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The exact factorization of the electron-nuclear wavefunction is applied to the study of the photo-
isomerization of a retinal chromophore model. We describe such an ultrafast nonadiabatic process
by analyzing the time-dependent potentials of the theory and by mimicking nuclear dynamics with
quantum and coupled trajectories. The time-dependent vector and scalar potentials are the signature
of the exact factorization, as they guide nuclear dynamics by encoding the complete electronic
dynamics and including excited-state effects. Analysis of the potentials is, thus, essential – when
possible – to predict the time-dependent behavior of the system of interest. In this work, we employ
the exact time-dependent potentials, available for the numerically-exactly solvable model used here,
to propagate quantum nuclear trajectories representing the isomerization reaction of the retinal
chromophore. The quantum trajectories are the best possible trajectory-based description of the
reaction when using the exact-factorization formalism, and thus allow us to assess the performance
of the coupled-trajectory, fully approximate, schemes derived from the exact-factorization equations.

I. INTRODUCTION

Trajectory-based schemes are widely employed to sim-
ulate excited-state nonadiabatic dynamics in molecular
systems [1–7]. The main reason for their success is
twofold: first, when using trajectories it is possible to
perform on-the-fly electronic structure calculations for
the visited geometries along the nuclear dynamics [8–10],
thus avoiding constructing the electronic potential energy
surfaces and related quantities over the whole configura-
tion space [5, 11]; second, evolving trajectories rather
than the molecular wavefunction allows one to over-
come the exponential scaling of the computational cost
with the number of degrees of freedom inherent a fully
quantum-mechanical calculation. While the outcome of
the dynamics simulation is clearly affected by the accu-
racy of the underlying electronic-structure method [12],
the overall evolution of the system, i.e., coupled nuclei
and electrons, strongly depends on the forces used to
propagate the trajectories and on the electron-nuclear
coupling – intended here as the nuclear feedback on elec-
tronic dynamics.

Among the trajectory-based methods derived from
the molecular time-dependent Schrödinger equation are,
for instance, the direct-dynamics variational multi-
configurational Gaussian (DD-vMCG) [13, 14], ab ini-
tio multiple spawning (AIMS) [3, 15, 16], and ab initio
multiple cloning (AIMC) [17, 18]. There, nuclear trajec-
tories are evolved according to variationally-determined
(DD-vMCG), or adiabatic (AIMS), or mean-field (AIMC
with multiconfigurational Ehrenfest) forces, and are used
to guide the basis functions appearing in the expansion
of the molecular wavefunction. Electron-nuclear cou-
pling is obtained by solving, alongside the trajectories,
the quantum evolution equation for the expansion co-
efficients. In addition, spawning or cloning procedures
aim to improve over time the sampling of the nuclear
configuration space. An approximate solution of the
molecular time-dependent Schrödinger equation can be

obtained via quantum-classical approaches as well, like
Ehrenfest dynamics [19, 20] and trajectory surface hop-
ping (TSH) [21]. The former is a mean-field method,
where the classical nuclear force and the electron-nuclear
coupling are given by averaging either over the electronic
or over the nuclear time-dependent states of the system.
The latter evolves classical trajectories according to adi-
abatic forces, and the electronic state of the system ac-
cording to a Schrödinger equation where the nuclear tra-
jectory appears as a time-dependent parameter. To ac-
count for nonadiabatic effects TSH is supplemented with
a hopping procedure allowing the trajectories to change
electronic state over time.

Trajectory-based schemes [22–27] have also been de-
rived from the exact factorization [28, 29], which is es-
sentially a rewriting of the molecular Schrödinger equa-
tion in terms of coupled electronic and nuclear equa-
tions. This formalism introduces the new concepts
of time-dependent vector potential [30–32] and time-
dependent scalar potential, or time-dependent poten-
tial energy surface [33–35]. They govern the nuclear
quantum-mechanical evolution and encode the full dy-
namical effect of the electrons, including nonadiabatic
effects [36–39]. In turn, the electron-nuclear coupling
is explicitly given in terms of the spatial variation of
the nuclear wavefunction [40, 41]. Evolving classical-
like nuclei according to the force determined from the
time-dependent potentials and reconstructing the nuclear
distribution from an ensemble of trajectories yields the
coupled-trajectory mixed quantum-classical (CT-MQC)
algorithm [22]. Simplification of this numerical procedure
have been proposed, by combining the adiabatic evolu-
tion of the trajectories and the hopping idea of TSH with
the reconstruction of the nuclear distribution, either by
using coupled trajectories, i.e., CT-TSH [25], or by using
auxiliary trajectories, i.e., SHXF [27, 42–46].

In this work we aim to assess the performance of
coupled-trajectory methods derived from the exact fac-
torization in describing the photo-isomerization reaction
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in a retinal chromophore model [47]. The assessment
of CT-MQC and CT-TSH will be carried out based on
the benchmark against quantum vibronic wavepacket dy-
namics – already performed for CT-MQC in previous
work [48] – as well as based on the comparison with quan-
tum trajectories [32, 49]. Since our working framework is
the exact factorization, quantum trajectories are deter-
mined by evolving them with the (exact) time-dependent
potentials of the theory. The potentials are constructed
from the solution of the time-dependent Schrödinger
equation and, thus, can be viewed as incorporating all
quantum dynamical effects of the electrons on the nu-
clei in nonadiabatic conditions. Our quantum trajecto-
ries are, in this sense, the best possible trajectory-based
description of the photo-isomerization process, thus al-
lowing us to assess how well the coupled-trajectory ap-
proximate methods (could) perform. In addition, we will
analyze the time-dependent potentials themselves in or-
der to show that despite the used retinal model is very
simple (two-dimensional in nuclear space with two elec-
tronic states) their behavior at long times is complex and,
consequently, difficult to capture in a trajectory-based
description of the dynamics, as was pointed out in previ-
ous work.

The paper is organized as follows. In Section II we
briefly recall the exact factorization and, in Section IIA,
the coupled-trajectory algorithms derived from it. Our
numerical results are presented in Section III, focusing
first on the time-dependent potentials, in Section IIIA,
and then on the analysis of the trajectories, in Sec-
tion III B. Our conclusions are stated in Section IV.

II. THEORETICAL FRAMEWORK

The non-relativistic molecular Hamiltonian

Ĥ(r,R) =

Nn∑
ν=1

−~2∇2
ν

2Mν
+ Ĥel(r,R) (1)

describes a system of interacting electrons and nuclei,
whose positions are collectively indicated as r and R,
respectively. The nuclear kinetic energy operator is ex-
pressed in Cartesian coordinates and contains a sum over
the Nn nuclei, each labeled with the index ν, with spa-
tial derivatives ∇ν with respect to nuclear positions;
Mν are the nuclear masses. The electronic Hamilto-
nian Ĥel(r,R) is the sum of the electronic kinetic en-
ergy and of all interactions. The time evolution of
the electron-nuclear system is dictated by the time-
dependent Schrödinger equation (TDSE)

i~∂tΨ(r,R, t) = Ĥ(r,R)Ψ(r,R, t) (2)

whose solution yields the time-dependent molecular
wavefunction Ψ(r,R, t).

When introducing the exact factorization [4, 28], the
molecular wavefunction is written as the product

Ψ(r,R, t) = χ(R, t)Φ(r, t;R) (3)

where the nuclear wavefunction χ(R, t) evolves according
to the nuclear TDSE

i~∂tχ(R, t) = (4)[
Nn∑
ν=1

[−i~∇ν + Aν(R, t)]2

2Mν
+ ε(R, t)

]
χ(R, t)

and the electronic conditional factor Φ(r, t;R), paramet-
rically depending on R, evolves according to the elec-
tronic equation

i~∂tΦ(r, t;R) = (5)[
ĤBO(r,R) + Ûen[Φ, χ]− ε(R, t)

]
ΦR(r, t)

Both evolution equations (4) and (5) contain the
time-dependent vector potential (TDVP) Aν(R, t) and
the time-dependent potential energy surface (TDPES)
ε(R, t) defined as

Aν(R, t) = 〈Φ(t;R)| − i~∇ν Φ(t;R)〉r (6)

ε(R, t) = 〈Φ(t;R)| ĤBO(R) + Ûen[Φ, χ]− i~∂t |Φ(t;R)〉r
(7)

The symbol 〈·〉r stands for an integration over the elec-
tronic degrees of freedom, and we removed all depen-
dencies on r within 〈·〉r to imply that this variable is
integrated out. The TDVP and the TDPES are elec-
tronic quantities that evolve in time as effect of electronic
dynamics, which is coupled to the nuclear dynamics in
nonadiabatic conditions, and completely determine the
nuclear evolution via the nuclear TDSE (4). It is inter-
esting to note that the TDVP is related to the nuclear
momentum field, as

Aν(R, t) =
Im[〈Ψ(R, t)|~∇ν |Ψ(R, t)〉r

|χ(R, t)|2
−∇νS(R, t)

(8)

a property that will be used in Section IIA to define our
“quantum trajectories”. The symbol S(R, t) is used to in-
dicate the phase of the nuclear wavefunction χ(R, t) and
it has the dimensions of an action. The electronic equa-
tion (5) contains the electron-nuclear coupling operator

Ûen[Φ, χ] =

Nn∑
ν=1

1

Mν

[
[−i~∇ν −Aν(R, t)]2

2
(9)

+

(
−i~∇νχ(R, t)

χ(R, t)
+ Aν(R, t)

)
(−i~∇ν −Aν(R, t))

]
which depends explicitly on the nuclear wavefunction,
on the electronic wavefunction via the presence of
the TDVP, and acts on the parametric dependence of
Φ(r, t;R) as a spatial derivative.

The ambiguity of the product form of the molecular
wavefunction in Eq. (3) is partially eliminated by im-
posing the normalization condition

∫
|Φ(r, t;R)|2dr =
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1 ∀R, t, which allows to identify |Φ(r, t;R)|2 as
a conditional probability density and |χ(R, t)|2 =∫
|Ψ(r,R, t)|2dr as a marginal probability density that

yields the nuclear density from the full wavefunction.
Equation (3) is thus unique up to a gauge encoded in
a phase factor e(i/~)θ(R,t) (with θ(R, t) a real function):
multiplying the nuclear wavefunction by this factor and
the electronic term by its complex conjugate, Eq. (3)
remains unaffected and the time-dependent potentials
transform as standard gauge potentials. Therefore, this
ambiguity has to be eliminated by imposing a choice of
gauge as discussed in Section IIA.

A. Trajectory-based description

In a trajectory-based description of the coupled
electron-nuclear dynamics in the presence of nonadia-
batic effects and described within the exact-factorization
framework, nuclear dynamics from Eq. (4) is approxi-
mated in terms of an ensemble of coupled trajectories.
Their positions and momenta evolve according to Hamil-
ton equations under the effect of the TDVP and TD-
PES [50]. In turn, the TDVP and TDPES are com-
puted from the electronic wavefunction, which is ex-
panded in the adiabatic basis, i.e., the basis of eigenstates
of Ĥel(r,R). Equation (5) yields evolution equations
for the expansion coefficients, which are solved coupled
to the nuclear Hamilton equations. This is the essence
of the coupled-trajectory mixed quantum-classical (CT-
MQC) algorithm [22]. It has been abundantly described
in the literature, therefore, we refer the interested reader
to Refs. [4, 51–53] for in-depth discussions, and we recall
here only the main ideas and equations.

A nuclear trajectory, indicated with the symbol Rα(t),
is intended as a collection of 3Nn positions that evolve
in time. When the electronic wavefunction Φ(r, t;Rα(t))
is expressed as a linear combination of adiabatic states,
ϕ(m)(r;Rα(t)), their parametric dependence on the nu-
clear position/trajectory induces an implicit time depen-
dence. The expansion coefficients in Φ(r, t;Rα(t)) =∑
m Cm (Rα(t), t)ϕ(m)(r;Rα(t)) depend on the nuclear

trajectory as well. In the following, the dependence on
Rα(t) will be indicated only via the index α for simplic-
ity.

For the trajectory α, the classical force on the nucleus
ν at time t is Fαν (t) and is written as the sum of three
terms

Fαν (t) = Fαν,mf(t) + Fαν,na(t) + Fαν,ct(t) (10)

The mean-field contribution Fαν,mf(t) is the average
of adiabatic forces −∇νEαm over the electronic states
weighted by the population of the states |Cαm(t)|2, namely

Fαν,mf(t) =
∑
m

|Cαm(t)|2 (−∇νEαm) (11)

The adiabatic energies are indicated as Em. The
nonadiabatic contribution Fαν,na(t) depends explic-

itly on the nonadiabatic coupling vectors dαν,ml =

〈ϕ(m)(Rα(t))|∇νϕ(l)(Rα(t))〉r and is

Fαν,na(t) =
∑
m,l

C̄αm(t)Cαl (t) (Eαm − Eαl )dαν,ml (12)

with C̄αm(t) the complex conjugate of Cαm(t). The last
contribution Fαν,ct(t) arises as effect of the coupling
among the trajectories

Fαν,ct(t) =
2

~
∑
m

|Cαm(t)|2
[
Nn∑
µ=1

Pα
µ(t) · fαµ,m

] (
fαν,m −Aα

ν (t)
)

(13)

and depends on the TDVP Aα
ν (t), on the, so-called, ac-

cumulated adiabatic force fαν,m =
∫ t
0

(−∇νEαm) dτ , and
on the quantum momentum Pα

µ(t). Calculation of the
quantum momentum requires knowledge of the positions
of all trajectories at a given time t, thus the trajecto-
ries cannot be evolved independently [54]. The quantum
momentum follows from the term in the expression of
the electron-nuclear coupling operator (9) that depends
explicitly on the nuclear wavefunction; its expression is
related to the spatial variation of the nuclear density as

Pα
µ(t) =

−~∇µ |χ(Rα(t), t)|2

2 |χ(Rα(t), t)|2
(14)

In CT-MQC the nuclear density is reconstructed as a
sum of frozen Gaussians centered at the positions of the
trajectories, and the quantum momentum is determined
from Eq. (14).

The electronic equation (5) yields evolution equations
for the expansion coefficients Cαm(t) in the form

Ċαm(t) = Ċαm,TSH(t) + Ċαm,ct(t) (15)

where the first term is identical as in a standard trajec-
tory surface hopping (TSH) procedure [21]

Ċαm,TSH(t) = − i
~
EαmC

α
m(t)−

∑
l

Nn∑
ν=1

Ṙα
ν (t) · dαν,mlCαl (t)

(16)

with Ṙα
ν (t) the nuclear velocity, and the additional term

Ċαm,ct(t) depends on the quantum momentum

Ċαm,ct(t) =

Nn∑
ν=1

Pα
ν (t)

~Mν
·
(
fαν,m −Aα

ν (t)
)
Cαm(t) (17)

similarly to the expression of the force.
In deriving CT-MQC equations, the gauge has been

chosen such that εα(t)+
∑
ν Ṙ

α
ν (t) ·Aα

ν (t) = 0, with εα(t)
the value of the TDPES at the position of the trajectory.

Recently, the coupled-trajectory idea of CT-MQC, en-
coded in the quantum momentum, was combined with a
TSH procedure to derive the CT-TSH scheme. CT-TSH
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dynamics promises to be more stable than CT-MQC at
long times, at least when, as it was shown for a one-
dimensional system [25], the TDPES develops an oscilla-
tory behavior. This can happen if the trajectories cross
a nonadiabatic region several times and interfere. In ad-
dition, the computational cost for the force calculation
is reduced if compared to CT-MQC because the nona-
diabatic force, depending on the nonadiabatic coupling
vectors, does not appear. In CT-TSH, the force driving
a trajectory is simply determined from the gradient of
the adiabatic energy of the running state, i.e., the state
associated to that trajectory at a given time. The run-
ning state changes over time as a trajectory can hop from
one state to another according to the standard fewest
switches procedure. The probability for a hop from state
m to state l to occur at time t is determined as [9]

Pαml(t) = max

[
0,
−2C̄αm(t)Cαl (t)

∑
ν d

α
ν,lm·Ṙα

ν (t)

|Cαm(t)|2
dt

]
(18)

with dt the integration time step. Being Pαml(t) a real
quantity, one has to take the real part of the numera-
tor in brackets. CT-TSH trajectories remain, however,
coupled, because Eq. (15) is used to propagate the elec-
tronic coefficients, as in CT-MQC, thus the quantum mo-
mentum has to be computed. When the electronic evo-
lution equation of standard TSH is complemented with
the coupled-trajectory term of Eq. (17) the overcoher-
ence problem of TSH is overcome, since the quantum
momentum allows one to account for decoherence effects,
as shown in previous work [22, 24, 25, 54].

In CT-MQC and CT-TSH both the electronic and the
nuclear equations of the exact factorization are approxi-
mated, as described above. Therefore, a question that is
indeed interesting to address is: How well can one hope
to reproduce nuclear dynamics using trajectories? To an-
swer this question, we introduce the concept of quantum
trajectories, as trajectories that are propagated under the
effect of the exact TDVP and TDPES [32]. For a model
system, the TDVP and the TDPES can be computed nu-
merically exactly from the output of vibronic wavepacket
dynamics. Furthermore, if a gauge is chosen such that
the TDVP is the nuclear momentum field [30–32], then
the simple equation

Ṙα
ν (t) =

Aα
ν (t)

Mν
(19)

can be integrated to determine the positions of the tra-
jectories at all times that closely follow the evolution of
the (exact) nuclear density. Here, Aα

ν (t) stands for the
value of the exact TDVP at the position Rα

ν (t). In the
gauge where the nuclear wavefunction is always real and
non-negative, the second term on the right-hand side of
Eq. (8) identically vanishes and the TDVP equals the
nuclear momentum field calculated from the molecular
wavefunction. Therefore, to determine the (numerically
exact) TDVP, the solution of the TDSE (2) is integrated

over electronic positions to get the nuclear density, whose
positive square root gives the nuclear wavefunction in
this gauge. Dividing the molecular wavefunction by the
nuclear wavefunction yields the electronic wavefunction,
from Eq. (3), and Eq. (6) can be directly used to deter-
mine the TDVP.

Note that we refer to the trajectories determined
according to Eq. (19) as quantum trajectories in a
(Bohmian) hydrodynamic sense. If one focuses only
on the nuclear TDSE (4), then the TDVP is the
Bohmian definition of the momentum field for quantum-
mechanical particles described by a real wavefunction in
the presence of an external vector potential [55]. It was
recently proven [32] that this procedure is equivalent to
propagating trajectories according to forces that include
the combined effect of the TDPES and of the quantum
potential – usually arising from the Bohmian formulation
of quantum dynamics. In addition, the analysis reported
here differs from the setup of Ref. [37] where the dynam-
ics of the trajectories was driven only by the TDPES
(without the quantum potential) and, thus, the trajecto-
ries were purely “classical”.

III. NUMERICAL RESULTS

The model Hamiltonian [47] used in this work allows
us to describe the 11-cis to all-trans isomerization of the
retinal chromophore in rhodopsin [30, 56–67]. Photo-
absorption takes the cis conformer from the electronic
ground state S0 to the first excited state S1, thus initi-
ating an isomerization reaction towards the trans con-
former. The nuclear coordinates defining the model are
an angular reaction coordinate ϕ and a collective vibra-
tion q characterizing “a delocalized stretching motion of
the polyene chain, whereby single and double bonds in-
terchange” [47].

The Hamiltonian is given in the diabatic basis

Ĥ(ϕ, q) =
P̂ 2
ϕ

2m
+

P̂ 2
q

2ω−1
+

(
V00(ϕ, q) V01(q)
V10(q) V11(ϕ, q)

)
(20)

supposing here that R = ϕ, q (dimensionless coordi-
nates). The nuclear kinetic energy operator is expressed
via the momentum operators along ϕ and q, where P̂ 2

ϕ

and P̂ 2
q are second-order derivatives with respect to ϕ

and q, respectively. The elements of the 2× 2 electronic
matrix are

V00(ϕ, q) =
1

2
W0 (1− cosϕ) +

1

2
ωq2 (21)

V11(ϕ, q) = E1 −
1

2
W1 (1− cosϕ) +

1

2
ωq2 + κq (22)

V01(q) = V10(q) = λq (23)

The stretching mode q is also called coupling mode, as
the potential coupling V10 only depends on q. The effec-
tive mass of the reaction coordinate m−1 = 4.84 ·10−4 eV
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is chosen so as to achieve isomerization within 200 fs; the
frequency of the coupling mode is ω = 0.19 eV and the
interstate coupling is λ = 0.19 eV, with κ = 0.1 eV in-
dicating a gradient in the excited state; the parameters
W0 = 3.6 eV, W1 = 1.09 eV and E1 = 2.48 eV are chosen
in order to match the S0/S1 gap to the center frequency
of the absorption bands of the cis and trans isomers. The
adiabatic potential energy surfaces (PESs) S0 and S1 are
obtained by diagonalization of the electronic Hamiltonian
in Eq. (20). The PESs present conical intersections (CIs)
at ϕCI ' ±π2 , qCI = 0. The cis conformer is character-
ized by the value of the reactive coordinate ϕcis = 0, and
at this geometry for q = 0 the excitation energy from S0
to S1 lies in the visible domain. The adiabatic PESs are
shown in Fig. 1 as colormaps, where the positions of the
CIs are indicated with crosses. At the cis geometry and
for slightly negative values of the coupling mode, S0 is a
potential well while S1 has a saddle shape; at the trans
geometry (ϕ = ±π), only S0 presents stable configura-
tions.

The instantaneous excitation from S0 to S1 promotes
the ground-state wavepacket to the excited state. The
ground-state wavepacket is chosen as a two-dimensional
Gaussian

χS0
(ϕ, q, 0) = 4

√
1

πσ2
ϕ

e
− ϕ2

2σ2ϕ 4

√
1

πσ2
q

e
− q2

2σ2q (24)

with σϕ = 0.128 and σq = 1.0, which corresponds to the
vibrational ground state of S0 at the cis geometry. The
nuclear (probability) density at all times is given as the
sum of the S0 and S1 (probability) densities

|χ(ϕ, q, t)|2 = |χS0
(ϕ, q, t)|2 + |χS1

(ϕ, q, t)|2 (25)

Electronic populations of the ground (S0) or excited (S1)
states are determined as the integral of the corresponding
nuclear density,

ρSk(t) =

∫ ∫
|χSk(ϕ, q, t)|2 dϕdq with k = 0, 1 (26)

Vibronic wavepacket dynamics after photo-excitation
is simulated in the diabatic basis using ElVibRot [68].
The diabatic densities are transformed to the adiabatic
representation for the comparison with the trajectory-
based approaches. The nuclear wavepacket has been ex-
panded in a two-dimensional basis set formed by the di-
rect product of two uni-dimensional basis sets for each
diabatic state. The harmonic-oscillator basis set has
been used for q (40 basis functions), and a Fourier-series,
periodic basis set has been used for ϕ (512 basis func-
tions); the number of grid points along each coordinate
is 80 and 552, respectively for q and ϕ. The propagation
was performed with the Chebychev scheme for which the
evolution operator is expanded on Chebychev polynomi-
als [69] with time step 0.1 fs. The Hamiltonian needs
to be renormalized so that its spectral range lies in the
interval [−1, 1].

FIG. 1. Quantum nuclear dynamics in terms of adiabatic
wavepackets contributions (contour lines) superimposed to
the adiabatic PESs (colormaps). In each panel the value
Maxiso is indicated, which is the largest iso-value of the den-
sity represented in the figure. The upper panels refer to S1

and the lower panels to S0. The color bars report the ener-
gies in Ha. The nuclear densities in S0 and in S1 are shown
at times t = 10, 50, 100 fs as indicated in the figure. The CIs
are indicated by the crosses.

Figure 1 reports snapshots of the nuclear dynamics at
times t = 10, 50, 100 fs, where the contour lines represent
the adiabatic components of the nuclear density (in S1 in
the upper panels and in S0 in the lower panels) and the
colormaps represent the adiabatic PESs (S1 in the upper
panels and S0 in the lower panels). The initially excited
density on S1 (t = 10 fs) extends over time towards the
CIs (t = 50 fs) and finally funnels via the CIs to S0
(t = 100 fs). While the dynamics shows coherent oscilla-
tions along q, the isomerization reaction from the cis to
the trans conformer is characterized by the wavepacket
reaching the values |ϕ| > π

2 .
The isomerization process just described will be ana-

lyzed in detail employing the exact factorization, in Sec-
tion IIIA by looking at TDPES and TDVP, and in Sec-
tion III B by using quantum and coupled trajectories.

A. Time-dependent potentials

The time-dependent potentials emerging from the ex-
act factorization can be constructed from the output
of a vibronic wavepacket quantum simulation. If the
electron-nuclear state of the system |Ψ(ϕ, q, t)〉 is ex-
panded in the diabatic basis with coefficients χ(d)

k (ϕ, q, t)
(k = 0, 1), the nuclear wavefunction in the chosen gauge

is χ(ϕ, q, t) =

√
|χ(d)

0 (ϕ, q, t)|2 + |χ(d)
1 (ϕ, q, t)|2. There-

fore, when the electronic conditional state |Φ(t;ϕ, q)〉 is
expanded in the same basis, the expansion coefficients
are χ(d)

k (ϕ, q, t)/χ(ϕ, q, t) by virtue of the exact factor-
ization (3). Using these coefficients and replacing the
integration over r of Eqs. (6) and (7) with a sum over
the diabatic states yields the (ϕ, q, t)-dependent TDPES
and TDVP. Studying the evolution of their behavior in
time allows one to qualitatively interpret and justify the
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FIG. 2. TDPES (colormaps) at times t = 10, 50, 100 fs as
indicated in the figure. The color bar reports the energy in
Ha. The nuclear density (contour lines) at the same times
is superimposed for reference. The CIs are indicated by the
crosses.

dynamics of the nuclear wavefunction. To compute the
TDPES and the TDVP we used the Exact Factorization
Analysis Code (EFAC) [70].

1. Time-dependent potential energy surface

In Fig. 2 we report the TDPES (colormap) as func-
tion of the nuclear coordinates ϕ and q at the same time
steps as in Fig. 1, superimposed with the nuclear den-
sity |χ(ϕ, q, t)|2 (contour lines) and indicating the CIs
as crosses. Note that the TDPES is only calculated, and
shown, in regions where the nuclear density is larger than
10−7 for numerical convenience.

At the beginning of the simulated dynamics, t = 10 fs
in Fig. 2 (left panel), the TDPES along q is basically a
potential well with minimum between q = −2 and q = 0
where the nuclear density is localized; along ϕ and in the
region q ∈ [−2, 0] the TDPES is slightly more flat than
along q, so as to allow the density to spread towards the
CIs. This shape resembles the adiabatic S1 PES, since at
this early time, nuclear dynamics fully takes place in the
excited state.

At later times, t = 50 fs in Fig. 2 (central panel), the
nuclear density starts spreading symmetrically towards
the CIs as consequence of the appearance of a saddle
shape along ϕ with maximum in ϕ = 0 in the region
q ∈ [−3, 0]. In the regions q < −3 and q > 0, the in-
crease of the TDPES localizes the nuclear density along
the q direction. In particular, the shape of the TDPES
around ϕ = 0, q = 2 indicates the presence of a small
portion of the nuclear density in the ground state. We
recall that quantum dynamics is performed in the dia-
batic basis and, thus, the nuclear state is initialized with
full population in the diabatic state k = 1. This means
that a very small amount of density is found in the (adia-
batic) ground state even at time t = 0, whose evolution is
also dictated by the TDPES. In the portion of configura-
tion space q > 0 at t = 50 fs the (adiabatic) excited-state
density is much smaller than the ground-state density,
thus the TDPES follows the shape of the S0 PES.

At the final time shown in Fig. 2, t = 100 fs (right
panel), the central portion of the TDPES where the nu-
clear density is mainly located has, once again, a saddle
shape along ϕ with maximum in ϕ = 0, allowing in this
way the nuclear density to reach the CIs and to “funnel”
to the ground state, thus accessing the trans configura-
tion. However, note that in a description based on the
TDPES, we do not need to invoke any funnelling process
to justify the transition from the cis to the trans region,
which is, in fact, simply accompanied by the shape of the
TDPES. The highly oscillatory features that develop in
the colored areas of the TDPES arise from the interfer-
ences between the S1 density transferred in S0 and the
S0 density. After t = 100 fs and up to t = 200 fs, the
shape of the TDPES in the trans region is mainly char-
acterized by interferences between the S1 portion of the
density that continuously funnels through the CIs and
the S0 portion that accumulates there.

It is worth noting that periodic boundary conditions
are used along the reactive coordinate ϕ. Therefore, in-
terferences are produced as well by S0 portions of the
nuclear wavepacket that reach the trans configuration at
+π (−π) and continue their evolution “reentering” the
simulation box from −π (+π).

2. Time-dependent vector potential

In Fig. 3 the TDVP offers a complementary perspective
on the nuclear dynamics to the TDPES, and, in the used
gauge, it is identified with the nuclear momentum field.
As for the TDPES, the TDVP is only shown in regions
where the nuclear density is larger than 10−7.

FIG. 3. Magnitude of the TDVP (colormaps) and its direction
(unit vector) at times t = 10, 50, 100 fs as indicated in the
figure. The nuclear density (contour lines) at the same times
is superimposed for reference. The CIs are indicated by the
crosses.

At t = 10 fs (left panel) the TDVP is small in magni-
tude because the dynamics starts with zero average mo-
mentum, and appears symmetric in the ϕ direction with
respect to ϕ = 0. This feature is maintained all along the
simulated dynamics, as the nuclear density moves sym-
metrically towards the CIs. The TDVP reported in all
panels in Fig. 3 changes sign in the ϕ direction at ϕ = 0.

As the nuclear density approaches the CIs, at t = 50 fs
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(central panel), the magnitude of the TDVP increases.
This behavior can be easily explained having in mind the
double-cone shape of the adiabatic PESs, with the slope
of the S1 PES inducing the nuclear density to efficiently
relax towards S0 via the CIs.

At the final time shown in Fig. 3, t = 100 fs (right
panel), the magnitude of the TDVP reflects the inter-
ference patterns already observed in the TDPES, with a
clear separation between the smooth behavior in the cis
region |ϕ| < π

2 and a highly oscillatory behavior mainly
identified in the trans region |ϕ| > π

2 .
In all panels in Fig. 3, the vector field representing the

direction of the TDVP is nearly parallel to the horizontal
axis, indicating that the q component of the momentum
field is much smaller than the ϕ component. This results
in dynamics mainly characterized by motion from the cis
to the trans configuration.

B. Quantum and coupled trajectories

Quantum trajectories are determined by intergrating
Eq. (19) where the TDVP is calculated as described in
Section IIIA from the output of our quantum-dynamics
simulation. We refer to Aϕ(ϕ, q, t) and to Aq(ϕ, q, t)
as the two components of the TDVP. Initial conditions
for the quantum trajectories are determined by sam-
pling 1000 positions Rα(0) = ϕα(0), qα(0) from the
Gaussian probability distribution |χS0

(ϕ, q, 0)|2 associ-
ated to the chosen initial condition for the quantum sim-
ulation. Once the initial positions are given, the ini-
tial velocities are simply determined as ϕ̇α(0), q̇α(0) =
Aϕ(ϕα(0), qα(0), 0)/m,Aq(ϕ

α(0), qα(0), 0)/ω−1.
Coupled trajectories are propagated according to the

CT-MQC and CT-TSH algorithms. We used 1000 initial
conditions, whose positions and momenta are indepen-
dently sampled from the Wigner distribution determined
from |χS0

(ϕ, q, 0)|2 (the initial positions are identical to
the initial quantum trajectories). In the case of CT-
MQC, we extract nuclear and electronic observables by
averaging over 1000 trajectories. In the case of CT-TSH,
we perform 4 independent runs in order to account for
different histories of hops, thus yielding a total of 4000
trajectories whose results are averaged to extract the ob-
servables that will be discussed below.

CT-MQC and CT-TSH dynamics are performed in
the adiabatic basis, with adiabatic PESs determined by
diagonalizing the electronic Hamiltonian in Eq. (20).
The nonadiabatic couplings are computed analytically
with the usual Hellmann-Feynman theorem [71] from the
eigenvectors of the electronic Hamiltonian in Eq. (20).
This procedure is implemented in the ModelLib li-
brary [72]. The velocity-Verlet algorithm is used to in-
tegrate classical nuclear equations, and the fourth-order
Runge-Kutta method is used for the electronic evolution;
nuclear and electronic dynamics are integrated with at
time step of 0.0024 fs (0.1 au). We checked the stabil-
ity of CT-TSH results by reducing/increasing by half the

FIG. 4. Exact nuclear density (colormap) at times t =
10, 50, 100 fs as indicated in the figure, compared with the
positions of the quantum trajectories (lilac dots in the upper
panel), CT-MQC trajectories (blue dots in the middle panels)
and CT-SH trajectories (orange dots in the lower panels) at
the same times. The CIs are indicated by the crosses.

integration time step, since the hopping probability of
Eq. (18) depends on it. The electronic initial conditions
are chosen as CαS0

(0) = (0.0, 0.0), CαS1
(0) = (1.0, 0.0) ∀α.

Calculations based on coupled trajectories have been per-
formed with G-CTMQC [73].

FIG. 5. Distribution of the trajectories in momentum space
at times t = 10, 50, 100 fs as indicated in the figure. Upper
panels: Comparison between quantum trajectories (lilac dots)
and CT-MQC trajectories (blue dots). Lower panels: Com-
parison between quantum trajectories (lilac dots) and CT-
TSH trajectories (orange dots).
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1. Distributions of trajectories

In Fig. 4 we compare the distributions of nuclear tra-
jectories with the quantum nuclear density (green areas)
at times t = 10, 50, 100 fs along the dynamics. Quan-
tum trajectories are indicated as lilac dots in the upper
panels, CT-MQC trajectories as blue dots in the middle
panels and CT-TSH trajectories as orange dots in the
lower panels. In general, we observe that CT-MQC and
CT-TSH trajectories resemble closely the distribution of
quantum trajectories, in agreement with the initialization
of all trajectories ensembles from the same distribution
in configuration space.

In Fig. 5 the distributions of momenta are shown at
times t = 10, 50, 100 fs along the dynamics. In the up-
per panels, CT-MQC distributions (blue dots) are com-
pared to the quantum trajectories (lilac dots), whereas,
in the lower panels, CT-TSH distributions (orange dots)
are compared to the quantum trajectories. In both cases
a clear qualitative difference is observed, which follows
from the different initial momenta used for the quantum
and for the coupled trajectories. In CT-MQC and CT-
TSH positions and momenta are independent variables,
and thus they are randomly sampled from uncorrelated
(Wigner-transformed) positions-momenta distributions.
Note that the distributions are uncorrelated since the
(quantum) initial density is a two-dimensional Gaussian
in the variables ϕ and q. Figure 5 shows that the mo-
menta distribution of quantum trajectories is much more
localized along Pq than the distributions of coupled tra-
jectories, whereas they have comparable widths along Pϕ
at time t = 10 fs (left panels). The momenta of the quan-
tum trajectories rapidly increase only along Pϕ, and the
distribution in this direction at time t = 50 fs (central
panels) is as broad as CT-MQC and CT-TSH. At later
times, t = 100 fs in the figure (right panel), the distri-
butions of all ensembles of trajectories have comparable
broadening along Pϕ. However, quantum trajectories re-
main extremely localized in momentum space along Pq if
compared to CT-MQC and CT-TSH.

The results shown in Fig. 5 are consistent with the
previously observed property of the TDVP of being much
larger along the ϕ direction than along the q direction.
In Fig. 3 the vector field representing the direction of the
TDVP is basically parallel to the horizontal axis. Fig. 5
shows, in fact, that Pϕ attains values up to approximately
50 times the values of Pq.

In general, Figs. 4 and 5 show that the initial dynamics
simulated with CT-MQC and CT-TSH is basically iden-
tical, and this is because the trajectories evolve adiabati-
cally on S1. When they reach the CIs, however, the treat-
ment of the dynamics differs regarding both the nuclear
forces and the evolution of the electronic coefficients.
When and after the nonadiabatic event occurs, CT-MQC
and CT-TSH yield (slightly) different results. The analy-
sis of Figs. 4 and 5 also suggests that we can directly com-
pare average configurational properties extracted from
quantum trajectories and from CT-MQC/CT-TSH tra-

jectories. On the other hand, the behavior of quantum
and coupled (or classical-like) trajectories in momentum
space is qualitatively different as consequence of the dif-
ferent relations between initial positions and initial mo-
menta in the two schemes.

2. Averaged observables

Figure 6 shows the population of the electronic excited
state S1 as function of time (left panel), where reference
results are provided by Eq. (26) and are indicated in red.
For CT-MQC (blue) and CT-TSH (orange) this same ob-
servable is estimated as the average over the trajectories
of |CαS1

(t)|2, namely as

ρq.
S1

(t) =
1

Ntraj

Ntraj∑
α=1

|CαS1
(t)|2 (27)

We refer to this average as “quantum” and we indicate
it as (q.) in Fig. 6. In addition, in CT-TSH, one can
also count how many trajectories are “on” the S1 PES at
time t, i.e., NS1

(t), and divide this number by the total
number of trajectories (green line in Fig. 6), namely

ρcl.
S1

(t) =
NS1

(t)

Ntraj
(28)

We refer to this estimate of the electronic population
as “classical” and we indicate it as (cl.) in Fig. 6. In
Fig. 6 we report as well TSH results (black) using the
energy decoherence correction (with parameter 0.1 Ha),
indicated as TSH-ED; only the classical estimate of the
electronic population obtained from TSH-ED is shown in
the figure.

Figure 6 reports the probability of the trans configu-
ration as function of time as well (right panel). Exact re-
sults (red) are determined by integrating at all times the
total nuclear density between ϕ = −π2 and ϕ = +π

2 (and
over all q), thus obtaining Pcis(t), and then by defining
Ptrans(t) = 1 − Pcis(t). Trajectory-based results are de-
termined by counting at each time how many trajectories
have a value of |ϕα(t)| > π

2 , independently of qα(t), and
by dividing this number by the total number of trajec-
tories. CT-MQC results are shown in blue, CT-TSH in
orange, TSH-ED in black, quantum trajectories (evolved
with the TDVP) in lilac in Fig. 6 (right panel). Note
that, when the trajectories are evolved with the TDVP,
only their distribution in configuration and momentum
space is available. For this reason, we can only compute
the probability of the trans configuration using quantum
trajectories and we do not have access to the electronic
population.

Quantum (exact) results from Fig. 6 show that after
around 80 fs of dynamics in the excited state, the photo-
excited wavepacket reaches the CIs and starts transfer-
ring population to the ground state. At the same time,
the trans configuration is being formed as the wavepacket
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FIG. 6. Left: Population of the electronic excited state S1

as function of time from quantum dynamics (Exact, in red),
CT-MQC (in blue), CT-TSH (in orange and in green), and
TSH-ED (in black). For CT-MQC only the quantum (q.) es-
timate of the population is accessible, whereas for CT-TSH we
compare the quantum (q.) and the classical (cl.) expressions,
as defined in the text. For TSH-ED, only the classical (cl.)
estimate is shown. Right: Probability of finding the system
in the trans configuration as function of time from quantum
dynamics (Exact, in red), CT-MQC (in blue), CT-TSH (in
orange), TSH-ED (in black), and quantum trajectories (in
lilac).

tends towards values of the reactive coordinates |ϕ| > π
2 .

While the S1 population keeps decreasing until 200 fs, i.e.,
the end of the simulated dynamics, the trans configura-
tion reaches a maximum at around 180 fs and decreases
afterwards. This behavior suggests transfer of density
from the trans basins to the cis basin on the S0 PES
without population transfer, since the population of S1
does not increase after 180 fs. An additional feature that
we can observe in the plot of the population of S1 is that
the curve hints towards a stabilization after 200 fs.

The formation of the trans conformer is reproduced by
the quantum trajectories (lilac) in extremely good agree-
ment with exact results, indicating that a trajectory-
based representation of nuclear dynamics for this retinal
model is adequate to study the trans photo-product for-
mation after excitation by light. However, TDVP results
slightly deviate from the reference towards the end of the
simulated dynamics, due to numerical errors in the time
integration of Eq. (19) when the TDVP develops a highly
oscillatory behavior (see Fig. 3 at time 100 fs).

CT-MQC results (blue) reproduce qualitatively and
quantitatively well the expected behavior of the S1 pop-
ulation, eve though it seems that the time trace of the
population reaches a plateau at around 180−190 fs. The
trans probability as function of time is also reproduced

extremely well, with the maximum only slightly overes-
timated if compared to the reference.

Interestingly, the quantum (orange) and classical
(green) estimates of the electronic population in CT-TSH
are very close all along the dynamics, even though this
has not been imposed in the derivation of the algorithm.
The quantum estimate is, however, closer to CT-MQC, as
the population reaches a plateau at around 180−190 fs,
which is not observed in the classical estimate. The clas-
sical estimate of the S1 population resembles closely the
reference curve as well as TSH-ED results. In addition,
the prediction of the trans probability by CT-TSH is very
close to the exact curve, and shows a slight (quantitative)
improvement with respect to both CT-MQC and TSH-
ED.

IV. CONCLUSIONS

In this paper we reported the analysis of the relax-
ation dynamics through a conical intersection in a two-
dimensional retinal model and fully based on the exact
factorization. The aim of the work is to validate approx-
imate trajectory-based results obtained by applying CT-
MQC and CT-TSH against quantum wavepacket dynam-
ics and against quantum trajectories, which represent for
us the best trajectory-based results accessible within the
exact factorization. To propagate quantum trajectories,
we calculated numerically the time-dependent vector po-
tential and time-dependent potential energy surface from
the solution of the coupled electron-nuclear problem.

The agreement between quantum trajectoires and
quantum wavepacket dynamics is excellent all along the
simulated dynamics, even though the time-dependent po-
tentials show complex interferences at long times due to
the reduced dimensionality of the model. Despite this
complex dynamical features, the approximate trajectory-
based schemes CT-MQC and CT-TSH are in close agree-
ment to quantum results, i.e., trajectories and wavepack-
ets. Furthermore, CT-TSH shows a slightly improved
quantitative agreement with the reference over CT-MQC.
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