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Abstract

Exploring excitation energy transfer (EET) in light-harvesting complexes (LHCs)

is essential for understanding the natural processes and design of highly-efficient pho-

tovoltaic devices. LHCs are open systems, where quantum effects may play a crucial

role for almost perfect utilization of solar energy. Simulation of energy transfer with

inclusion of quantum effects can be done within the framework of dissipative quantum

dynamics (QD), which are computationally expensive. Thus, artificial intelligence (AI)

offers itself as a tool for reducing the computational cost. Here we suggest AI-QD

approach using AI to directly predict QD as a function of time and other parameters

such as temperature, reorganization energy, etc., completely circumventing the need of

recursive step-wise dynamics propagation in contrast to the traditional QD and alter-

native, recursive AI-based QD approaches. Our trajectory-learning AI-QD approach is
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able to predict the correct asymptotic behavior of QD at infinite time. We demonstrate

AI-QD on seven-sites Fenna–Matthews–Olson (FMO) complex.

Introduction

From the birth of life, solar energy has been the driving force of life. Via the mechanism of

photosynthesis, living organisms capture sunlight with the highly sophisticated pigments in

their antenna systems and transfer sunlight energy to the reaction center (RC) in the form

of electron-hole pairs (excitons), where it is stored as biochemical energy.1 The transfer of

solar energy from antenna to RC, which is also known as excitation energy transfer (EET),

in the form of excitons is considered to be highly efficient with close to unit efficiency.2

Understanding this high efficiency of the natural harvesting systems is very important be-

cause of its potential applications in designing very efficient organic solar cells and storage

devices.3 Experiments showed that the long-lasting coherence in the efficient natural light-

harvesting harvesting complexes (LHCs) is preserved by the surrounding protein environ-

ments (scaffold), and this coherence may be responsible for this high efficiency.4,5 The most

well-investigated LHC is Fenna–Matthews–Olsen (FMO) complex, which is found in green

sulfur bacteria.6 The small size and simplicity of the FMO complex also makes it a testbed

of simulation approaches. The FMO complex is a trimer of identical subunits, where each

subunit consists of bacteriochlorophyll (BChl) molecules (system) attached to their protein

environments.7

Enormous amount of research work has been done on light harvesting processes.8–13

Taking FMO as an example, it is easy to see that the system (BChl molecules) is not isolated

from the environment (the protein) and thus, the correct simulation of FMO should treat it

as an open system rather than isolated one. In addition, many experiments suggest,14,15 that

quantum effects, particularly coherence, might play an important role in the light harvesting

processes and may even be responsible for achieving the high-end efficiency. Temporal and
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spatial simulation of EET with the inclusion of quantum effects can be done within many

frameworks such as classical mapping-based approaches,16–18 perturbative methods,19–21 and

dissipative quantum dynamics (QD)22–27 adopted here.

QD simulations can be performed using the hierarchical equations of motion (HEOM)28

and its many improvements and extensions,8,23,29–31 the quasiadiabatic propagator path in-

tegral (QuAPI)32 and its variant iterative QuAPI (iQuAPI),27 the trajectory-based stochas-

tic equation of motion (SEOM) approach,25,33–39 the multi-layer multi-configuration time-

dependent Hartree (ML-MCTDH)26 and the local thermalising Lindblad master equation

(LTLME).22 The development of various quantum dissipative dynamics methods stirs from

the fact that each of these methods has some limitations and hence there is no single univer-

sal method that works in all cases. For instance, HEOM is numerically exact but come with

a very high computational cost at low temperatures, the SEOM has no explicit dependence

on the temperature but has very bad convergence at long-time propagation, in the QuAPI

approach all correlation effects are included over a finite time and correlation effects be-

yond this time are neglected. Most importantly, all these traditional QD approaches require

step-wise propagation of trajectories and the next step depends on the previous steps, thus,

QD simulation is an iterative, recursive process. Both calculations at each time step and

recursive nature of QD makes it rather computationally expensive.

Alleviating the computational cost of QD became a target of a series of studies applying

artificial intelligence (AI),40–46 inspired by advances in application of AI employing machine

learning (ML) algorithms in computational chemistry and chemical physics.47,48 AI was

also applied to investigate EET in a dimer system44 and the FMO complex.40 Saving of

computational cost by AI in above studies is impressive, however, one of the studies40 only

focused on predicting energy transfer times and transfer efficiencies rather than temporal

and spatial evolution, while other related studies44–46 adopted basically the same recursive

nature of QD trajectory propagation.

The recursive nature of the previous AI-based QD makes it prone to error accumulation.
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In recursive simulations, previously predicted values are used as an input to predict the

next value. Thus, the prediction error at each time-step will accumulate, which results in

deterioration of accuracy. In addition, the recursive nature of predictions does not allow us

to make a prediction for any arbitrary time without predicting values before that. Finally, a

short-time trajectory is needed as the seed to be generated with traditional approaches such

as HEOM and then provided as an input to AI model to make prediction for the next time

step and ultimately propagate the long-time dynamics. Thus, even when having AI model,

we still need to spend valuable computational time to generate the short-time trajectory

with the traditional approaches.

Here, we suggest an AI-QD approach to directly predict QD with AI as a function of time

and other parameters such as temperature, reorganization energy, etc., completely circum-

venting the need of recursive step-wise dynamics propagation in contrast to the traditional

QD and alternative, recursive AI-based QD approaches. Our AI-QD approach is able to pre-

dict QD at infinite time with correct asymptotic behavior and can be viewed as trajectory

learning, which does not need any short-time trajectory as an input, eradicates the need

of traditional approaches to generate the seed, and alleviates the problem of error accumu-

lation. We demonstrate the applicability of AI-QD on seven-sites Fenna–Matthews–Olson

(FMO) complex and show how AI-QD can be used for massive, infinite-time QD simulations

and provide insights into the desired range of parameters and more efficient paths followed

by the transfer of excitation energy.

Results

Reference quantum dynamics of the FMO complex

We employ the Frenkel exciton Hamiltonian49 to study EET dynamics in the FMO complex:

H = Hs +Henv +Hs−env +Hreorg , (1)
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with all Hamiltonian terms given below

Hs =
n∑
i

|i⟩ϵi⟨i|+
n∑

i,j=1,i ̸=j

|i⟩Jij⟨j| , (2)

Henv =
n∑

i=1

∑
k=1

(
1

2
P 2

k,i +
1

2
ω2
k,iQ

2
k,i

)
, (3)

Hs−env = −
n∑

i=1

∑
k=1

|i⟩ck,iQk,i⟨i| , (4)

Hreorg =
n∑

i=1

|i⟩λi⟨i| , (5)

where Hs, Henv, Hs−env and Hreorg denote system (BChl molecules) Hamiltonian, Hamil-

tonian of protein-environment, system-environment interaction Hamiltonian and the reor-

ganization term, respectively. In Eq. (1), n is the number of sites (BChl molecules), ϵi is

the energy of the ith site and Jij is the inter-site coupling between sites i and j. P k,i and

Qk,i are respectively momentum coordinate and frequency of environment mode k associ-

ated with site i. In Hs−env, each site is connected to its own environment. The ck,i is the

strength of coupling between site i and mode k of its environment. The reorganization term

Hreorg can be seen as a counter term that emerges from the interaction of the sites with the

environment.8,49,50 It is added to stop further renormalization of the site energy ϵi by the en-

vironment. In the reorganization term Hreorg, λi is the reorganization energy corresponding

to site i,51

λi =
1

π

∫ ∞

0

Ji(ω)

ω
dω , (6)

where Ji(ω) is spectral density of the environment corresponding to site i. As shown by

Nalbach and Thorwart,52 the effects of the discrete molecular modes on the population

dynamics are largely irrelevant. As a result, it is acceptable to use continues environment

spectral density such as Drude–Lorentz spectral density

Jenv(ω) = 2λ
ωγ

ω2 + γ2
, (7)
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where γ and λ denote the characteristic frequency (bath relaxation rate) and the reorgani-

zation energy, respectively.

In general terms, the EET dynamics in the FMO complex can be described by Liouville–

von Neumann equation
d

dt
ρ(t) =

i

h̄
[H ,ρ(t)] , (8)

where ρ is the density matrix. Because of the many-body effects, direct propagation of

Eq. (8) is not straightforward. Different approaches are developed to simplify and propagate

Eq. (8) and interested readers are advised to look into the corresponding references.25,30,32,53

We use the local thermalising Lindblad master equation (LTLME)22 to propagate the

reference QD trajectories for the reduced density matrix of the system (see the Supplemen-

tary Information), where we adopt Adolphs and Renger’s Hamiltonian for seven sites per

subunit54 (see Methods). The LTLME is a coherent and complete positive trace-preserving

approach, but may not be that accurate as HEOM or SEOM approaches (because of approx-

imations used in its derivation22,55), but here it is not the concern of our proof-of-concept

paper.

Parameters-based non-recursive training framework

In our parameters-based non-recursive AI-QD, we train ML model as a function of a param-

eter space D (used as the input to ML model) which depends on the system of interest and

on the data from a limited number of QD trajectories. For the FMO complex, our parameter

space D consists of information of sites, λ, γ and T . In addition, time also becomes a part of

the input of our AI-QD model. In order to treat infinite time, instead of time, we introduce

time-function f(t) ∈ D, which normalizes time and for t → ∞ becomes f(t) = 1. Such nor-

malization, however, can effectively only discern data within rather short time-region, thus,

instead of a single time-function, we introduce the set of redundant time-functions {fk(t)}

for different regions in very long-time propagation (see Methods). The remaining input of
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m1 n1 γ1 λ1 T1 {fk(t0)} ρ11(t0), ρ12(t0), . . . , ρ17(t0)
m1 n1 γ1 λ1 T1 {fk(t1)} ρ11(t1), ρ12(t1), . . . , ρ17(t1)
m1 n1 γ1 λ1 T1 {fk(t2)} ρ11(t2), ρ12(t2), . . . , ρ17(t2)
... ... ... ... ... ... ...
m1 n1 γ1 λ1 T1 {fk(tM)} ρ11(tM), ρ12(tM), . . . , ρ17(tM)
m1 n2 γ1 λ1 T1 {fk(t0)} ρ21(t0), ρ22(t0), . . . , ρ27(t0)
m1 n2 γ1 λ1 T1 {fk(t1)} ρ21(t1), ρ22(t1), . . . , ρ27(t1)
m1 n2 γ1 λ1 T1 {fk(t2)} ρ21(t2), ρ22(t2), . . . , ρ27(t2)
... ... ... ... ... ... ...
m1 n2 γ1 λ1 T1 {fk(tM)} ρ21(tM), ρ22(tM), . . . , ρ27(tM)
... ... ... ... ... ... ...

Input Target values

Figure 1: Preparation of training data using parameters in AI-QD training framework. Here
{fk(t)} is a set of time-functions based on the logistic function fk(t) = 1/(1+ 15 · exp(−(t+
ck))) where ck = 5k− 1.0 and k ∈ {0, 1, 2, . . . , 99} (see Methods). Other parameters are t =
{t0, t1, t2, . . . tM}, λ = {λ1, λ2, λ3, . . . λi}, γ = {γ1, γ2, γ3, . . . γj}, and T = {T1, T2, T3, . . . Tl}.
In addition, labels n = {n1, n2, n3, . . . n7} are used for corresponding rows in the density
matrix and labels for sites with possible initial excitation are m = {m1,m2}. As the off-
diagonal elements ρpq, p ̸=q are complex, we separate the real and imaginary parts.

our model is information about the initial excitation m = {m1,m2} = {0, 1} ∈ D (with

zero corresponding to initial excitation on site-1 and 1 corresponding to site-6) and labels

n = {n1, n2, n3, . . . n7} = {0.1, 0.2, 0.3, . . . , 0.7} ∈ D corresponding to the seven rows in the

reduced density matrix. We train convolutional neural network (CNN) taking all above in-

put elements {m, n, γ, λ, T , f(t)} ∈ D on exciton population ρnn(t) (target values to learn

or output of the trained model) on the site defined by input n (see Fig. 1 and Methods for

details, such as CNN architecture and normalization of input elements).

Our training trajectories generated with the reference LTLME-QD approach are chosen

by furthest-point sampling from the three-dimensional space of the following parameters: re-

organization energy λ = {λ1, λ2, λ3, . . . λi}, the characteristic frequency γ = {γ1, γ2, γ3, . . . γj}

and temperature T = {T1, T2, T3, . . . Tl} (see Methods).
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We should also decide up to what time-length tM we should run reference LTLME-QD

trajectories. Based on the prior knowledge that populations plateau in asymptotic limit,

for each trajectory we choose a different time-length tM using a vanishing gradient scheme,

where tM is chosen such that the gradient of population G is close to zero (see Methods).

Using the vanishing gradient scheme to find different tM for each trajectory allows us to

sample more data from the training trajectories, which are hard-to-learn, while avoiding re-

dundant sampling from trajectories, which are easy-to-learn. This also removes arbitrariness

in choosing fixed tM parameter as was done in previous studies using the recursive AI-QD

scheme.44,46

Application to EET dynamics in FMO complex

As an application of our approach, we predict EET dynamics in the FMO complex with seven

sites per subunit for parameters of the test set trajectories (none of which used in training).

Site-1 (BChl molecule 1) and site-6 (BChl molecule 6) are most likely to get initially excited

as they are close to the photosynthetic antenna complex called chlorosome,6 we thus present

results for both cases. For predictions, we just provide the parameters of the test trajectories

(characteristic frequency, reorganization energy, temperature) as an input and predict the

evolution of EET. Fig. 2 shows the evolution of excitation energy in all seven sites for

both cases. In Fig. 2, we show EET for both short and long time periods, demonstrating

that AI-QD is able to capture the coherent EET (aka quantum beating or modulation of

amplitudes) of short-time dynamics and also can predict the asymptotic limit. Fig. 3 shows

the prominent off-diagonal terms (aka coherence) of the reduced density matrix for Fig. 2.

Table 1 shows mean absolute error (MAE) and root mean square error (RMSE) averaged

over 600 trajectories. As AI-QD is non-recursive (non-iterative), without any trajectory

propagation, we can directly predict the asymptotic behaviour. Our AI-QD performs well in

all cases (from weak coherence to strong coherence, from Markovian to non-Markovian, from

adiabatic to nonadiabatic situations) as can be observed for selected trajectories shown in
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Figure 2: Population of the seven sites in the FMO complex as a function of time. In
(a)-(b) the initial excitation is considered on site-1 and other parameters are γ = 175,
λ = 70, T = 70. In (c)-(d), the initial excitation is on site-6 and other parameters are
γ = 75, λ = 100, T = 130. (a) and (c) show a part of the population up to 2.5 ps, while the
population changes beyond 2.5 ps are shown in (b) and (d), from which it is clearly seen that
the population reaches plateau after a few picoseconds. The off-diagonal terms or coherences
are shown in Fig. 3. The results of AI-QD are compared to the results of LTLME-QD (dots).
γ and λ are in the units of cm−1, while T is in the units of K.

Fig. S1 with corresponding errors reported in Table S1 of the Supplementary Information.

From Table S1, we observe that our AI-QD approach is comparatively more accurate in

strongly coherent cases (large value of γ and small values of λ and T ) which can be seen

as a consequence of the vanishing gradient scheme which may favor these challenging cases

due to a larger number of training points sampled from such trajectories. AI-QD approach

can even extrapolate to a good degree as its error for the test trajectories propagated with

parameters outside the training parameter space is of a similar order of magnitude to the test
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Figure 3: Electronic coherence as a function of time. (a) and (b) respectively show the real
and imaginary parts of the prominent off-diagonal terms for Fig. 2(a)-(b) where γ = 75,
λ = 100, T = 130 with the initial excitation on site-1. (c) and (d) respectively show the
real and imaginary part of the prominent off-diagonal terms for Fig. 2(c)-(d) where γ = 75,
λ = 100, T = 130 with the initial excitation on site-6. The results of AI-QD are compared
to the results of LTLME-QD (dots). γ and λ are in unit of cm−1, while T is in the units of
K.

trajectories propagated with parameters inside the training parameter space (interpolation)

as shown in the Supplementary Information (see additional set of test trajectories in Fig. S2

and Table S2).

It was shown,8,56,57 that the transfer of excitation energy in the seven-sites FMO complex

follows mainly two paths, i.e., site-1 → site-2 → site-3 ↔ site-4 and site-6 → site-5, site-7,

site-4 → site-3, here the ↔ shows that the excitation energy equilibrates between site-3 and

site-4 after site-3 is populated (see Fig. 3) Among the seven sites, the sites 1 and 6 are close

to the baseplate protein, while the sites 3 and 4 are near to the target RC complex.54,58 It

has been proposed that the quantum coherence allows the FMO complex to quickly sample
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Table 1: Mean absolute error (MAE) and root mean square error (RMSE) averaged over 600
randomly generated test trajectories propagated up to 1 ns. R{ρmn,n ̸=m} and I{ρmn,n ̸=m}
represent the real and imaginary part of the off-diagonal terms, respectively.

diagonal terms off-diagonal terms
Error ρnn R{ρmn,n ̸=m} I{ρmn,n ̸=m}
MAE 1.3·10−3 5.1·10−4 2.4·10−4

RMSE 2.1·10−3 8.1·10−4 3.6·10−4

several routes (paths) in search for site-3.5 In Fig. 4, we show the population of site-3 at

t = 0.5 ps (500 fs) as a function of γ, λ and T . From Fig. 4(a), we observe that at room

temperature T = 300, the ETT to site-3 or, in other words, to RC complex gets slow as

the characteristic frequency γ increases. In contrast, the ETT to site-3 increases with the

increase in reorganization energy λ as shown in Fig. 4(b). Similar trend can be observed

with the increase in temperature T as can be seen in Fig. 4(c).

In order to find the optimum parameters for the fastest transfer of excitation energy, we

have calculated population of site-3 at 0.5 ps (500 fs) for a massive set of ca. 0.57 million pos-

sible combinations (site-1 + site-6) of the γ, λ, T with the search space γ = 25, 30, 35, . . . , 245,

λ = 10, 15, 20, . . . , 345 and T = 25, 30, 35, . . . , 345. We report the fastest EET of 0.761 to

site-3 for path-2 with γ = 30, λ = 310, T = 25, while for path-1 for the same parameters

EET is 0.626. From Figs. 2, 4 and from the optimum parameters, we notice that following

path-1, i.e., site-1 → site-2 → site-3 ↔ site-4, the EET shows more coherence and is slow

compared to excitation transfer following path-2, i.e., site-6 → site-5, site-7, site-4 → site-3.

From Eq. (9) (Methods), energy of the site-1 (12410 cm−1) is lower than the baseplate, which

has been reported to be 12500 cm−1.59,60 This allows a quick transfer of the excitation en-

ergy to site-1 from the baseplate. However, the energy of site-2 (12530 cm−1) is higher than

site-1 and also than site-3 (12210 cm−1), which on the one hand stops backward transfer

from site-3, but on the other hand creates a local minimum on site-1. Despite the local

minimum on site-1, the excitation energy is not trapped because of the quantum coherent

wave-like motion between site-1 and site-2. Following path-2, the energy of site-6 (12630
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cm−1) is higher than the energy of baseplate. To stop backward transfer of excitation energy

from site-6 to baseplate, site-6 should quickly transfer excitation energy to other sites such

as site-5, site-7 and site-4. This quick transfer from site-6 to site-5, site-7 and site-4 is only

possible by the strong coupling of site-6 to site-5 and site-7, which in return are strongly

coupled to site-4.
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Figure 4: The evolution of site-3 population at t = 0.5 ps (500 fs) as a function of (a) char-
acteristic frequency of the environment γ (b) reorganization energy λ and (c) temperature
T . The blue line corresponds to the case with initial excition on site-1 while the red line is
for the case with initial excition on site-6. γ and λ are in the units of cm−1 while T is in the
units of K.

Discussion

In this work, we have presented a non-recursive (non-iterative) AI-QD approach for blazingly

fast prediction of quantum dynamics, as predictions can be made for any time step up to

asymptotic limit completely circumventing the need of recursive trajectory propagation.

This can be used, as we demonstrated here, for massive quantum dynamics simulations, for

example, in search for the best conditions required for efficient energy transfer in designed

photovoltaic devices. Just to put things into perspective, our AI-QD approach can predict the

entire 2.5 ps trajectory within ca. 2 min on a single core of Intel(R) Core(TM) i7-10700 CPUs

@ 2.90 GHz, independent of the reference method used for generating training trajectories,

while the same propagation with the traditional recursive approaches such as HEOM would
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take hours, and the cost would exponentially increase for low temperatures. The high cost

of accurate approaches such as HEOM was also a reason why we used a much faster LTLME

for this proof-of-concept study to extensively test our approach (propagation of an entire

trajectory takes only 3 min with LTLME on a single CPU of the above computer architecture.

It is worth emphasizing that AI-QD is embarrassingly parallel and the calculations can be

further significantly sped up by using multiple CPUs or GPUs, because predictions with

AI-QD for different time steps are independent of each other and different segments of

trajectories can be distributed for independent calculations on many threads.

We demonstrated the feasibility of AI-QD approach on an example of the FMO complex,

but this approach is general enough to be used for any other complex after retraining. It

remains to be seen how well the AI-QD approach can be extended to describe several LHCs

at the same time — a topic of our ongoing research. One could use the LHC’ Hamiltonian

elements as a representation of LHC complexes and an early encouraging study42 has shown

that by using Hamiltonian elements as input of an ML model, one can successfully describe

scalar properties (energy transfer times and transfer efficiencies) for different Hamiltonians.

However, open question remains how successful would be such an approach to learn dynamics

and in addition, how to circumvent different dimensionalities of Hamiltonians of different

complexes.

Methods

Training data

In the seven-sites FMO complex (apo-FMO), where seven BChl molecules (seven sites) exist

per subunit, the inter-subunit interaction is very small and each subunit can be considered

relatively isolated.61 Here we adopt Adolphs and Renger’s Hamiltonian for seven sites per

13



subunit54

Hs =



12410 −87.7 5.5 −5.9 6.7 −13.7 −9.9

−87.7 12530 30.8 8.2 0.7 11.8 4.3

5.5 30.8 12210 −53.5 −2.2 −9.6 6.0

−5.9 8.2 −53.5 12320 −70.7 −17.0 −63.6

6.7 0.7 −2.2 −70.7 12480 81.1 −1.3

−13.7 11.8 −9.6 −17.0 81.1 12630 39.7

−9.9 4.3 6.0 −63.3 −1.3 39.7 12440



, (9)

where energies are given in cm−1. Each site is coupled to its own environment characterized

by the Drude–Lorentz spectral density given by Eq. (7). Not long-ago, an eighth BChl

molecule (site-8) has been discovered,11 however as has been mentioned by Jia et al.,62 the

role of the eighth BChl molecule (site-8) in the transfer of excitation energy in the FMO

complex is negligible.

Trajectories for the reduced density matrix have been generated with the local thermalis-

ing Lindblad master equation (LTLME)22 (see the Supplementary Information) implemented

in quantum_HEOM package63 with QuTip64 in the back-end with all the possible combi-

nations of the following parameters: λ = {10, 40, 70, 100, 130, 160, 190, 220, 250, 280,

310} cm−1, γ = {25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300} cm−1 and T = {30,

50, 70, 90, 110, 130, 150, 170, 190, 210, 230, 250, 270, 290, 310} K. We consider that all these

combinations of parameters make a parameter space D. The time-step used for propagation

is 5 fs and the trajectory is propagated up to tM = 1 ns (106 fs). With the possibility of

initial excitation on site-1 and site-6, we generate 1980 trajectories for each excitation case.

Data preparation

With all the possible combinations of the parameters (D), we have 3960 total number of

trajectories Ntraj (1980 (site-1) + 1980 (site-6), all these trajectories correspond to their re-

spective combination of parameters in parameter space D). Using farthest-point sampling65
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in the three-dimensional space of λ, γ and T , we choose 1000 trajectories as our training

space T S (500 (site-1) + 500 (site-6) , ca. 25% of space D)), 200 trajectories as the val-

idation set VS (ca. 5% of space D)) and the rest of trajectories, we keep as the test set

ST P (ca. 70% of space D). For each trajectory, we choose a different time-length tM using

a vanishing gradient scheme. In this scheme, we take the gradient G of the population of

each site (ρnn, n = 1, 2, 3, . . . , 7) for 10 consecutive time-steps and if all of them remain

less than the threshold value of Gth = 1 × 10−10, we choose our tM . We find tM for all

seven sites and then choose the maximum value among them, thus we keep a single value of

asymptotic limit (tM) for all seven-sites. By analyzing the gradients, we find the region of

the trajectory, where the change in population of the site is very small. By knowing that, we

keep the time-length of our trajectory tM up to that region, because beyond tM the change

in population is very small, and ML is able to predict it. As the asymptotic limit for each

trajectory is different, we have different value of tM for each trajectory. In our training, we

have included t → ∞, corresponding to the asymptotic behaviour at long-time. Using the

strategy of different tM for each trajectory allows us to include more sampling in our train-

ing set from hard-to-learn trajectories, while avoiding redundant sampling from easy-to-learn

trajectories. For training, sampling is done with different training time-steps ∆ttrain in differ-

ent regions of the trajectory. We sample our training points from ||0ps–1ps||, ||1ps–1.5ps||,

||1.5ps–2.5ps||, ||2.5ps–5ps||, ||5ps–25ps||, ||25ps–50ps||, ||50ps–250ps|| ||250ps–tM || regions

with ∆ttrain = 5, 10, 25, 50, 100, 200, 500, 1000 fs, respectively. The number of training points

depends on the number of trajectories Ntraj chosen for training, training time-step ∆ttrain

and time-length of trajectories tM , which in turn depends on Gth.

Training architecture

We use convolutional neural network (CNN) architecture, because the importance of con-

volutional layers is much explored for image analysis, where these layers extract important

features such as edges, textures, objects, and scenes. When it comes to time-series data, we
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Table 2: Summary of the optimized neural network architecture with layers, output shape
(OS), number of parameters (NP), activation function (AF), number of filters (NF), kernel
size (KS) and number of neurons (NN).

Layers (type) OS NP AF NF KS NN

First hidden convolutional layer (1D) (None, 103, 90) 360 relu 90 3 ×

Second hidden convolutional layer (1D) (None, 103, 70) 18970 relu 70 3 ×

Maximum pooling layer (None, 51, 70) 0 × × × ×

Flatten layer (None, 3570) 0 × × × ×

First hidden dense layer (None, 512) 1828352 relu × × 512

Second hidden dense layer (None, 512) 262656 relu × × 512

Third hidden dense layer (None, 512) 262656 relu × × 512

Dense output layer (None, 13) 6669 linear × × 13

Total parameters: 2,379,663
Trainable parameters: 2,379,663

Non-trainable parameters: 0

are using convolutional layers in the hope to extract some important features from the data

(such as the time influence). After learning those features, when we provide a test trajectory,

the trained ML model will look for those features in that test trajectory.66 Though we have

used the CNN model, other ANN architectures such as long short-term memory (LSTM) is

also an option. LSTM is considered to be more suitable for extracting long-time temporal

dependencies in contrast to convolutional neural networks (CNNs) which are more local.

However, CNNs are easy to train and in many studies, they have outperformed LSTM for

future forecasting.67,68

We use 1000 trajectories as our training set T S and 200 trajectories as the validation

set VS. After preparation of the input following Fig. 1, we build a CNN architecture and

optimize it with hyperopt library.69 The optimization was carried out only on 300 training
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trajectories from the training set T S. After optimization, our training architecture consists

of two one-dimensional (1D) hidden convolutional layers, one maximum pooling layer, one

flatten layer, three fully connected hidden dense layers and one output dense layer. The

convolutional layers extract time-dependent correlations from a moving window, while max-

imum pooling layer pulls out the important information and decreases the size of the feature

map which leads to reducing the computational cost. The flatten layer converts the output

from the maximum pooling layer into 1D format as the fully connected dense layers, which

are the traditional networks, can only work with 1D data. We train our CNN architecture

using Keras software package70 with the TensorFlow in the backend.71 Activation function,

number of filters, kernel size and number of neurons for the respective convolutional and

dense layers are given in Table 2. In our study, we train a single CNN model and with ca.

3.2 million training points and 900 epochs, training takes ca. 42 hrs on 32 Intel(R) Xeon(R)

Gold 6226R CPUs @ 2.90GHz. The optimized learning rate is 1× 10−3 with adoptive mean

optimizer and the batch size is 512. Using mean squared error function as a loss, we report

1.86 × 10−7 as the validation loss. The mean absolute error (MAE) and root mean square

error (rmse) averaged over 600 randomly chosen test trajectories (which were not part of the

training process) are given in Table 1.

Input normalization and redundant time-functions

As we have multiple input elements, we need to normalize them all. In normalized input, we

have λ = {λ1, λ2, λ3, . . . λj}/λmax, γ = {γ1, γ2, γ3, . . . γk}/γmax and T = {T1, T2, T3, . . . Tl}/Tmax,

where λmax, γmax and Tmax represent the maximum values of λ, γ and T , respectively. We

divide n = {n1, n2, n3, . . . n7} = {1, 2, 3, . . . , 7} (labels corresponding to the seven rows in the

reduced density matrix) by 10 to normalize their values, i.e., the input elements correspond-

ing to the rows in the reduced density matrix are {0.1, 0.2, 0.3, . . . , 0.7} . Labels for sites with

possible initial excitation are m = {0, 1}, which respectively represent initial excitation on

site-1 and site-6. The input time is represented by a set of redundant time-functions {fi(t)},
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each of which is logistic function f(t) normalizing time. We use a set of 100 logistic functions

fk(t) = 1/(1 + 15 · exp(−(t + ck))), where ck = 5k − 1.0 and k ∈ {0, 1, 2, . . . , 99}, i.e., each

logistic function has the same shape and designed to cover the corresponding ≈ 5 ps region

and is shifted with respect to the next logistic function by 5 ps, as shown in Fig. S3 of the

Supplementary Information. The infinity limit is given by all redundant time-functions set

to one.
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Lindblad equation of motion for EET in FMO complex

The theory of local thermalising Lindblad equation of motion is well-documented in Ref.

1, however for the sake of completeness, we briefly outline it here. We begin from system

Hamiltonian given in Eq. (2) of the main text, and rewrite it as

Hs =
n∑

i=1

ϵia
†
iai +

n∑
j<i

Jij

(
a†iaj + a†jai

)
. (1)

The a†i and ai are the exciton creation and annihilation operators at site-i. Because of the

fast EET, only single-excitation is considered, hence we have two possible states |0⟩ and

|i⟩ = a†i |0⟩. The exciton basis |e⟩ =
∑

i ci(e)|i⟩ is considered as eigenbasis of the Hamiltonian

Hs, i.e., Hs|e⟩ = ϵi|e⟩. With the Born-Markov and secular approximations, the Lindblad

master equation (to second order in the system-bath coupling) for the dynamics of the

1
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reduced density matrix is written as

∂ρs(t)

∂t
= − i

h̄
[Hs + Hreorg, ρs(t)] + Lenv(ρs(t)) + Ls−env(ρs(t)), (2)

where the Lindblad superoperators Lenv and Ls−env are given by (k = env, s− env)

Lk(ρs) =
∑
ω

∑
i,j

κk
ij(ω)

[
Ak

i (ω)ρsA
k†
j (ω)− 1

2
Ak

i (ω)A
k†
j (ω)ρ − 1

2
ρsA

k
i (ω)A

k†
j (ω)

]
.

In local thermalising approach, the corresponding Lindblad generators for Henv are

Aenv
i (ω) =

∑
ω−ω′

c∗i (eω) ci (eω′) |eω⟩ ⟨eω′ | , (3)

where the summation is over all transitions between eigenstates |eω⟩ and |eω′⟩ with fre-

quency ω. The c∗i (eω) ci (eω′) is a factor weighting transfer between the two eigen states

|eω⟩ and |eω′⟩. The ci (eω) and ci (eω′) are the ith site coefficient in eigenstate |eω⟩ and

|eω′⟩, respectively. The rate κ in Eq.(2) is considered site-independent with the following

expression γenv = 2π [J(ω)(1 + n(ω)) + J(−ω)n(−ω)] where J(ω) is spectral density and

n(ω) = 1/
[
exp

(
h̄ω
kBT

)
− 1

]
is bosonic distribution.

For Hs−env, As−env
i (ωe) = ci(e)|0⟩⟨e| where h̄ωe is the molecular transition frequency.

The respective rate κs−env
ij (ω) is diagonal κs−env

ij (ω) = δijκ
s−env
ij (ω) and site-independent

κs−env
ii (ω) = κs−env(ω). The Hreorg is divided into two parts Henv

reorg + Hs−env
reorg where Hk

reorg

= Σω,i,jS
k
ij(ω)A

k†
i (ω)Ak

j (ω) (for k = env, s − env ) with Sij(ω) as the imaginary part of the

half-sided Fourier transform of the bath correlation function.
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Figure S1: Population of the seven sites in the FMO complex as a function of time. The
results are shown for extreme values of γ (as a scale of non-Markovian character of the bath),
λ (as a scale of decoherence strength) and T in our parameter space with the aim to see
their effect on the accuracy (see Table S1). Parameters are (a) γ = 25, λ = 100, T = 50, (b)
γ = 300, λ = 100, T = 50, (c) γ = 100, λ = 10, T = 150, (d) γ = 100, λ = 310, T = 150,
(e) γ = 175, λ = 100, T = 30 and (f) γ = 175, λ = 100, T = 310. The initial excitation
is considered on site-1. The results of AI-QD are compared to the results of LTLME-QD
(dots). γ and λ are in the units of cm−1, while T is in the units of K.

3



Figure S2: Population of the seven sites in the FMO complex as a function of time. The
results are shown for parameters which do not appear in the training set at all. In (a), (b)
and (c), the initial excitation is considered on site-1. Other parameters are (a) γ = 80,
λ = 85, T = 100, (b) γ = 205, λ = 185, T = 195 and (c) γ = 350, λ = 350, T = 350. In (d),
(e) and (f), the initial excitation is on site-6 and other parameters are (d) γ = 65, λ = 35,
T = 55, (e) γ = 155, λ = 145, T = 135 and (f) γ = 330, λ = 330, T = 330. The results of
AI-QD are compared to the results of LTLME-QD (dots). γ and λ are in the units of cm−1,
while T is i the units of K. The respective errors are given in Table S2. Note that (c) and
(f) are outside the range of parameters used for training.
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Table S1: Mean absolute error (MAE) and root mean square error (RMSE) for the test
trajectories presented in Fig. S1. Here we show the dependence of accuracy on parameters
γ, λ and T . The test trajectories were propagated up to 1 ns. R{ρmn,n ̸=m} and I{ρmn,n ̸=m}
respectively represent the real and imaginary part of the off-diagonal terms.

parameters mean absolute error root mean square error
IES γ λ T ρnn R{ρmn,n ̸=m} I{ρmn,n ̸=m} ρnn R{ρmn,n ̸=m} I{ρmn,n ̸=m}
1 25 100 50 8.7·10−4 9.0·10−4 3.6·10−4 1.2·10−3 1.5·10−3 6.4·10−4

1 300 100 50 4.6·10−4 2.5·10−4 1.3·10−4 6.8·10−4 3.7·10−4 1.9·10−4

6 25 100 50 8.3·10−4 7.1·10−4 2.3·10−4 1.1·10−3 1.1·10−3 3.5·10−4

6 300 100 50 6.7·10−4 3.0·10−4 1.4·10−4 1.0·10−4 4.4·10−4 2.0·10−4

1 100 10 150 6.5·10−4 2.8·10−4 1.3·10−4 1.3·10−3 5.0·10−4 1.9·10−4

1 100 310 150 2.3·10−3 1.0·10−3 3.1·10−4 3.6·10−3 1.7·10−3 5.1·10−4

6 100 10 150 7.4·10−4 2.8·10−4 1.6·10−4 1.4·10−3 5.1·10−4 2.5·10−4

6 100 310 150 1.6·10−3 6.8·10−4 2.3·10−4 2.6·10−3 1.0·10−3 3.5·10−4

1 175 100 30 4.3·10−4 3.5·10−4 1.4·10−4 6.3·10−4 5.8·10−4 2.0·10−4

1 175 100 310 1.6·10−3 4.7·10−4 2.0·10−4 2.5·10−3 7.5·10−4 2.9·10−4

6 175 100 30 5.1·10−4 3.0·10−4 1.4·10−4 8.5·10−4 4.9·10−4 2.2·10−4

6 175 100 310 1.3·10−3 3.8·10−4 2.0·10−4 2.1·10−3 6.3·10−4 3.0·10−4

Table S2: Mean absolute error (MAE) and root mean square error (RMSE) for the test tra-
jectories presented in Fig. S2. The test trajectories were propagated up to 1 ns. R{ρmn,n ̸=m}
and I{ρmn,n ̸=m} respectively represent the real and imaginary part of the off-diagonal terms.

parameters mean absolute error root mean square error
IES γ λ T ρnn R{ρmn,n ̸=m} I{ρmn,n ̸=m} ρnn R{ρmn,n ̸=m} I{ρmn,n ̸=m}
1 80 85 100 9.5·10−4 4.5·10−4 1.9·10−4 1.5·10−3 7.0·10−4 2.6·10−4

1 205 185 195 1.2·10−3 4.5·10−4 2.0·10−4 2.1·10−3 7.4·10−4 2.9·10−4

1 350 350 350 4.9·10−3 1.2·10−3 5.0·10−4 6.9·10−3 1.6·10−3 5.8·10−4

6 65 35 55 7.8·10−4 4.4·10−4 2.1·10−4 1.2·10−3 6.2·10−4 3.4·10−4

6 155 145 135 1.1·10−3 5.0·10−4 1.9·10−4 1.9·10−3 7.5·10−4 2.8·10−4

6 330 330 330 3.8·10−3 9.0·10−4 5.3·10−4 5.5·10−3 1.2·10−3 7.6·10−4
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Figure S3: Logistic functions fk(t) = 1/(1 + 15 · exp(−(t + ck))), where ck = 5k − 1.0 and
k ∈ {0, 1, 2, . . . , 99}. Each logistic function is designed to cover the corresponding ≈ 5 ps
region. Here only the first eight logistic functions are shown covering a time-region of 40 ps.
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