 
Soc. Rev. 2011, 40 (4), 1870-4. 
24. Nandy, A.; Kulik, H. J., Why Conventional Design Rules for C–H Activation Fail for 
Open-Shell Transition-Metal Catalysts. ACS Catal. 2020, 10 (24), 15033-15047. 
25. Nam, W., Synthetic Mononuclear Nonheme Iron-Oxygen Intermediates. Acc. Chem. Res. 
2015, 48 (8), 2415-2423. 
26. Nam, W.;  Lee, Y.-M.; Fukuzumi, S., Tuning Reactivity and Mechanism in Oxidation 
Reactions by Mononuclear Nonheme Iron(IV)-Oxo Complexes. Acc. Chem. Res. 2014, 47 (4), 
1146-1154. 
27. Monte Pérez, I.;  Engelmann, X.;  Lee, Y.-M.;  Yoo, M.;  Kumaran, E.;  Farquhar, E. R.;  
Bill, E.;  England, J.;  Nam, W.;  Swart, M.; Ray, K., A Highly Reactive Oxoiron(IV) Complex 
Supported by a Bioinspired N3O Macrocyclic Ligand. Angew. Chem., Int. Ed. 2017, 56 (46), 
14384-14388. 
28. Yadav, V.;  Rodriguez, R. J.;  Siegler, M. A.; Goldberg, D. P., Determining the Inherent 
Selectivity for Carbon Radical Hydroxylation versus Halogenation with FeIII(OH)(X) 
Complexes: Relevance to the Rebound Step in Non-heme Iron Halogenases. J. Am. Chem. Soc. 
2020, 142 (16), 7259-7264. 
29. Rosen, A. S.;  Notestein, J. M.; Snurr, R. Q., Structure–Activity Relationships That 
Identify Metal–Organic Framework Catalysts for Methane Activation. ACS Catal. 2019, 9 (4), 
3576-3587. 
30. Osadchii, D. Y.;  Olivos-Suarez, A. I.;  Szécsényi, Á.;  Li, G.;  Nasalevich, M. A.;  
Dugulan, I. A.;  Crespo, P. S.;  Hensen, E. J.;  Veber, S. L.; Fedin, M. V., Isolated Fe Sites in 
Metal Organic Frameworks Catalyze the Direct Conversion of Methane to Methanol. ACS Catal. 
2018, 8 (6), 5542-5548. 
31. Snyder, B. E. R.;  Böttger, L. H.;  Bols, M. L.;  Yan, J. J.;  Rhoda, H. M.;  Jacobs, A. B.;  
Hu, M. Y.;  Zhao, J.;  Alp, E. E.;  Hedman, B.;  Hodgson, K. O.;  Schoonheydt, R. A.;  Sels, B. 
F.; Solomon, E. I., Structural Characterization of a Non-Heme Iron Active Site in Zeolites that 
Hydroxylates Methane. Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (18), 4565-4570. 
32. Snyder, B. E. R.;  Vanelderen, P.;  Bols, M. L.;  Hallaert, S. D.;  Böttger, L. H.;  Ungur, 
L.;  Pierloot, K.;  Schoonheydt, R. A.;  Sels, B. F.; Solomon, E. I., The Active Site of Low-
Temperature Methane Hydroxylation in Iron-Containing Zeolites. Nature 2016, 536 (7616), 317-
321. 
33. Xiao, D. J.;  Bloch, E. D.;  Mason, J. A.;  Queen, W. L.;  Hudson, M. R.;  Planas, N.;  
Borycz, J.;  Dzubak, A. L.;  Verma, P.;  Lee, K.;  Bonino, F.;  Crocella, V.;  Yano, J.;  Bordiga, 
S.;  Truhlar, D. G.;  Gagliardi, L.;  Brown, C. M.; Long, J. R., Oxidation of Ethane to Ethanol by 
N2O in a Metal-Organic Framework with Coordinatively Unsaturated Iron(II) Sites. Nat. Chem. 
2014, 6 (7), 590-595. 
34. Simons, M. C.;  Prinslow, S. D.;  Babucci, M.;  Hoffman, A. S.;  Hong, J.;  Vitillo, J. G.;  
Bare, S. R.;  Gates, B. C.;  Lu, C. C.;  Gagliardi, L.; Bhan, A., Beyond Radical Rebound: 
Methane Oxidation to Methanol Catalyzed by Iron Species in Metal–Organic Framework Nodes. 
J. Am. Chem. Soc. 2021, 143 (31), 12165-12174. 
35. Simons, M. C.;  Vitillo, J. G.;  Babucci, M.;  Hoffman, A. S.;  Boubnov, A.;  Beauvais, 
M. L.;  Chen, Z.;  Cramer, C. J.;  Chapman, K. W.;  Bare, S. R.;  Gates, B. C.;  Lu, C. C.;  
Gagliardi, L.; Bhan, A., Structure, Dynamics, and Reactivity for Light Alkane Oxidation of 
Fe(II) Sites Situated in the Nodes of a Metal–Organic Framework. J. Am. Chem. Soc. 2019, 141 
(45), 18142-18151. 



 33 

36. Rohde, J. U.;  In, J. H.;  Lim, M. H.;  Brennessel, W. W.;  Bukowski, M. R.;  Stubna, A.;  
Munck, E.;  Nam, W.; Que, L., Jr., Crystallographic and Spectroscopic Characterization of a 
Nonheme Fe(IV)-O Complex. Science 2003, 299 (5609), 1037-1039. 
37. Pestovsky, O.;  Stoian, S.;  Bominaar, E. L.;  Shan, X.;  Munck, E.;  Que, L., Jr.; Bakac, 
A., Aqueous FeIV=O: Spectroscopic Identification and Oxo-Group Exchange. Angew. Chem., Int. 
Ed. 2005, 44 (42), 6871-6874. 
38. Grapperhaus, C. A.;  Mienert, B.;  Bill, E.;  Weyhermüller, T.; Wieghardt, K., 
Mononuclear (Nitrido)Iron(V) and (Oxo)Iron(IV) Complexes via Photolysis of [(cyclam-
acetato)FeIII(N3)]+ and Ozonolysis of [(cyclam-acetato)FeIII(O3SCF3)]+ in Water/Acetone 
Mixtures. Inorg. Chem. 2000, 39 (23), 5306-5317. 
39. Ehudin, M. A.;  Gee, L. B.;  Sabuncu, S.;  Braun, A.;  Moënne-Loccoz, P.;  Hedman, B.;  
Hodgson, K. O.;  Solomon, E. I.; Karlin, K. D., Tuning the Geometric and Electronic Structure 
of Synthetic High-Valent Heme Iron(IV)-Oxo Models in the Presence of a Lewis Acid and 
Various Axial Ligands. J. Am. Chem. Soc. 2019, 141 (14), 5942-5960. 
40. Klinker, E. J.;  Kaizer, J.;  Brennessel, W. W.;  Woodrum, N. L.;  Cramer, C. J.; Que, L., 
Jr., Structures of Nonheme Oxoiron(IV) Complexes from X-ray crystallography, NMR 
Spectroscopy, and DFT Calculations. Angew. Chem., Int. Ed. 2005, 44 (24), 3690-3694. 
41. Rasheed, W.;  Draksharapu, A.;  Banerjee, S.;  Young, V. G.;  Fan, R.;  Guo, Y.;  Ozerov, 
M.;  Nehrkorn, J.;  Krzystek, J.;  Telser, J.; Que, L., Crystallographic Evidence for a Sterically 
Induced Ferryl Tilt in a Non‐Heme Oxoiron(IV) Complex that Makes it a Better Oxidant. 
Angew. Chem., Int. Ed. 2018, 130 (30), 9531-9535. 
42. Raugei, S.;  DuBois, D. L.;  Rousseau, R.;  Chen, S.;  Ho, M.-H.;  Bullock, R. M.; 
Dupuis, M., Toward Molecular Catalysts by Computer. Acc. Chem. Res. 2015, 48 (2), 248-255. 
43. Thiel, W., Computational Catalysis—Past, Present, and Future. Angew. Chem., Int. Ed. 
2014, 53 (33), 8605-8613. 
44. Rice, D. B.;  Massie, A. A.; Jackson, T. A., Experimental and Multireference Ab Initio 
Investigations of Hydrogen-Atom-Transfer Reactivity of a Mononuclear MnIV-Oxo Complex. 
Inorg. Chem. 2019, 58 (20), 13902-13916. 
45. Vitillo, J. G.;  Bhan, A.;  Cramer, C. J.;  Lu, C. C.; Gagliardi, L., Quantum Chemical 
Characterization of Structural Single Fe(II) Sites in MIL-Type Metal–Organic Frameworks for 
the Oxidation of Methane to Methanol and Ethane to Ethanol. ACS Catal. 2019, 9 (4), 2870-
2879. 
46. Barona, M.;  Ahn, S.;  Morris, W.;  Hoover, W.;  Notestein, J. M.;  Farha, O. K.; Snurr, 
R. Q., Computational Predictions and Experimental Validation of Alkane Oxidative 
Dehydrogenation by Fe2M MOF Nodes. ACS Catal. 2019, 10 (2), 1460-1469. 
47. Verma, P.;  Vogiatzis, K. D.;  Planas, N.;  Borycz, J.;  Xiao, D. J.;  Long, J. R.;  
Gagliardi, L.; Truhlar, D. G., Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)−Oxo 
Sites in Magnesium-Diluted Fe2(dobdc). J. Am. Chem. Soc. 2015, 137, 5770-5781. 
48. Song, W. J.;  Seo, M. S.;  DeBeer George, S.;  Ohta, T.;  Song, R.;  Kang, M.-J.;  Tosha, 
T.;  Kitagawa, T.;  Solomon, E. I.; Nam, W., Synthesis, Characterization, and Reactivities of 
Manganese(V)−Oxo Porphyrin Complexes. J. Am. Chem. Soc. 2007, 129 (5), 1268-1277. 
49. Massie, A. A.;  Denler, M. C.;  Cardoso, L. T.;  Walker, A. N.;  Hossain, M. K.;  Day, V. 
W.;  Nordlander, E.; Jackson, T. A., Equatorial Ligand Perturbations Influence the Reactivity of 
Manganese(IV)-Oxo Complexes. Angew. Chem., Int. Ed. 2017, 56 (15), 4178-4182. 



 34 

50. Klein, J. E.; Knizia, G., cPCET versus HAT: A Direct Theoretical Method for 
Distinguishing X–H Bond‐Activation Mechanisms. Angew. Chem., Int. Ed. 2018, 130 (37), 
12089-12093. 
51. Shaik, S.;  Chen, H.; Janardanan, D., Exchange-Enhanced Reactivity in Bond Activation 
by Metal-Oxo Enzymes and Synthetic Reagents. Nat. Chem. 2011, 3 (1), 19-27. 
52. Janardanan, D.;  Wang, Y.;  Schyman, P.;  Que, L., Jr.; Shaik, S., The Fundamental Role 
of Exchange-Enhanced Reactivity in C-H Activation by S=2 Oxo Iron(IV) Complexes. Angew. 
Chem., Int. Ed. 2010, 49 (19), 3342-3345. 
53. Venturinelli Jannuzzi, S. A.;  Phung, Q. M.;  Domingo, A.;  Formiga, A. L.; Pierloot, K., 
Spin State Energetics and Oxyl Character of Mn-Oxo Porphyrins by Multiconfigurational ab 
Initio Calculations: Implications on Reactivity. Inorg. Chem. 2016, 55 (11), 5168-79. 
54. Gupta, R.;  Lacy, D. C.;  Bominaar, E. L.;  Borovik, A. S.; Hendrich, M. P., Electron 
Paramagnetic Resonance and Mossbauer Spectroscopy and Density Functional Theory Analysis 
of a High-Spin Fe(IV)-Oxo Complex. J. Am. Chem. Soc. 2012, 134 (23), 9775-9784. 
55. Rosen, A. S.;  Notestein, J. M.; Snurr, R. Q., High‐Valent Metal–Oxo Species at the 
Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Two‐State 
Reactivity for C−H Bond Activation. Angew. Chem., Int. Ed. 2020. 
56. Geng, C.;  Ye, S.; Neese, F., Analysis of Reaction Channels for Alkane Hydroxylation by 
Nonheme Iron(IV)-Oxo Complexes. Angew. Chem., Int. Ed. 2010, 49 (33), 5717-5720. 
57. Geng, C.;  Ye, S.; Neese, F., Does a Higher Metal Oxidation State Necessarily Imply 
Higher Reactivity toward H-atom Transfer? A Computational Study of C–H Bond Oxidation by 
High-Valent Iron-Oxo and -Nitrido Complexes. Dalton Trans. 2014, 43 (16), 6079. 
58. Ye, S.;  Geng, C. Y.;  Shaik, S.; Neese, F., Electronic Structure Analysis of Multistate 
Reactivity in Transition Metal Catalyzed Reactions: the Case of C-H Bond Activation by Non-
heme Iron(IV)-oxo Cores. Phys. Chem. Chem. Phys. 2013, 15 (21), 8017-8030. 
59. Kupper, C.;  Mondal, B.;  Serrano-Plana, J.;  Klawitter, I.;  Neese, F.;  Costas, M.;  Ye, 
S.; Meyer, F., Nonclassical Single-State Reactivity of an Oxo-Iron(IV) Complex Confined to 
Triplet Pathways. J. Am. Chem. Soc. 2017, 139 (26), 8939-8949. 
60. Shaik, S.;  Hirao, H.; Kumar, D., Reactivity of High-Valent Iron-Oxo Species in 
Enzymes and Synthetic Reagents: a Tale of Many States. Acc. Chem. Res. 2007, 40 (7), 532-542. 
61. Busch, M.;  Fabrizio, A.;  Luber, S.;  Hutter, J.; Corminboeuf, C., Exploring the 
Limitation of Molecular Water Oxidation Catalysts. J. Phys. Chem. C 2018, 122 (23), 12404-
12412. 
62. Wodrich, M. D.;  Sawatlon, B.;  Busch, M.; Corminboeuf, C., The Genesis of Molecular 
Volcano Plots. Acc. Chem. Res. 2021, 54 (5), 1107-1117. 
63. Abild-Pedersen, F.;  Greeley, J.;  Studt, F.;  Rossmeisl, J.;  Munter, T. R.;  Moses, P. G.;  
Skulason, E.;  Bligaard, T.; Nørskov, J. K., Scaling Properties of Adsorption Energies for 
Hydrogen Containing Molecules on Transition-Metal Surfaces. Phys. Rev. Lett. 2007, 99 (1), 
016105. 
64. Nørskov, J. K.;  Bligaard, T.;  Rossmeisl, J.; Christensen, C. H., Towards the 
Computational Design of Solid Catalysts. Nat. Chem. 2009, 1 (1), 37-46. 
65. Busch, M.;  Wodrich, M. D.; Corminboeuf, C., Linear Scaling Relationships and Volcano 
Plots in Homogeneous Catalysis – Revisiting the Suzuki Reaction. Chem. Sci. 2015, 6 (12), 
6754-6761. 



 35 

66. Meyer, B.;  Sawatlon, B.;  Heinen, S.;  von Lilienfeld, O. A.; Corminboeuf, C., Machine 
Learning Meets Volcano Plots: Computational Discovery of Cross-Coupling Catalysts. Chem. 
Sci. 2018, 9 (35), 7069-7077. 
67. Wodrich, M. D.;  Sawatlon, B.;  Busch, M.; Corminboeuf, C., On the Generality of 
Molecular Volcano Plots. ChemCatChem 2018, 10 (7), 1586-1591. 
68. Latimer, A. A.;  Kulkarni, A. R.;  Aljama, H.;  Montoya, J. H.;  Yoo, J. S.;  Tsai, C.;  
Abild-Pedersen, F.;  Studt, F.; Nørskov, J. K., Understanding Trends in C-H Bond Activation in 
Heterogeneous Catalysis. Nat. Mater. 2017, 16 (2), 225-229. 
69. Vogiatzis, K. D.;  Polynski, M. V.;  Kirkland, J. K.;  Townsend, J.;  Hashemi, A.;  Liu, 
C.; Pidko, E. A., Computational Approach to Molecular Catalysis by 3d Transition Metals: 
Challenges and Opportunities. Chem. Rev. 2018, 119 (4), 2453-2523. 
70. Wodrich, M. D.;  Busch, M.; Corminboeuf, C., Accessing and Predicting the Kinetic 
Profiles of Homogeneous Catalysts from Volcano Plots. Chem. Sci. 2016, 7, 5723-5735. 
71. Wodrich, M. D.;  Sawatlon, B.;  Solel, E.;  Kozuch, S.; Corminboeuf, C., Activity-Based 
Screening of Homogeneous Catalysts through the Rapid Assessment of Theoretically Derived 
Turnover Frequencies. ACS Catal. 2019, 9 (6), 5716-5725. 
72. Chantarojsiri, T.;  Reath, A. H.; Yang, J. Y., Cationic Charges Leading to an Inverse 
Free‐Energy Relationship for N−N Bond Formation by MnVI Nitrides. Angew. Chem., Int. Ed. 
2018, 57 (43), 14037-14042. 
73. Gani, T. Z. H.; Kulik, H. J., Understanding and Breaking Scaling Relations in Single-Site 
Catalysis: Methane to Methanol Conversion by FeIV=O. ACS Catal. 2018, 8, 975-986. 
74. Darby, M. T.;  Stamatakis, M.;  Michaelides, A.; Sykes, E. C. H., Lonely Atoms with 
Special Gifts: Breaking Linear Scaling Relationships in Heterogeneous Catalysis with Single-
Atom Alloys. J. Phys. Chem. Lett. 2018, 9 (18), 5636-5646. 
75. Zandkarimi, B.; Alexandrova, A. N., Dynamics of Subnanometer Pt Clusters Can Break 
the Scaling Relationships in Catalysis. J. Phys. Chem. Lett. 2019, 10 (3), 460-467. 
76. Pérez-Ramírez, J.; López, N., Strategies to Break Linear Scaling Relationships. Nat. 
Catal. 2019, 2 (11), 971-976. 
77. Chantarojsiri, T.;  Sun, Y.;  Long, J. R.; Chang, C. J., Water-Soluble Iron(IV)-Oxo 
Complexes Supported by Pentapyridine Ligands: Axial Ligand Effects on Hydrogen Atom and 
Oxygen Atom Transfer Reactivity. Inorg. Chem. 2015, 54 (12), 5879-87. 
78. Cavallo, L.; Jacobsen, H., Electronic Effects in (salen)Mn-Based Epoxidation Catalysts. 
The Journal of Organic Chemistry 2003, 68 (16), 6202-6207. 
79. Nandy, A.;  Duan, C.;  Taylor, M. G.;  Liu, F.;  Steeves, A. H.; Kulik, H. J., 
Computational Discovery of Transition-metal Complexes: From High-throughput Screening to 
Machine Learning. Chem. Rev. 2021, 121 (16), 9927-10000. 
80. Nandy, A.;  Zhu, J.;  Janet, J. P.;  Duan, C.;  Getman, R. B.; Kulik, H. J., Machine 
Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal-Oxo 
Intermediate Formation. ACS Catal. 2019, 9, 8243-8255. 
81. Friederich, P.;  dos Passos Gomes, G.;  De Bin, R.;  Aspuru-Guzik, A.; Balcells, D., 
Machine Learning Dihydrogen Activation in the Chemical Space Surrounding Vaska's Complex. 
Chem. Sci. 2020, 11 (18), 4584-4601. 
82. dos Passos Gomes, G.;  Pollice, R.; Aspuru-Guzik, A., Navigating through the Maze of 
Homogeneous Catalyst Design with Machine Learning. Trends in Chemistry 2021, 3 (2), 96-110. 



 36 

83. Li, X.;  Chiong, R.; Page, A. J., Group and Period-Based Representations for Improved 
Machine Learning Prediction of Heterogeneous Alloy Catalysts. J. Phys. Chem. Lett. 2021, 12 
(21), 5156-5162. 
84. Janet, J. P.;  Ramesh, S.;  Duan, C.; Kulik, H. J., Accurate Multiobjective Design in a 
Space of Millions of Transition Metal Complexes with Neural-Network-Driven Efficient Global 
Optimization. ACS Cent. Sci. 2020, 6 (4), 513-524. 
85. Janet, J. P.; Kulik, H. J., Resolving Transition Metal Chemical Space: Feature Selection 
for Machine Learning and Structure–Property Relationships. J. Phys. Chem. A 2017, 121 (46), 
8939-8954. 
86. Janet, J. P.;  Liu, F.;  Nandy, A.;  Duan, C.;  Yang, T.;  Lin, S.; Kulik, H. J., Designing in 
the Face of Uncertainty: Exploiting Electronic Structure and Machine Learning Models for 
Discovery in Inorganic Chemistry. Inorg. Chem. 2019, 58, 10592-10606. 
87. Janet, J. P.;  Gani, T. Z. H.;  Steeves, A. H.;  Ioannidis, E. I.; Kulik, H. J., Leveraging 
Cheminformatics Strategies for Inorganic Discovery: Application to Redox Potential Design. 
Ind. Eng. Chem. Res. 2017, 56 (17), 4898-4910. 
88. Nandy, A.;  Duan, C.;  Janet, J. P.;  Gugler, S.; Kulik, H. J., Strategies and Software for 
Machine Learning Accelerated Discovery in Transition Metal Chemistry. Industrial & 
Engineering Chemistry Research 2018, 57 (42), 13973-13986. 
89. Li, Z.;  Omidvar, N.;  Chin, W. S.;  Robb, E.;  Morris, A.;  Achenie, L.; Xin, H., 
Machine-Learning Energy Gaps of Porphyrins with Molecular Graph Representations. J. Phys. 
Chem. A 2018, 122 (18), 4571-4578. 
90. Häse, F.;  Roch, L. M.;  Kreisbeck, C.; Aspuru-Guzik, A., Phoenics: A Bayesian 
Optimizer for Chemistry. ACS Cent. Sci. 2018, 4 (9), 1134-1145. 
91. Okamoto, Y., Applying Bayesian Approach to Combinatorial Problem in Chemistry. J. 
Phys. Chem. A 2017, 121 (17), 3299-3304. 
92. Gubaev, K.;  Podryabinkin, E. V.; Shapeev, A. V., Machine Learning of Molecular 
Properties: Locality and Active Learning. J. Chem. Phys. 2018, 148 (24), 241727. 
93. Li, Z.;  Wang, S.; Xin, H., Toward Artificial Intelligence in Catalysis. Nat. Catal. 2018, 1 
(9), 641-642. 
94. Friederich, P.;  Häse, F.;  Proppe, J.; Aspuru-Guzik, A., Machine-Learned Potentials for 
Next-Generation Matter Simulations. Nat. Mater. 2021, 20 (6), 750-761. 
95. Smith, J. S.;  Nebgen, B.;  Lubbers, N.;  Isayev, O.; Roitberg, A. E., Less is More: 
Sampling Chemical Space with Active Learning. J. Chem. Phys. 2018, 148 (24), 241733. 
96. Yuan, R.;  Liu, Z.;  Balachandran, P. V.;  Xue, D.;  Zhou, Y.;  Ding, X.;  Sun, J.;  Xue, 
D.; Lookman, T., Accelerated Discovery of Large Electrostrains in BaTiO3‐Based Piezoelectrics 
Using Active Learning. Advanced Materials 2018, 30 (7), 1702884. 
97. Janet, J. P.;  Duan, C.;  Yang, T.;  Nandy, A.; Kulik, H., A Quantitative Uncertainty 
Metric Controls Error in Neural Network-Driven Chemical Discovery. Chem. Sci. 2019, 10, 
7913-7922. 
98. del Rosario, Z.;  Rupp, M.;  Kim, Y.;  Antono, E.; Ling, J., Assessing the Frontier: Active 
Learning, Model Accuracy, and Multi-Objective Candidate Discovery and Optimization. J. 
Chem. Phys. 2020, 153 (2), 024112. 
99. Bradford, E.;  Schweidtmann, A. M.; Lapkin, A., Efficient Multiobjective Optimization 
Employing Gaussian Processes, Spectral Sampling and a Genetic Algorithm. Journal of Global 
Optimization 2018, 71 (2), 407-438. 



 37 

100. Keane, A. J., Statistical Improvement Criteria for Use in Multiobjective Design 
Optimization. AIAA Journal 2006, 44 (4), 879-891. 
101. Groves, J. T.; McClusky, G. A., Aliphatic Hydroxylation via Oxygen Rebound. Oxygen 
Transfer Catalyzed by Iron. J. Am. Chem. Soc. 1976, 98 (3), 859-861. 
102. Vennelakanti, V.;  Nandy, A.; Kulik, H. J., The Effect of Hartree-Fock Exchange on 
Scaling Relations and Reaction Energetics for C–H Activation Catalysts. Topics in Catalysis 
2021. 
103. Winkler, J. R.; Gray, H. B., Electronic Structures of Oxo-Metal Ions. In Molecular 
Electronic Structures of Transition Metal Complexes I. Structure and Bonding, Mingos, D.;  
Day, P.; Dahl, J., Eds. Springer, Berlin: Heidelberg, 2011; Vol. 142, pp 17-28. 
104. Liao, P.;  Getman, R. B.; Snurr, R. Q., Optimizing Open Iron Sites in Metal−Organic 
Frameworks for Ethane Oxidation: A First-Principles Study. ACS Appl. Mater. Interfaces 2017, 
9, 33484-33492. 
105. Cho, K.;  Leeladee, P.;  McGown, A. J.;  DeBeer, S.; Goldberg, D. P., A High-Valent 
Iron–Oxo Corrolazine Activates C–H Bonds via Hydrogen-Atom Transfer. J. Am. Chem. Soc. 
2012, 134 (17), 7392-7399. 
106. Andrikopoulos, P. C.;  Michel, C.;  Chouzier, S.; Sautet, P., In Silico Screening of Iron-
Oxo Catalysts for CH Bond Cleavage. ACS Catal. 2015, 5 (4), 2490-2499. 
107. Wang, V. C.-C.;  Maji, S.;  Chen, P. P.-Y.;  Lee, H. K.;  Yu, S. S.-F.; Chan, S. I., Alkane 
Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics. Chem. Rev. 
2017, 117 (13), 8574-8621. 
108. Costas, M.;  Chen, K.; Que, L., Biomimetic Nonheme Iron Catalysts for Alkane 
Hydroxylation. Coord. Chem. Rev. 2000, 200-202, 517-544. 
109. Kim, I. Y.; de Weck, O. L., Adaptive Weighted Sum Method for Multiobjective 
Optimization: a New Method for Pareto Front Generation. Structural and Multidisciplinary 
Optimization 2005, 31 (2), 105-116. 
110. Matano, Y.; Imahori, H., Phosphole-Containing Calixpyrroles, Calixphyrins, and 
Porphyrins: Synthesis and Coordination Chemistry. Acc. Chem. Res. 2009, 42 (8), 1193-1204. 
111. Matano, Y.;  Miyajima, T.;  Ochi, N.;  Nakabuchi, T.;  Shiro, M.;  Nakao, Y.;  Sakaki, S.; 
Imahori, H., Syntheses, Structures, and Coordination Chemistry of Phosphole-Containing Hybrid 
Calixphyrins:  Promising Macrocyclic P,N2,X-Mixed Donor Ligands for Designing Reactive 
Transition-Metal Complexes. J. Am. Chem. Soc. 2007, 130 (3), 990-1002. 
112. Groom, C. R.;  Bruno, I. J.;  Lightfoot, M. P.; Ward, S. C., The Cambridge Structural 
Database. Acta Crystallographica Section B Structural Science, Crystal Engineering and 
Materials 2016, 72 (2), 171-179. 
113. Jones, D. R.;  Schonlau, M.; Welch, W. J., Efficient Global Optimization of Expensive 
Black-Box Functions. Journal of Global Optimization 1998, 13 (4), 455-492. 
114. Welch, B. L., The Significance of the Difference Between Two Means when the 
Population Variances are Unequal. Biometrika 1938, 29 (3/4), 350. 
115. Baglia, R. A.;  Zaragoza, J. P. T.; Goldberg, D. P., Biomimetic Reactivity of Oxygen-
Derived Manganese and Iron Porphyrinoid Complexes. Chem. Rev. 2017, 117 (21), 13320-
13352. 
116. Schneider, J. E.;  Goetz, M. K.; Anderson, J. S., Statistical Analysis of C–H Activation 
by Oxo Complexes Supports Diverse Thermodynamic Control Over Reactivity. Chem. Sci. 2021, 
12 (11), 4173-4183. 



 38 

117. Kozuch, S.; Shaik, S., How to Conceptualize Catalytic Cycles? The Energetic Span 
Model. Acc. Chem. Res. 2010, 44 (2), 101-110. 
118. Gani, T. Z. H.; Kulik, H. J., Unifying Exchange Sensitivity in Transition Metal Spin-
State Ordering and Catalysis Through Bond Valence Metrics J. Chem. Theory Comput. 2017, 13, 
5443-5457. 
119. Petachem. TeraChem. http://www.petachem.com (accessed May 17, 2019). 
120. Becke, A. D., Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. 
Chem. Phys. 1993, 98 (7), 5648-5652. 
121. Lee, C.;  Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy 
Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785-789. 
122. Stephens, P. J.;  Devlin, F. J.;  Chabalowski, C. F.; Frisch, M. J., Ab Initio Calculation of 
Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. 
J. Phys. Chem. 1994, 98 (45), 11623-11627. 
123. Grimme, S.;  Antony, J.;  Ehrlich, S.; Krieg, H., A Consistent and Accurate Ab Initio 
Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. 
J. Chem. Phys. 2010, 132 (15), 154104. 
124. Becke, A. D.; Johnson, E. R., A Density-Functional Model of the Dispersion Interaction. 
J. Chem. Phys. 2005, 123 (15), 154101. 
125. Wadt, W. R.; Hay, P. J., Ab Initio Effective Core Potentials for Molecular Calculations. 
Potentials for Main Group Elements Na to Bi. J. Chem. Phys. 1985, 82 (1), 284-298. 
126. Hay, P. J.; Wadt, W. R., Ab Initio Effective Core Potentials for Molecular Calculations. 
Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82 (1), 270-283. 
127. Rassolov, V. A.;  Pople, J. A.;  Ratner, M. A.; Windus, T. L., 6-31G* Basis Set for 
Atoms K through Zn. J. Chem. Phys. 1998, 109 (4), 1223-1229. 
128. Saunders, V. R.; Hillier, I. H., A "Level-Shifting" Method for Converging Closed Shell 
Hartree-Fock Wave Functions. Int. J. Quantum Chem. 1973, 7 (4), 699-705. 
129. Wang, L.-P.; Song, C., Geometry Optimization Made Simple with Translation and 
Rotation Coordinates. J. Chem. Phys. 2016, 144 (21), 214108. 
130. Ioannidis, E. I.;  Gani, T. Z. H.; Kulik, H. J., molSimplify: A Toolkit for Automating 
Discovery in Inorganic Chemistry. J. Comput. Chem. 2016, 37, 2106-2117. 
131. O'Boyle, N. M.;  Banck, M.;  James, C. A.;  Morley, C.;  Vandermeersch, T.; Hutchison, 
G. R., Open Babel: An Open Chemical Toolbox. J. Cheminf. 2011, 3, 33. 
132. O'Boyle, N. M.;  Morley, C.; Hutchison, G. R., Pybel: a Python Wrapper for the 
OpenBabel Cheminformatics Toolkit. Chem. Cent. J. 2008, 2, 5. 
133. RDKit. http://www.rdkit.org (accessed March 2020). 
134. Prakash, J.;  Sheng, Y.;  Draksharapu, A.;  Klein, J. E. M. N.;  Cramer, C. J.; Que, L., 
Facile Conversion of syn‐[FeIV(O)(TMC)]2+ into the anti Isomer via Meunier's Oxo–Hydroxo 
Tautomerism Mechanism. Angew. Chem., Int. Ed. 2019, 58 (7), 1995-1999. 
135. Wilson, S. A.;  Chen, J.;  Hong, S.;  Lee, Y.-M.;  Clémancey, M.;  Garcia-Serres, R.;  
Nomura, T.;  Ogura, T.;  Latour, J.-M.;  Hedman, B.;  Hodgson, K. O.;  Nam, W.; Solomon, E. I., 
[FeIV=O(TBC)(CH3CN)]2+: Comparative Reactivity of Iron(IV)-Oxo Species with Constrained 
Equatorial Cyclam Ligation. J. Am. Chem. Soc. 2012, 134 (28), 11791-11806. 
136. Ray, K.;  England, J.;  Fiedler, A. T.;  Martinho, M.;  Münck, E.; Que, L., An Inverted 
and More Oxidizing Isomer of [FeIV(O)(tmc)(NCCH3)]2+. Angewandte Chemie 2008, 120 (42), 
8188-8191. 



 39 

137. Duan, C.;  Janet, J. P.;  Liu, F.;  Nandy, A.; Kulik, H. J., Learning from Failure: 
Predicting Electronic Structure Calculation Outcomes with Machine Learning Models. J. Chem. 
Theory Comput. 2019, 15 (4), 2331-2345. 
138. Duan, C.;  Liu, F.;  Nandy, A.; Kulik, H. J., Putting Density Functional Theory to the 
Test in Machine-Learning-Accelerated Materials Discovery. J. Phys. Chem. Lett. 2021, 12 (19), 
4628-4637. 
139. Henkelman, G.;  Uberuaga, B. P.; Jónsson, H., A Climbing Image Nudged Elastic Band 
Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113 (22), 
9901-9904. 
140. Henkelman, G.; Jónsson, H., Improved Tangent Estimate in the Nudged Elastic Band 
Method for Finding Minimum Energy Paths and Saddle Points. J. Chem. Phys. 2000, 113 (22), 
9978-9985. 
141. Ufimtsev, I. S.; Martinez, T. J., Quantum Chemistry on Graphical Processing Units. 3. 
Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics. 
J. Chem. Theory Comput. 2009, 5 (10), 2619-2628. 
142. Kästner, J.;  Carr, J. M.;  Keal, T. W.;  Thiel, W.;  Wander, A.; Sherwood, P., DL-FIND: 
An Open-Source Geometry Optimizer for Atomistic Simulations. J. Phys. Chem. A 2009, 113 
(43), 11856-11865. 

 
TOC Graphic 
 

 
 
  



 40 

 


